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Abstract

The remote photoplethysmography (rPPG) technique
can estimate pulse-related metrics (e.g. heart rate and res-
piratory rate) from facial videos and has a high potential
for health monitoring. The latest deep rPPG methods can
model in-distribution noise due to head motion, video com-
pression, etc., and estimate high-quality rPPG signals un-
der similar scenarios. However, deep rPPG models may
not generalize well to the target test domain with unseen
noise and distortions. In this paper, to improve the general-
ization ability of rPPG models, we propose a dual-bridging
network to reduce the domain discrepancy by aligning in-
termediate domains and synthesizing the target noise in the
source domain for better noise reduction. To comprehen-
sively explore the target domain noise, we propose a novel
adversarial noise generation in which the noise generator
indirectly competes with the noise reducer. To further im-
prove the robustness of the noise reducer, we propose hard
noise pattern mining to encourage the generator to learn
hard noise patterns contained in the target domain features.
We evaluated the proposed method on three public datasets
with different types of interferences. Under different cross-
domain scenarios, the comprehensive results show the ef-
fectiveness of our method.

1. Introduction
With the development of rPPG technology, physiolog-

ical metrics such as heart rate [27], heart rate variabil-
ity [34], respiratory rate [21] can also be estimated from fa-
cial videos. Deep learning-based rPPG methods overcome
non-physiological intensity variations [30, 49] and model
noise in training samples [24, 28]. Despite the high accu-
racy under intra-dataset evaluations, the deep rPPG models
may not be able to generalize well to unseen interferences
in the test domain. The domain gap is mainly from unseen
non-physiological interferences such as lighting conditions,
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Figure 1. The comparison between (a) typical intra-dataset ad-
versarial rPPG noise modeling, (b) an intuitive UDA framework
for rPPG feature alignment, and (c) our proposed dual-bridging
network with adversarial noise modeling and hard noise pattern
mining (HM ). Here SYN denotes synthetic data, DT is for the
denoised target domain, G, D, and NR denotes the generator, do-
main classifier, and noise reducer, respectively.

camera sensors, video compression algorithms, facial ex-
pressions, etc. They can induce distortions in estimated
rPPG signals and reduce both the accuracy and the relia-
bility of pulse-related metrics estimation. Considering it is
hard to cover all interferences during the training stage, to
improve the usability of rPPG in realistic applications, one
main challenge is how to boost the generalizability of rPPG
models to unseen scenarios.

In recent research of rPPG, both deep learning-based
frameworks and mechanisms [45, 46, 49] are proposed to
overcome the non-physiological intensity variations. GAN-
based disentanglement learning has also been adopted to re-
duce the noise from pseudo [28] or synthesized [24] noisy
features. We summarize this approach in Figure 1 (a) where
a discriminator is employed to distinguish the generated
feature (SYN in figure) from the original one. These meth-
ods can perform well under intra-dataset evaluation settings
since the in-distribution noise patterns are thoroughly in-
vestigated with a large number of adversarial learning iter-
ations. However, they may fail when encountering unseen
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domains in real application scenarios since noise patterns
may be different from the ones of training data.

Intuitively, the unsupervised domain adaptation (UDA)
technique can help in bridging the gap between source and
target domain [7, 14, 17, 44]. As shown in Figure 1 (b), a
noise reducer module NR that aims to obtain noise-free
domain-invariant representations can be learned by fight-
ing against the domain classifier D. However, this intuitive
solution may not work well since the domain classification
may not be able to give sufficient information for NR to
identify whether the feature components are noise or phys-
iological information. Directly aligning the rPPG features
from different domains may end up distorting the physio-
logical information since they are from different subjects.
The ground-truth PPG (GT-PPG) signal with detailed wave-
form information helps preserve the physiological informa-
tion and can provide much more informative guidance with
the regression task. However, GT-PPG is available in the
source domain but not the target domain. How to leverage
the source domain GT-PPG to train NR to be robust to the
noise from the target domain is the key issue to be solved in
this work. To achieve it we propose the dual bridging noise
modeling network as shown in Figure 1 (c). The first bridg-
ing works as high-level guidance where the denoised target
domain feature is adversarially pulled to the source domain
feature (as Figure 1 (b)). On top of it, the second bridging
aims to help synthesize the target domain noise and inject it
into the source domain denoised feature so that the GT-PPG
regression can help finetune the NR for better robustness in
the target domain. An adversarial noise generation module
(G|NR) is designed where the generator is conditioned on
the NR so that it keeps on overcoming the complex noise
pattern that can hardly be solved in the first bridging. With
the high-level guidance (first bridging) and detailed signal
regression (second bridging), the NR can handle the target
domain noise better and therefore improve the accuracy of
rPPG estimation in the target domain. To further discover
the remaining noise vestige, we build a hard noise pattern
mining mechanism to squeeze the unsolved local noise pat-
tern from the denoised target feature so that G|NR can thor-
oughly synthesize it.

In sum, the contributions of this work are: (1) A dual-
bridging noise modeling network that adapts target domain
noise in a coarse-to-fine manner. (2) An adversarial noise
generation mechanism to progressively synthesize and in-
ject the hard target domain noisy features into the source
domain while keeping the physiological information. (3)
A hard noise pattern mining mechanism to further explore
the target domain noise patterns with larger variations. We
evaluated the proposed method on three public datasets with
various types of interferences including facial motion and
expression, video compression, skin tone, and heartbeat
ranges. Under different cross-domain scenarios, the com-

prehensive results show the effectiveness of our method.

2. Related Work
2.1. Remote physiological estimation

Traditional rPPG methods [5, 16, 32, 39, 40, 41] estimate
pulse signal from facial videos by extracting and model-
ing the detailed heartbeat-caused skin color variation. To
estimate pulse-induced intensity variations with more de-
tails from facial videos, deep learning-based networks and
mechanisms have been proposed. With facial video input,
various spatial-temporal neural networks have been devel-
oped [4, 20, 22, 23, 37, 48, 49]. To evaluate the effective-
ness, rPPG datasets with various interferences including
head motion [36], facial expression [15, 39], video com-
pression [9], and skin color [42] are constructed. In addi-
tion, rPPG estimation can be conducted from pre-processed
representations like normalized difference [3, 18, 21, 30],
spatial-temporal map [24, 28]. To further improve robust-
ness, self-adaptive [3, 21] and background-guided [19, 30]
attention mechanisms have been proposed to emphasize im-
portant facial regions in physiological representation. Fur-
thermore, [28] proposed the cross-verified strategy to dis-
entangle noise and physiological representation and [24]
proposed to model in-distribution noise for learning noise-
resistant physiological representation. [25, 26] proposed to
synthesize diverse facial videos for rPPG estimation. Unsu-
pervised learning-based methods [8, 37] are also proposed
to learn rPPG estimation from unlabeled facial videos.
However, the previously proposed methods are prone to
experience performance drops in cross-dataset evaluation,
where the target domain may contain unseen noise. This
is due to unseen noise patterns that may not be fully over-
come, and the physiological representation may be polluted
and cause distortions in the rPPG signals.

2.2. Unsupervised domain adaptation methods

In recent research on computer vision, many unsu-
pervised domain adaptation methods have been proposed
to learn domain-invariant representation. [7] proposed to
suppress domain-specific information with domain label
guided adversarial training. [33] proposed a bi-directional
generation framework that can map target domain sam-
ples to the source domain and preserve semantic informa-
tion for classification. [14] proposed to use adversarial do-
main training and distributional feature alignment guided
by maximum density divergence to achieve adaptation. [43]
considered that domain adversarial training may not be co-
ordinated with the main task and proposed using meta-
learning to improve the effectiveness of feature alignment.
Unlike common computer vision tasks, feature alignment
in the rPPG estimation requires more detailed information
which cannot be fully provided by domain labels. There-
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Figure 2. Framework of the dual-bridging noise modeling network. The dual-bridging can reduce the domain discrepancy in the fea-
ture space by training the noise reducer with both high-level guidance from domain classification and detailed waveform guidance from
synthetic features regression. The adversarial noise generation forces the generator G to compete with the noise reducer NR and synthe-
size noisy features with unsolved noise in the target domain. The hard noise pattern mining removes high-quality temporal features and
encourages the generator to further explore hard noise patterns in the target domain.

fore, we propose the dual-bridging noise modeling network
to take advantage of both domain labels and the source do-
main ground truth to guide the rPPG feature alignment.

3. Proposed Method

The overview of the proposed dual-bridging noise mod-
eling network is shown in Figure 2. Given the input face
video from the source and target domain, we construct the
STMap (details are in section 4.2) as the input of the feature
extractor and then perform dual-bridging noise modeling on
the middle representation. The first bridging provides high-
level guidance where the source feature fs

j and the denoised
target feature f t

i are pulled together with the domain clas-
sifier. The synthesized target domain feature fs

j is obtained
from the f t

i through the adversarial noise generation mod-
ule. The second bridge aims to pull fs

j to f t
i so that the

target domain noise can be overcome by NR with the guid-
ance of PPG ys (regression) The generator in the adversar-
ial noise generation module is conditioned on the NR so
that it keeps on overcoming the complex noise pattern that
can hardly be solved in the first bridging. With the dual-
bridging noise modeling that contains both high-level (first
bridge) and detailed waveform guidance (second bridge),
the NR can handle the target domain noise better. Finally,
NR works with the feature extractor and rPPG estimator to
do the rPPG estimation in the target domain.

3.1. Dual-bridging

With respect to the feature extractor Θ, we define source
domain features as Fs = {fs

j }Mj=1 and target domain fea-
tures as Ft = {f t

i }Ni=1, where fs
j = Θ(xs

j) and f t
i = Θ(xt

i).
Since the rPPG patterns are similar between different partic-
ipants, the pre-trained feature extractor can preserve enough
physiological information in Ft and noise modeling is the
key to noise reduction of the target domain features. De-
tailed information for guidance is necessary to overcome
the complex noise in the target domain features.

To reduce the noise contained in Ft, we propose the
adaptive noise reduction bridging to reduce the noise con-
tained in target domain features supervised by the domain
classifier. In this bridging, we design the noise reducer with
the noise estimation function Φ in a residual way as follows:

f̂ t
i = f t

i − Φ(f t
i ) (1)

where f̂ t
i is a denoised physiological feature and we define

F̂t = {f̂ t
i }Ni=1 as the denoised target domain. The direct

estimation of high-quality physiological features could be
hard, and we choose to estimate the noise and use the resid-
ual structure to reduce the noise in the target domain fea-
tures. We build an adversarial training between the noise
reducer Φ and the domain classifier D as follows:

max
D

min
Φ

LNR = E[∥1−D(fs
j )∥2] + E[∥D(f̂ t

i )∥2] (2)
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With high-level guidance from domain classification, some
simple noise patterns can be overcome, and less noisy fea-
tures can be aligned. However, high-level guidance may not
overcome complex noise patterns without detailed wave-
form information for guidance. And the brute-force feature
alignment may even change the physiological information
of rPPG features when complex noise patterns are encoun-
tered. The phenomenon can be reflected by our ablation
study in section 4.3.

To involve detailed information for supervision, we pro-
pose the complex noise generation bridging to generate tar-
get domain noise and synthesize noisy features to guide the
noise reducer. From the source domain direction, we esti-
mate the noise patterns in the target domain by generating
noise and synthesizing noisy features as follows:

f
s

j = fs
j +Ψ(nk) (3)

where f
s

j is a raw noisy feature, nk is random noise, and Ψ
is the generator. And we define the synthetic feature domain
F̂s = {f̂s

j }Mj=1 as follows:

f̂s
j = f

s

j − Φ(f
s

j) (4)

To control the range of noise generation, we build the adver-
sarial training between the noise generator and the domain
classifier with respect to the denoised target domain as fol-
lows:

max
D

min
Ψ

LG = E[∥1−D(fs
j )∥2] + E[∥D(f

s

j)∥2]

+ E[∥D(f̂ t
i )∥2] (5)

In this bridging, the domain classifier can guide the gen-
erator to learn target domain noise patterns and synthe-
size noisy features with preserved physiological informa-
tion. Thus, the source domain PPG signals ysj can be uti-
lized to guide the noise reducer to overcome generated com-
plex noise patterns as follows:

LSY N = 1− r(E(f̂s
j ), y

s
j ) (6)

E is the rPPG estimator, and r is the Pearson correlation
function. With this bridging, the physiological information
can be preserved in the noise reduction and the other bridg-
ing can align more target domain features under large do-
main discrepancy.

3.2. Adversarial noise generation

With the guidance from the domain classifier, part of the
target domain noise patterns can be generated. However, in
the adversarial training process, the generator may not fully
explore target domain noise patterns. To comprehensively
explore the target domain noise for rPPG feature alignment,
we propose a novel adversarial noise generation. As shown

Genoised target domain 
rPPG feature remove high quality slices hard rPPG feature

Figure 3. Illustration of hard noise pattern mining.

in Figure 2, the generator is conditioned on the noise re-
ducer and forced to explore the unsolved noise contained
in the target domain features. The noise reducer is trained
with the synthetic features and corresponding PPG signals
to overcome the generated noise. The adversarial correla-
tion between the generator and the noise reducer is shown
as follows:

max
Ψ

min
Φ

LANG = E[∥1−D(f̂s
j )∥2]+E[1−r(E(f̂s

j ), y
s
j )]

(7)
This adversarial training is based on two different optimiza-
tion functions, but not the gradient reverse layer. Therefore,
the novel noise patterns are not generated based on adver-
sarial attacks but are searched from unsolved noise patterns
in the target domain. With our adversarial noise generation,
the dual-bridging structure can progressively generate tar-
get domain noise patterns, and the noise reduction ability
can be significantly improved.

3.3. Hard noise pattern mining

To further improve the robustness of the noise reducer,
we propose the hard noise pattern mining as illustrated in
Figure 3. Considering the redundancy of rPPG estimation,
features with one or several high-quality temporal features
can contribute to accurate estimation. Thus, the noise re-
ducer may just learn to overcome relatively simple noise
patterns and some hard noise patterns may not be learned.
To further explore the hard noise patterns, we need to reduce
the shortcuts for noise reduction and generate hard noise
patterns for training. In our hard noise pattern mining mod-
ule, we identify high-quality temporal features with respect
to the morphology consistency M which is defined as fol-
lows:

M =
n

max
t=1

r(g0:T , gt:t+T ) (8)

r is the Pearson correlation, g is a temporal feature, t is
the sliding start point, and T is the time length of morphol-
ogy consistency evaluation. With respect to the morphology
consistency, we define temporal features with significant
periodicity as high-quality features. After identifying high-
quality temporal features, we can remove the corresponding
feature slice and preserve hard slices for noise generation.
Correspondingly, more hard noise patterns will be gener-
ated and the noise reduction ability can be further improved
for rPPG feature alignment.

The detailed optimization process of our proposed
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Algorithm 1 The optimization process for our dual-
bridging algorithm.
Input: Noise generator Ψ, noise reducer Φ and domain
classifier D, total epochs L, mini-batch B, source domain
samples xs

j , source domain labels ysj , target domain samples
xt
i.
for l = 1 to L do

for b = 1 to B do
Obtain fs

j and f t
i with pre-trained feature extrac-

tor from xs
j and xt

i

Obtain f̂ t
i with noise reducer

Update noise reducer Φ and domain classifier D
with LDE

Generate f
s

j and f̂s
j with updated noise reducer

and noise generator
Update noise generator Ψ with LG and LR

Update noise reducer Φ with LSY N

end for
end forOutput: Learned noise reducer Φ.

method is shown in Algorithm 1. After training the dual-
bridging algorithm, we can estimate rPPG signals in the tar-
get domain as follows:

ŷti = E(Θ(xt
i)− Φ(Θ(xt

i))) (9)

ŷti is the estimated rPPG signal.

4. Experiments
We conduct experiments on three publicly available

datasets with different types of interference to evaluate the
accuracy and generalization ability of our dual-bridging
noise modeling network. Three protocols that simulate
the typical domain discrepancies in real application sce-
narios are adopted, i.e., 1) task-independent evaluation,
2) participant-independent evaluation, and 3) cross-dataset
evaluation. Mean absolute error (MAE), root mean square
error (RMSE), and Pearson correlation coefficient (r) are
adopted to evaluate the performance of average heart rate
based on the estimated rPPG signal. The unit for MAE and
RMSE is beats per minute (bpm).

4.1. Datasets and Baselines
We evaluate the proposed method on the following

datasets, which cover different types/levels of head motion,
facial expression, compression artifacts, skin color, and also
heartbeat ranges.

PURE [36] dataset contains facial videos of 10 Cau-
casian participants (8 men, 2 women) in six different be-
havior modes with head motion and facial expression. The
videos are uncompressed and captured at 30fps in 640 ×
480.Synchronized GT-PPG signals are captured at 60 Hz
using pulse oximeter pulox CMS50E.

MMSE-HR [39] datasets contains 102 facial videos cap-
tured from 40 participants of different ethnicities with dif-
ferent emotions. The emotion-related spontaneous facial
expressions can also induce facial intensity variations. The
video frames are captured at 25fps in 1040×1392 and com-
pressed in JPG format, and their frame rate is 25Hz. GT
blood volume signals are captured by the Biopac MP150.

UBFC-rPPG [1] dataset contains 42 facial videos cap-
tured under a human-computer interaction scene which
causes head motions and larger heart rate range (63-145
bpm). Videos are recorded by the Logitech C920 Webcam
at 30fps in 640 × 480. Synchronized GT-PPG signals are
captured by CMS50E.

Baselines We compared the proposed method with tradi-
tional rPPG methods [5,16,32,39,40,41] and the latest deep
rPPG models [3,4,13,21,22,23,24,27,28,29,34,37,45,47,
49] to show the generalization ability. We also compared
the proposed method with popular UDA methods [7, 17] to
show the effectiveness of rPPG feature alignment.

4.2. Implementation details
Our method is implemented with PyTorch and trained

on an NVIDIA Tesla V100. We align the facial regions
with four landmarks using the perspective transformation
and generate the STmap [27] as input. We resample all
STmaps and the corresponding labels at 30Hz. The frame
number for each STmap is 300 and adjacent STmaps have
270 overlapped frames. In experiments, we pre-train the 2D
CNN model on the source domain for rPPG estimation. The
threshold of morphology consistency for hard noise pattern
mining is 0.82. In the domain adaptation training stage, we
set the batch size to 64 and adopt the Adam optimizer [11]
for training. The learning rate for the noise pattern gener-
ator and noise reducer is 1e-4. And the learning rate for
the domain classifier is 3e-5. The weight decay is 1e-4
for all optimizers. We train our domain adaptation algo-
rithm for 200 epochs in the task-independent and PURE to
MMSE-HR evaluations, and 2000 epochs in the MMSE-
HR to PURE evaluation. We select the weights of the noise
reducer for the test according to the estimation loss of syn-
thesized samples. Under certain domain discrepancies, the
details of the rPPG signals may not be preserved.

4.3. Task-independent evaluation
We first evaluate the proposed method in the task-

independent scenario, which has a smaller domain discrep-
ancy. The MMSE-HR collected facial videos under differ-
ent activities and we regard each activity as a task. Within
MMSE-HR, the unseen non-physiological intensity varia-
tions are mainly induced by different head motion and fa-
cial expression changes In this evaluation, we set one task
as the target domain and the other tasks as the source do-
main. From the experimental results in Table 1, we can
find that even under the intra-dataset scenario, the domain
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Table 1. Experimental results for task-independent evaluation on
MMSE-HR.

Method MAE RMSE r

Li2014 [16] - 19.95 0.38
CHROM [5] - 13.97 0.55
Tulyakov2016 [39] - 11.37 0.71
ST-Attention∗ [29] - 10.10 0.64
RhythmNet [27] - 5.03 0.86
CVD∗ [28] - 6.04 0.84
PhysNet [47] - 13.25 0.44
DeepPhys [3] 4.43 9.98 0.80
TS-CAN [21] 3.85 7.21 0.86
AutoHR [45] - 5.87 0.89
BVPNet [4] - 7.47 0.79
Federated2022 [23] 2.99 2.42 0.79
EfficientPhys-C [22] 2.91 5.43 0.92
EfficientPhys-T1 [22] 3.48 7.21 0.86
PhysFormer∗ [49] 2.84 5.36 0.92

ERM [12] 1.30 2.58 0.99
DANN [7] 1.24 2.71 0.99
CST [17] 1.20 2.42 0.99

Ours 0.85 2.05 0.99
* Trained on VIPL-HR datasets due to the large model-scale

Table 2. Experimental results for participant-independent evalua-
tion on UBFC-rPPG dataset.

Method MAE RMSE r

GREEN [40] 4.47 11.6 0.842
ICA [32] 3.51 8.64 0.908
CHROM [5] 3.44 4.61 0.968
POS [41] 2.44 6.61 0.936
CK [35] 2.29 3.80 0.981
Frédéric [2] 5.45 8.64 -
HeartTrack [31] 2.41 3.37 0.983
ETA-rPPGNet [10] 1.46 3.97 0.93
DAE [34] 1.48 2.49 0.97
PulseGAN [34] 1.19 2.10 0.98
Meta-rPPG [13] 5.97 7.42 0.53
CVD [28] 2.19 3.12 0.99
Gideon2021 [8] 3.6 4.6 0.95
Federated2022 [23] 2.00 4.38 0.93
Dual-GAN [24] 0.44 0.67 0.99
ContrastPhys [37] 0.64 1.00 0.99

ERM [12] 0.75 1.84 0.99
DANN [7] 0.58 1.19 0.99
CST [17] 0.41 1.04 0.99

Ours 0.16 0.57 0.99

discrepancy can decrease the performance of deep rPPG
models. And under small domain discrepancies, common
UDA methods are effective and can overcome certain noise

patterns in the target domain. Our method can effectively
reduce the unseen non-physiological intensity variations in
feature space through noise reduction of rPPG features and
achieves state-of-the-art performance.

4.4. Participant-independent evaluation.

The domain discrepancy can also come from differ-
ences between participants like head motions under human-
computer interaction scenarios. Caucasian and Asian par-
ticipants are included and we evaluate this participant-
independent setting with the UBFC-rPPG dataset. We fol-
low the protocol in [24,34] to select 30 participants for train-
ing and use the rest 12 participants for testing. As the exper-
imental results shown in Table 2, the domain discrepancy
is small with respect to deep rPPG models and pre-trained
rPPG models also have low error. Compared to common
UDA methods, our proposed method can provide more de-
tailed information for noise reduction supervision and more
noise patterns can be overcome in the feature alignment.

4.5. Cross-dataset evaluation

Our method is also evaluated in the cross-dataset setting
with MMSE-HR and PURE. The selected datasets have dif-
ferences in aspects such as head motion, From the view of
the rPPG estimation, the MMSE-HR dataset contains more
challenging scenarios (video compression, facial expression
changes) than the PURE dataset. A challenging source do-
main could be beneficial to generalization ability and reduce
the difficulty of the adaptation process. We provide details
of the cross-dataset evaluations in the following paragraphs.

From MMSE-HR to PURE. In this experiment, we se-
lect the MMSE-HR dataset as the source domain and the
PURE dataset as the target domain. Since the source do-
main is more challenging than the target domain , the adap-
tation process could be relatively easy. The experimental re-
sults are shown in Table 3. We can find that DANN cannot
improve the generalization ability of rPPG models and only
high-level guidance cannot align noisy features to high-
quality features. While the cycle self-training strategy can
provide certain details of the rPPG waveform and is more
effective in reducing the domain discrepancy in rPPG esti-
mation. Our method can progressively generate noise pat-
terns in the target domain and synthesize noisy samples to
provide detailed information from the source domain labels.
Our method achieves state-of-the-art performance in this
UDA scenario, and the low RMSE shows that our method is
effective in reducing strong outliers. We provide some ex-
amples in Figure 3 (a) in which the noise reduction process
can remove fake peaks in one period. After removing fake
peaks, the periodicity of rPPG signal can be improved and
the heart rate estimation can be more accurate.

From PURE to MMSE-HR. In this experiment, we se-
lect the PURE dataset that has fewer facial videos with mild
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Table 3. Experimental results for cross-dataset evaluation between
PURE and MMSE-HR datasets.

MMSE-HR → PURE PURE → MMSE-HR

Method MAE RMSE r MAE RMSE r

CHROM [5] 3.25 12.92 0.84 5.72 12.69 0.58
POS [41] 2.83 12.49 0.85 4.98 13.11 0.53
CVD [28] 2.75 3.98 0.98 4.08 7.03 0.84

ERM [12] 2.49 8.48 0.93 2.59 5.44 0.96
DANN [7] 2.69 6.97 0.95 2.84 7.65 0.93
CST [17] 1.27 2.96 0.99 2.32 5.97 0.96

EfficientT1 [22] - - - 3.04 5.91 0.92
PhysFormer [49] - - - 2.84 5.36 0.92
Synthetic [25] - - - 2.26 3.70 0.97

Ours 1.10 1.67 0.99 1.71 3.72 0.98

Table 4. Experimental results for cross-dataset evaluation from
PURE to UBFC-rPPG.

PURE → UBFC-rPPG

Method MAE RMSE r

CHROM [5] 3.10 6.84 0.93
POS [41] 3.52 6.84 0.90
DAE [34] 2.70 5.17 0.96
PulseGAN [34] 2.09 4.42 0.97
Siamese-rPPG [38] 1.29 8.73 -
Dual-GAN [24] 0.74 1.02 0.99

ERM [12] 1.50 3.36 0.96
DANN [7] 3.24 6.13 0.96
CST [17] 2.24 4.73 0.97

Ours 0.58 1.11 0.99

interferences (like slow head rotation, translation) as the
source Compared to the MMSE→PURE setting, the do-
main gap in PURE→MMSE is harder to overcome since
the noise patterns in the target domain are more challenging.
In this experiment, our method is also compared with two
rPPG methods [22, 49] which are pre-trained in the VIPL-
HR dataset with more facial videos and scenarios. We also
compare with [25] which uses synthetic facial videos and
the AFRL dataset [6] for training. As shown in Table 3,
in this challenging setting, we find that all baseline meth-
ods have lower performance compared with the other cross-
dataset settings. Under this challenging setting, our dual-
bridging with adversarial noise generation algorithm can ef-
fectively explore the specific noise patterns from the target
domain. Additionally, by synthesizing noisy features simi-
lar to target domain features, the noise reduction ability can
be dramatically improved to reduce the domain discrepancy.
And our method can achieve state-of-the-art performance
under this cross-dataset validation. We also provide some

examples in Figure 3 (b) and find that noise reduction can
improve the quality of rPPG signals. Especially some noisy
rPPG signals show low periodicity, after the noise reduc-
tion, clear peaks can be observed. In this case, the intu-
itive UDA solution DANN also may not be able to learn
domain-invariant representation with domain labels only for
supervision. The cycle self-training strategy can only adap-
tively overcome a part of the domain discrepancy. Whereas,
the EfficientT1, PhysFormer, and Synthetic methods pre-
trained on larger datasets show better robustness.

From PURE to UBFC-rPPG. In this experiment, we
select the PURE dataset with head motion as the source do-
main and the UBFC-rPPG dataset with compression and a
wider range of heart rate as the target domain. The experi-
mental results are shown in Table 4. The compression en-
larges the domain discrepancy for rPPG estimation because
some information is lost during compression and facial in-
tensities are changed. Our proposed method can simulate
the compression-induced noise and provide detailed infor-
mation to effectively align rPPG features. In this setting, the
pre-trained rPPG models in [34, 38] cannot handle the rela-
tively larger domain gap (caused by the video compression)
well. For common UDA methods, the high-level guidance
from domain classification cannot fully guide the rPPG fea-
ture alignment and noise is still preserved in rPPG features.

In this cross-dataset evaluation, we show the domain
adaptation process in rPPG estimation under various do-
main discrepancies. Experimental results show that adapt-
ing deep rPPG models to less challenging scenarios, com-
mon UDA methods are effective. However, to adapt deep
rPPG models to more challenging scenarios, more detailed
information about the rPPG waveform is desired to reduce
the domain discrepancy. And our method can provide both
noise patterns and waveform information with the synthe-
sized samples for noise reduction training. We can find
that the domain discrepancy has been reduced after noise
reduction, as shown in Figure 4, especially for the harder
cases PURE→MMSE-HR. Compared to collecting large-
scale dataset to improve the generalization ability of deep
rPPG models, our dual-bridging noise modeling network is
effective and convenient.

Ablation study. We conduct ablation study with cross-
dataset settings to show the effectiveness of each bridge in
our method as shown in Table 5. We first show the exper-
imental result of the pre-train model. The NR ↔ D repre-
sents that a noise reducer and a domain classifier are adver-
sarially trained to reduce the domain discrepancy. Denoised
target domain features are used to estimate rPPG signals.
The noise reducer can adaptively overcome some noise pat-
terns under a small domain discrepancy. When the domain
discrepancy is large, the domain labels may not provide
enough detailed information for training the noise reducer.
To prevent the noise reducer from generating random phys-
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Table 5. Experimental results for ablation study.

MMSE-HR → PURE PURE → MMSE-HR

Method MAE RMSE r MAE RMSE r

Pre-trained rPPG model 2.96 9.57 0.91 2.09 3.92 0.98
+ NR ↔ D 2.13 7.14 0.95 20.27 26.34 0.58
+ NR ↔ D + G ↔ D 1.66 3.66 0.98 1.88 3.85 0.98
+ NR ↔ D + G ↔ D + G|NR ↔ D 1.13 1.71 0.99 1.71 3.72 0.98
+ NR ↔ D + G ↔ D + G|NR ↔ D + HM 1.10 1.67 0.99 1.88 4.16 0.98

Figure 4. Visualization of rPPG estimation before (orange) and
after (green) noise reduction compared with GT-PPG (blue). (a)
contains examples of MMSE-HR→PURE evaluation and (b) is of
PURE→MMSE-HR.

iological features under adversarial training, the strong re-
gression supervision from rPPG waveform is necessary. For
NR↔ D + G ↔ D, the noise generator is not conditioned on
the noise reducer and can also synthesize noisy samples to
train the noise reducer. The synthesized noisy samples pre-
vent the noise reducer from generating random physiologi-
cal features with detailed guidance from PPG signals. For
NR ↔ D + G ↔ D + G|NR ↔ D, i.e., dual-bridging with
adversarial noise generation, the noise patterns in the target
domain can be progressively generated to improve the de-
noising ability. The hard noise pattern mining can improve
the robustness of the noise reducer when there is less inter-
ference in the target domain However, with strong interfer-
ence in the target domain, too many hard noise patterns may
distract the noise reducer from overcoming originally gen-
erated noise patterns and we saw a decrease of performance
in the PURE → MMSE-HR.

4.6. Discussion
The generalization problem is a key challenge in apply-

ing rPPG techniques to real-world health monitoring ap-
plications. Especially for deep learning-based rPPG meth-
ods, the training data contain certain biases that may pre-
vent rPPG models from learning domain-invariant physio-
logical representations. Results show that generating noise
patterns in the target domain and synthesizing samples for
noise reduction can effectively reduce the domain discrep-

ancy thereby improving the quality of rPPG signals.
We also found the effectiveness of using domain labels to

help domain-invariant physiological representation learning
when domain discrepancy is small. However, when domain
discrepancy increases, the gain of feature alignment in such
adversarial training tends to be smaller. Without target do-
main labels for noise reduction, generating noise patterns
similar to the target domain is easier than directly denoising
target domain features under a large domain discrepancy.
In the noise generation procedure, some out-of-distribution
noise patterns can also be generated and can further improve
the generalization ability for unseen interferences.

Although our dual-bridging adaptation can work on most
cases and achieve state-of-the-art, we still have limitations
on handling hard cases with very large domain discrepan-
cies (e.g., large head motion + facial expression + video
compression in Table 4). Such rarely happened combined
artifacts and can be regarded as a long-tailed distribution
(of artifacts) problem. How to pay more attention to those
rare but hard cases could be a key to solve it in the future.

5. Conclusion
Recent deep learning-based rPPG methods can learn to

overcome non-physiological intensity variations from data,
but may also involve bias induced by data and hinder the
generalization ability. In this paper, we proposed a novel
dual-bridging noise modeling network to reduce the do-
main discrepancy in rPPG estimation. With the proposed
tri-adversarial optimization, the noise generator can pro-
gressively explore the noise patterns in the target domain
and the coarse-to-fine guidance can effectively improve the
noise reduction ability. In addition, comprehensive evalua-
tions of different domain discrepancies show the effective-
ness of our method. In future work, we may consider us-
ing unlabeled and synthesised [42] facial videos from mul-
tiple domains with various external interferences to learn
domain-invariant physiological representations.
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