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Abstract

Object-goal visual navigation aims at steering an agent
toward an object via a series of moving steps. Previous
works mainly focus on learning informative visual repre-
sentations for navigation, but overlook the impacts of nav-
igation states on the effectiveness and efficiency of nav-
igation. We observe that high relevance among naviga-
tion states will cause navigation inefficiency or failure for
existing methods. In this paper, we present a History-
inspired Navigation Policy Learning (HiNL) framework to
estimate navigation states effectively by exploring relation-
ships among historical navigation states. In HiNL, we pro-
pose a History-aware State Estimation (HaSE) module to
alleviate the impacts of dominant historical states on the
current state estimation. Meanwhile, HaSE also encour-
ages an agent to be alert to the current observation changes,
thus enabling the agent to make valid actions. Furthermore,
we design a History-based State Regularization (HbSR) to
explicitly suppress the correlation among navigation states
in training. As a result, our agent can update states more ef-
fectively while reducing the correlations among navigation
states. Experiments on the artificial platform AI2-THOR
(i.e., iTHOR and RoboTHOR) demonstrate that HiNL sig-
nificantly outperforms state-of-the-art methods on both Suc-
cess Rate and SPL in unseen testing environments.

1. Introduction
Object-goal visual navigation is to direct an agent to

move consecutively toward an object of a specific category.
Without knowing the environment map beforehand, at each
navigation step, an agent first needs to represent its visual
observations, then estimate its navigation states from the
visual representations and the preceding states, and at last
predict the corresponding action. Therefore, to achieve an
effective and efficient navigation system, learning instruc-
tive visual representations and navigation states is critical.

Prevailing visual navigation works [13, 14, 50] focus on
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(a) Demonstration of inefficient action predictions caused by highly-
correlated navigation states. Our agent is stuck by an obstacle, i.e., low-
profile sofa, and repeatedly predicts an invalid action, i.e., MoveAhead.
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(b) Demonstration of the correlation coefficients among navigation states
trained in two manners. Navigation states estimated via LSTM are highly-
relevant. In contrast, our HiNL produce low-correlated navigation states.

Figure 1. Motivation of our proposed History-inspired Navigation
Learning (HiNL) framework.

extracting informative visual representations, while some
methods [13, 49] adjust navigation policy during inference.
All these approaches commonly employ recurrent neural
networks (e.g., LSTM) to estimate navigation states. How-
ever, we observe that the navigation states of existing meth-
ods [13, 14, 49] exhibit high relevance, as demonstrated in
Figure 1b, and the highly-correlated navigation states would
lead to inefficient navigation policy (i.e., failure to respond
to observation changes rapidly). For instance, as shown in
Figure 1a, an agent is stuck by the low-profile sofa and fails
to take proper actions to circumvent the obstacle. Hence,
we aim to endow an agent with the capability of updating
its navigation states effectively while avoiding producing
highly-correlated states.

In this work, we propose a History-inspired Navigation
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Learning (HiNL) framework to obtain informative naviga-
tion states by exploiting the relationships among historical
navigation states. HiNL consists of two novel components:
(i) a History-aware State Estimation (HaSE) module, and
(ii) a History-based State Regularization (HbSR). Here, our
HaSE module is designed to generate a state that can be
promptly updated according to visual observations. Specif-
ically, HaSE first analyzes the correlations among historical
navigation states and then eliminates the influence of dom-
inant historical states on the current state estimation. As
a result, an agent is able to predict navigation states which
can dynamically react to the current visual observations and
then make sensible navigation actions.

Furthermore, existing reinforcement learning-based
object-goal navigation systems [13,14,49] often assume the
navigation state transition exhibits the first-order Markov
property. This would allow the emergence of high corre-
lations among navigation states, leading to inferior naviga-
tion policy. To address this issue, we introduce an explicit
constraint on the correlation among all the states, namely
History-based State Regularization (HbSR). To be specific,
HbSR enforces to relevance (i.e., correlations) between a
state and all its preceding states (except its previous state)
to be low. Here, we do not constrain states of two consec-
utive steps because temporally close states generally have
relevance in practice considering the navigation continuity.
After training with our HbSR, the correlations among the
navigation states become much lower (see Figure 1b). This
pheromone also indicates HiNL effectively updates states.
Hence, our navigation system can respond to observation
changes adaptively.

To demonstrate the superiority of HiNL, we conduct
experiments in the widely-adopted artificial environment
iTHOR [26] and RoboTHOR [11]. HiNL outperforms the
state-of-the-art by a large margin. To be specific, we im-
prove the Success Rate (SR) from 72.2% to 80.1% and Suc-
cess weighted by Path Length (SPL) from 0.449 to 0.498 in
iTHOR. Overall, our major contributions are summarized
as follows:

• We propose a History-inspired Navigation Policy
(HiNL) framework to effectively estimate navigation
states by utilizing historical states.

• We design a History-aware State Estimation (HaSE) to
eliminate dominant historical states in the current state
estimation. Therefore, the agent reduces the impact of
distant navigation states on the state estimation, and
thus reacts dynamically to the observation changes.

• We introduce a History-based State Regularization
(HbSR) to explicitly constrain the correlations among
navigation states. By doing this, the agent can effec-
tively update navigation states with low relevance.

2. Related Works

Visual navigation. Traditional works [3, 4, 32] often
leverage an entire environment map for navigation and di-
vide the task into three parts: mapping, localization, and
path planning. However, environment maps are generally
unavailable in unseen environments. Dissanayake et al. [12]
adopt simultaneous localization and mapping (SLAM) to
infer robot positions. Campari et al. [5] learn agent states
via a Taskonomy model bank [52], but they need an RGB-D
sensor to construct an online map during navigation.

Recently, due to significant advancements in deep learn-
ing [16,22,45,51], reinforcement learning-based navigation
methods [28, 29, 31, 33, 54] take visual observations as in-
puts and predict navigation actions. Vision-Language Nav-
igation (VLN) approaches [9, 10, 15, 39, 40] steer an agent
to the target based on its visual observations and navigation
guidance in natural language. Similar to VLN, point-goal
visual navigation methods [44,48] aim at driving an agent to
a given point with step-wise directional indications. More-
over, audio-visual navigation methods [7, 8, 18] utilize ad-
ditional audio signals to move a robot to the target position.
Al-Halah et al. [1] propose a transfer learning model for
multiple navigation tasks by embedding various navigation
goals, e.g., image, sketch, and audio.

Our work falls in the field of object-goal visual naviga-
tion [27,31,36,47,50]. However, existing object-goal navi-
gation methods mainly focus on representing visual features
comprehensively while we investigate the impact of naviga-
tion states on navigation performance. Wortsman et al. [49]
exploit word embedding (i.e., GloVe embedding [35]) to
represent the target category and introduce a meta network
that mimics a reward function during inference. Du et
al. [13] introduce an object relation graph, dubbed ORG,
to encode visual observations. They also design a tenta-
tive policy for deadlock avoidance and adjust the naviga-
tion policy in unseen testing environments. The Hierarchi-
cal Object-to-Zone (HOZ) graph [53] offers coarse-to-fine
guidance based on real-time updates. Additionally, VT-
Net [14] incorporates object and region features with lo-
cation cues, and EmbCLIP [24] leverages the contrastive
language image pretraining encoder for visual navigation
tasks.

Correlation Modeling in Reinforcement Learning.
Several methods [37, 43] explore correlations in hidden
Markov models for inverse reinforcement learning (IRL).
For action prediction, Hester et al. [20] propose Texplore
to model correlations within the transition dynamics via a
random forest. Vsovsic et al. [42] introduce a Bayesian ap-
proach to learn policy from demonstrations of experts by
capturing correlations among actions. Alt et al. [2] de-
sign a Bayesian learning framework to establish tempo-
ral and spatial correlations among actions. Furthermore,
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Figure 2. Our History-inspired Navigation Policy Learning (HiNL) framework. HiNL takes visual representations as input and
outputs navigation actions. HiNL involves two innovative part: a History-aware State Estimation (HaSE) module and a History-based State
Regularization (HbSR). HaSE is proposed to estimate navigation states that can reflect current observation changes from the perspective
of network design, while HbSR is designed to enforce the informativeness of states from the view of the training objective. Both of them
help to achieve effective and efficient navigation policy.

Sermanet [41] propose a self-supervised TCN for learn-
ing robotic behaviors and representations from unlabeled
multi-viewpoint videos. TCN uses a metric learning loss to
create viewpoint-invariant representations that capture rela-
tionships between end-effectors.

Different from previous methods that establish correla-
tions among actions, our HiNL aims to eliminate high rel-
evance among navigation states. To the best of our knowl-
edge, our work HiNL is the first attempt to explicitly lever-
age the correlations among navigation states for object-goal
navigation and achieves superior navigation performance.

3. Proposed Methods

In this work, we propose a History-inspired Navigation
Policy (HiNL) framework to estimate navigation states ef-
fectively. As demonstrated in Figure 2, in each step, the
agent first adopts a visual feature extractor to process the
current RGB observation. Then, the agent estimates the cur-
rent navigation state via a History-aware State Estimation
(HaSE) module and predicts a navigation action. At last,
we introduce a History-based State Regularization (HbSR)
to constrain the correlations among navigation states during
training, thus achieving low-correlated navigation states and
highly effective navigation policy.

3.1. Task Definition and Setup

Following previous works [13, 14, 49, 53], in the object-
goal visual navigation task, an RGB monocular camera is
the only sensor available to an agent. Prior knowledge of
the entire environment, such as the topological map and
3D meshes, is unknown to the agent. An environment
is composed of discrete grids, and the agent selects one
of six actions, i.e., MoveAhead, RotateLeft, Ro-
tateRight, LookUp, LookDown, Done. Specif-

ically, the grid size is 0.25 meters, and the ro-
tation angles of RotateLeft/RotateRight and
LookUp/LookDown are 45◦ and 30◦, respectively.

At the start of each episode, the environment ran-
domly chooses one of the available object categories
T ∈ {Sink, . . . ,Microwave} as the target class. Then,
the agent is teleported to a random start position s =
{x, y, θh, θv}, where x and y stand for the coordinates, and
θh and θv represent the horizontal angle and the vertical an-
gle for the view of the agent. The agent aims to predict an
action distribution based on a learned navigation policy and
operates the action with the highest probability for naviga-
tion. Then, the agent moves to the next navigation step if it
selects a moving action or terminates the episode if it selects
the action Done. After finishing the episode, we regard the
agent as successful when the following three conditions are
met simultaneously: (i) the agent selects the ending action
Done within the maximum step length of an episode; (ii)
there is at least one instance of the specified category in the
view of the agent; (iii) the distance between the visible tar-
get and the agent is less than the threshold, i.e., 1.5 meters.
Otherwise, the episode is considered as a failure case.

3.2. Visual Representation Extraction

Similar to previous works [13, 49], we first adopt a deep
neural network, i.e., ResNet [19], to extract global features
from an observed RGB image. Meanwhile, a detection
module, e.g., Fast-RCNN [38] and DETR [6], is introduced
to extract object features. Then, the global and object fea-
tures are merged into a visual representation vt by graph
neural network [13, 53] or transformer [14]1. For conve-
nience, we adopt vt to denote the visual feature extracted

1In our experiments, we employ both CNN-based [13] and
Transformer-based [14] visual representations, demonstrating our frame-
work HiNL is agnostic against various visual representations.
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Figure 3. Illustration of History-aware State Estimation (HaSE). The agent first adopts a Historical State Guidance Extraction module
to estimate a state guidance that indicates the dominant historical states. Then, the agent extracts a state innovation that reflects incremental
information of current observations, via a State-induced Perceptron module. At last, the agent generates the current navigation state
estimation by fusing the state innovation and guidance in a History-aware Fusion module.

from the RGB observation at time step t.

3.3. History-aware State Estimation

Our History-aware State Estimation (HaSE) estimates
the navigation states by eliminating the influence of dom-
inant historical states and focusing on the present observa-
tion changes. As demonstrated in Figure 3, after obtaining
the visual representation vt, we design a Historical State
Guidance Extraction module to predict a state guidance gt
indicating dominant historical states at time step t. Then,
we introduce a State-induced Perceptron module to obtain
the current state innovation it, which encodes the new in-
formation brought by the current visual observations and
the last step action. Next, the history-aware guidance gt is
employed to eliminate the dominant historical states and fa-
cilitate the estimation of the current navigation state st via
our proposed History-aware Fusion module.

Historical State Guidance Extraction. In order to
eliminate the dominant historical states in the current state
estimation, we extract guidance for the dominant parts
by exploring the relationships among historical navigation
states. The agent roughly approximates a prior state s′t
based on the last state st−1, action at−1, and the current
visual representation vt. The prior state s′t is encoded with
the last navigation state and the current observation, and
thus we refer s′t to the query about the dominant historical
states. Let FFN be a feed-forward network, s′t is formu-
lated as follows,

s′t = σ(FFN(st−1) + FFN([vt;at−1])), (1)

where [; ] and σ represent the concatenation operation and
sigmoid function, respectively.

After obtaining s′t, the agent memorizes a set of the his-
torical navigation states St−τ :t−1 = {st−τ , . . . , st−1} in
the last τ steps. In order to explore the temporal relation-
ships among historical navigation states, St−τ :t−1 are com-
posed additively with temporal embeddings. Concretely,
we adopt absolute temporal embedding [46] based on the
timestamp at which a state is estimated. By doing this,
the agent perceives not only the temporal orders among the
last τ navigation states, but also the length of the current

episode. Therefore, the agent can exploit temporal informa-
tion to eliminate the distant navigation states in extracting
the guidance. In addition, we analyze the impacts of differ-
ent temporal embedding methods (i.e., no/learnable/relative
temporal embedding) in Table 2.

Afterward, we pass s′t and St−τ :t−1 through the histori-
cal state decoder, i.e., a cross-attention module. We refer to
the output zt as the dominant historical states, and calculate
it as follows,

zt = Decoderhis(s
′
t,St−τ :t−1), (2)

where Decoderhis(·, ·) indicates the historical state decoder,
the first argument for query and the other for key/values.
Then, we formulate the guidance gt as the difference be-
tween st−1 and zt Therefore, we compute gt as follows,

gt = σ(st−1 − zt). (3)

In addition, we set τ as 5 in our experiments and demon-
strate the impacts of different τ in Figure 5b.

State-induced Perceptron. Apart from eliminating the
dominant historical states, we also aim to encourage the
agent to emphasize the observed changes in the current state
estimation. Therefore, we extract a state innovation it based
on vt to encode the observed changes at the current step. To
be specific, we projects vt, st−1 and at−1 to it. Inspired
by LSTM [21], we compute it as,

it =tanh(FFN(st−1) + FFN([vt;at−1]))⊙
σ(FFN(st−1) + FFN([vt;at−1])),

(4)

where tanh represents hyperbolic tangent function, and ⊙
stands for the element-wise product.

History-aware Fusion. After obtaining the guidance gt
and state innovation it, we aim to estimate the current nav-
igation state st. In order to eliminate the influence of domi-
nant navigation states, the agent first merges st−1 and gt by
multiplication. Then the agent adds it to the result of multi-
plication to incorporate the observation changes. Formally,
we formulate the current navigation state st estimation as
follows,

st = tanh(st−1 ⊙ gt + it). (5)
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Figure 4. Illustration of History-based State Regularization (HbSR). (a) First-order Markov state transition that is widely adopted by
LSTM based navigation policy learning. Those methods will produce highly-correlated among states. (b) Our HbSR constrains higher-
order relations among states, and leads to low-correlated states. As the states are more informative (i.e., less correlated), our navigation
policy is more effective and efficiency.

Benefiting from HaSE, the agent can effectively update the
navigation states by being alert to the present observation
and neglecting the influence of distant states.

3.4. History-based State Regularization

Previous reinforcement learning-based object-goal vi-
sual navigation methods are designed based on the first-
order Markov assumption, while there are no explicit con-
straints on the correlations among navigation states. We ob-
serve that high relevance among navigation states exhibit
in the experiments of previous methods [13, 14] and this is
also one of the reasons that prior works yield failure cases.
For instance, an agent is stuck in front of an object rather
than adopting a rotation action or trapped in a loop. From
these failure cases, we can see that the navigation states are
highly correlated as the adopted actions are periodically the
same. In order to avoid inefficient navigation caused by
highly-relevant navigation states, we aim to exert an explicit
constraint on the correlations among navigation states.

We introduce a novel History-based State Regularization
(HbSR) to reduce the correlations among navigation states
from the perspective of the training objective. In order to
measure the correlations among navigation states, we adopt
the Pearson correlation coefficient [17]. To be specific, after
the agent terminates an episode with T steps, we obtain a
set of navigation states S0:T = {s0, ..., sT }. Given two
navigation states si and sj , we first compute the covariance
of the two states as follows,

Cov(si, sj) = E((si − E(si)) (sj − E(sj))). (6)

Then, we compute the correlation coefficient ρ for two
states based on the covariance formulated as,

ρ(si, sj) =
Cov(si, sj)√
Var(si) Var(sj)

, (7)

where Var(si) denotes the variance of si.
The correlation coefficient is expressed in a range

[−1,+1]. Two states are highly relevant when their cor-
relation is close to either 1 or −1, whereas ρ = 0 indicates
irrelevant between two states. Therefore, in order to elim-
inate high relevance among states, we enforce the correla-

tions of states to be close to 0. In particular, since ineffi-
cient navigation is generally caused by positive correlations
of navigation states, we only apply the proposed regulariza-
tion on correlations with positive values. According to the
first-order Markov property, the present state st depends on
its immediately preceding state st−1. Thus, we define a
regularization-free threshold ξ. Moreover, in HbSR, if a
temporal interval between two states is less than the thresh-
old ξ, we do not apply the correlation regularization among
consecutive states. This is because navigation has conti-
nuity and neighboring states will inherently have relevance
while distant states should be irrelevant. Hence, our HbSR
lhsr is expressed as,

lhsr = E
s∈S

(

T∑
t=ξ+1

t−ξ−1∑
i=0

max(0, ρ(st, si))). (8)

3.5. Training Details

We employ the Asynchronous Advantage Actor-Critic
(A3C) Algorithm [30] to train the agent, similar to previ-
ous works [13, 14, 49, 53]. We adopt two loss objectives,
i.e., policy loss lpolicy and value loss lvalue, for training the
navigation policy and value estimation networks, respec-
tively. Furthermore, since the calculation of correlation co-
efficients is differentiable [34], we can employ the loss lhsr

of HbSR in training. Formally, the total loss L is formulated
as the summation of lpolicy, lvalue and lhsr,

l = λ0l
policy + λ1l

value + λ2l
hsr, (9)

where λ0, λ1 and λ2 are weighted factors to balance three
losses. In our experiments, we set these three weighted fac-
tors as 1, 0.5 and 1, respectively.

4. Experiments
To validate the effectiveness and efficiency of the pro-

posed HiNL, we conduct extensive experiments on two arti-
ficial environments, i.e., iTHOR [26] and RoboTHOR [11].

4.1. Protocols and Experimental details

Dataset. We adopt iTHOR [26], an artificial environment
within the AI2-THOR framework, to evaluate our method.
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Method
iTHOR [26] RoboTHOR [11]

All L > 5 All L > 5
Success SPL Success SPL Success SPL Success SPL

Random 8.0±1.3 3.6±0.6 0.3±0.1 0.1±0.1 4.0±1.0 1.6±0.4 0.2±0.1 0.1±0.1

WE 33.0±3.5 14.7±1.8 21.4±3.0 11.7±1.9 7.0±1.2 2.2±0.6 4.7±0.9 1.7±0.3

SP [50] 35.1±1.3 15.5±1.1 22.2±2.7 11.4±1.6 10.9±0.5 4.2±0.5 7.2±0.6 3.2±0.5

SAVN [49] 40.8±1.2 16.1±0.5 28.7±1.5 13.9±0.5 10.2±1.0 3.9±0.9 6.9±0.8 2.8±0.6

ORG [13] 65.3±0.7 37.5±0.1 54.8±1.0 36.1±0.1 45.4±0.8 21.2±1.2 39.6±0.7 18.5±0.8

ORG+TPN [13] 69.3±1.2 39.4±1.0 60.7±1.3 38.6±1.1 47.8±1.2 23.1±0.9 42.9±0.9 20.3±1.0

HOZ [53] 70.6±1.7 40.0±1.2 62.8±1.7 39.2±0.6 44.3±1.8 19.8±1.3 37.2±1.2 15.4±0.8

TCN [41] 75.1±0.8 47.7±0.9 65.3±1.4 42.1±0.8 44.4±1.6 26.4±1.5 38.4±1.1 22.0±1.2

VTNet [14] 72.2±1.0 44.9±0.7 63.4±1.1 44.0±0.9 53.2±1.1 27.5±1.7 47.0±0.8 23.3±0.7

HiNL † 71.2±0.8 38.9±0.9 64.1±0.6 37.0±0.5 56.1±1.3 26.4±0.8 51.8±0.9 23.9±0.7

HiNL ‡ 80.1±1.4 49.8±1.9 74.6±1.7 47.6±1.4 60.6±1.0 30.8±1.2 56.2±0.8 26.6±0.9

Table 1. Comparison with existing methods. We report the average Success rate (%) and SPL (%) in iTHOR [26] and RoboTHOR [11] as
well as their variances in subscripts by repeating experiments five times. L > 5 represents the episodes that require at least 5 steps. † and
‡ indicate using CNN-based and Transformer-based visual extractors (i.e., ORG [13] and VTNet [14]), respectively.

The environment includes four types of scenes, i.e., kitchen,
living room, bedroom, and bathroom. Each type of scene
consists of 30 rooms with different furniture items and
placements. Following [13, 14, 53], we use 22 categories as
the target classes and ensure that there are at least four tar-
gets in each room. We choose the first 20 out of 30 rooms
per scene as the training set and equally divide the remain-
ing 40 rooms into the validation and test set.

Furthermore, we conduct experiments in RoboTHOR
[11], the other synthetic environment in the AI2-
THOR framework. Different from iTHOR, each scene
in RoboTHOR is separated by several clapboards.
RoboTHOR consists of 89 scenes, while only 75 apartments
are published for train/val (60 for training and 15 for valida-
tion). Therefore, we select the first 55 of 60 original train-
ing scenes as our training dataset and use the rest 5 scenes
as the validation set. Then, we adopt the remaining 15 orig-
inal validation apartments as our test set. We report the test
result of the model with the highest success rate on the val-
idation set for both iTHOR and RoboTHOR.

Evaluation metrics. We adopt two evaluation metrics, i.e.,
success rate and Success weighted by Path Length (SPL), to
assess our method performance. Success rate is introduced
to evaluate the navigation effectiveness and calculated by
1
N

∑N
n=0 Sn, where N is the number of episodes and Sn

represents a binary success indicator of the n-th episode.
Meanwhile, SPL measures the efficiency of navigation tra-
jectories. Let Ln be the length of the n-th episode and Lopt

indicate the length of the optimal path. SPL is formulated
as 1

N

∑N
n=0 Sn

Ln

max(Ln,Lopt)
.

Implementation details. Following [14], we train the VT
for 20 epochs with the supervision of expert experience.
Then, we train the navigation policy for 2M episodes in to-

tal with 32 asynchronous agents. In making a robot learn to
approach the target, the penalty is set to 1e−3 for every step
that passes prior to arrival, and thus an agent is encouraged
to navigate as quickly as possible. Meanwhile, to encourage
the agent complete navigation effectively, we offer a large
reward of 5 when the agent finishes a trajectory success-
fully. We adopt Adam [25] with a learning rate 10−4. Our
codes will be publicly related for reproducibility.

4.2. Comparison with Existing Methods

4.2.1 Competing Methods

We compare our method with the following ones: Random
policy. An agent makes decisions based on a uniform action
probability. Thus, the movements and stops of the agent
are random. Scene Prior (SP) [50] utilizes the scene prior
knowledge and category associations for navigation with a
graph neural network on the FastText database [23]. Word
Embedding (WE) makes use of GloVe embedding [35] to
signify the target category instead of relying on detection.
From trial and error, an agent establishes the connection
between object appearances and GloVe embeddings. Self-
adaptive Visual Navigation (SAVN) [49] presents a meta
reinforcement learning method to assist an agent in adapting
to unseen environments during inference. Object Relation-
ship Graph (ORG) [13] proposes a visual representation
learning method to encode relationships among categories
via a graph and design a tentative policy network (TPN)
to escape from deadlocks during testing. Hierarchical
Object-to-Zone (HOZ) [53] introduces a graph to guide
an agent in a coarse-to-fine manner and a online-learning
mechanism to update the graph. Time-Contrastive Net-
works (TCN) [41] presents a self-supervised method, de-
riving robotic behaviors and representations from unlabeled
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Method All L > 5
Success SPL Success SPL

H
aS

E

HiNL † w/o HaSE 68.1 37.8 60.3 35.9
HiNL † 71.2 38.9 64.1 37.0
HiNL ‡ w/o HaSE 77.9 45.7 71.6 43.5
HiNL ‡ 80.1 49.8 74.6 47.6
HiNL ‡ w/o tem. 78.5 39.8 71.2 39.1
HiNL ‡ w/ lea. tem. 79.1 45.8 73.1 43.8
HiNL ‡ w/ rel. tem. 77.3 44.1 69.4 41.6
HiNL ‡ 80.1 49.8 74.6 47.6

H
bS

R

HiNL † w/o HbSR 66.8 38.1 57.8 35.8
HiNL † 71.2 38.9 64.1 37.0
HiNL ‡ w/o HbSR 75.4 46.9 67.0 43.8
HiNL ‡ 80.1 49.8 74.6 47.6
HiNL ‡ neg. & pos. 75.4 46.9 67.1 43.8
HiNL ‡ 80.1 49.8 74.6 47.6

Table 2. Ablation study on different components of HiNL in
iTHOR [26] environment. † and ‡ indicate using CNN-based
and Transformer-based visual extractors (i.e., ORG [13] and VT-
Net [14]), respectively. HiNL w/o tem. indicates HiNL without
temporal embedding in HaSE, while HiNL w/ lea. tem. and HiNL
w/ rel. tem. represent the adoption of learnable and relative tem-
poral embedding in HiNL, respectively. HiNL neg. & pos. stands
for regularizing both positive and negative correlations toward 0.

videos captured across multiple viewpoints, leveraging met-
ric learning loss to establish viewpoint-invariant represen-
tations that encapsulate end-effector relationships. Visual
Transformer for Navigation (VTNet) [14] explores the
spatial correlations among objects and observation regions
for navigation via a transformer-based network.

4.2.2 Quantitative Results

To demonstrate the superiority of our proposed learning
framework, we select two different visual representation ex-
tractors: one is based on graph network (i.e., ORG [13]),
and the other is based on the transformer (i.e., VT [14]). Ta-
ble 1 indicates that both HiNL † and HiNL ‡ achieve supe-
rior results compared with their original methods (i.e., ORG
and VTNet). This demonstrates that given different visual
representations, HiNL can improve navigation performance
constantly by explicitly exploring the relationships among
historical states.

To be specific, HiNL ‡ with the transformer-based ex-
tractor surpasses the existing methods by a large margin on
both success rate (+7.9%/+7.4%) and SPL (+4.9%/+3.3%)
in iTHOR [26]/RoboTHOR [11]. Adopting ORG as the vi-
sual representation extractor, HiNL † achieves significant
improvement over the original ORG by nearly 10% in suc-
cess rate in both environments. VTNet and ORG only adopt
LSTM to merge well-designed visual representations into
navigation states without any explicit constraints on states.
The correlations among navigation states are not exploited.

This experiment suggests that our HiNL leads to instructive
navigation states, and thus significantly improves the effec-
tiveness and efficiency of our navigation system.

As indicated in Table 1, we observe that HiNL † signif-
icantly outperforms ORG+TPN [13]. Although TPN em-
ploys an auxiliary network to fine-tune the initial navigation
policy network when the agent is stuck in deadlocks dur-
ing inference, TPN does not guarantee navigation states to
be low relevant. Consequently, an agent might be trapped
in looping actions, such as moving with rotating, because
of the high correlations among navigation states. HiNL
solves this issue by reducing the correlations among naviga-
tion states, and thus achieves proper actions for navigation.
Furthermore, adopting TCN-based loss (i.e.,TCN) yields in-
ferior performance with 5% decrease in success rate com-
pared to HiNL. This is because TCN tries to pull temporally
neighboring features closer while consecutive navigation
states might be very different due to a rotation action. Thus,
TCN may overly emphasize the reliance among neighbor-
ing states, thus leading to inferior state estimation. In ad-
dition, our method achieves more than two times the suc-
cess rate and SPL than SAVN in both environments. Bene-
fiting from well-designed visual representations and lower-
ing relevance among navigation states, HiNL achieves bet-
ter navigation performance in testing even without adjusting
the navigation policy. This also implies that our navigation
states significantly improve the effectiveness and efficiency
of navigation in unseen environments.

4.2.3 Case Study

Figure 5a illustrates trajectories of three navigation episodes
proceeded by VTNet [14] and HiNL ‡. In the first case,
VTNet fails to find the target and is stuck in the environ-
ment, as seen in the first column. On the contrary, HiNL
‡navigates toward the object successfully. This implies that
using HiNL, our agents can react rapidly to the observed
changes. In the second case, VTNet moves forward while
rotating and thus leads to inefficient navigation. In contrast,
the navigation system trained with HiNL avoids rotating
and approaches the target with fewer steps. This demon-
strates that our HiNL improves navigation efficiency by re-
ducing the correlations among states. In the final case, VT-
Net moves forward consistently until it reaches the wall.
Benefiting from our HaSE, the agent can get rid of dominant
historical states and react rapidly to the observed changes.

4.3. Ablation Study

Impacts of different components. To illustrate the
impacts of different components, we conduct experiments
on adopting one of the proposed components (i.e., HaSE
and HbSR). Furthermore, we report the navigation perfor-
mance with different visual representation extractors, i.e.,
ORG and VT. As indicated in Table 2, both HiNL † and
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Figure 5. (a) Visual results in the simulated environments iTHOR. The arrow color changes (i.e., from blue to red) represent the navigation
progress (i.e., from beginning to end). Black arrows indicate rotations. The target objects are highlighted by the green/red boxes, where a
green box stands for a success episode and a red box represents a failure case. (b) Impacts of different historical state length τ ∈ [2, 10].
(c) Results of different regularization-free states ξ ∈ [1, 8]. We set τ = 5 and ξ = 1 and highlight them by the black vertical dotted lines
in (b) and (c).

HiNL ‡ achieve gains in navigation performance on success
rate (+2.9%/+2.2%) and SPL (+0.9%/+4.1%) by introduc-
ing HaSE. Furthermore, HiNL † and HiNL ‡ outperform
models without HbSR (i.e., HiNL †/HiNL ‡ w/o HbSR),
respectively. This manifests that both of our proposed com-
ponents improve the performance of navigation.

Impacts of different temporal embedding in HaSE.
Table 2 compares different temporal embedding methods,
(i.e., w/o temporal embedding, w/ relative temporal em-
bedding and w/ absolute temporal embedding (HiNL)) and
highlights the effectiveness of incorporating temporal em-
bedding in historical states. HiNL with absolute tempo-
ral embedding significantly improves success rates and SPL
on iTHOR compared to no embedding (HiNL ‡ w/o tem.),
learnable embedding (HiNL ‡ w/ lea. tem.), and relative
embedding (HiNL ‡ w/ rel. tem.). This improvement, es-
pecially in navigation efficiency, stems from providing the
agent with the current episode length.

Comparison of different τ in HaSE. To illustrate the
influence of different historical state lengths, we conduct
experiments with τ ∈ [2, 10]. As demonstrated in Fig-
ure 5b, we observe that as historical states become too
many, our agent may fail to converge to an optimal pol-
icy. On the other hand, estimating navigation states with
few historical states do not have sufficient capacity to effec-
tively update states. The agent reaches the peak of success
rate and SPL when it adopts 5 historical states in HaSE.

Impacts of different ξ in HbSR. To study the impacts
of adopting different regularization-free thresholds ξ, we
conduct experiments with ξ ∈ [1, 8] in iTHOR. As seen
in Figure 5c, increasing ξ drops performance clearly. Both
success rate (80% to 76%) and SPL (49.8% to 45.8%) de-
crease when ξ increases from 1 to 8, Since two navigation
states generally have high correlations when they are close

in temporal, raising ξ indicates ignoring constraints on these
correlations. As a result, the effects of HbSR are compro-
mised, and the navigation performance is dropped.

Comparison of regularization on different values. To
analyze the impacts of regularization on different values,
we demonstrate the comparisons of applying HbSR on (i)
both negative and positive correlations and (ii) only positive
correlations, as indicated in Table 2. Compared to HiNL
trained on regularizing the correlations based on both pos-
itive and negative values (HiNL ‡ neg. & pos.), HiNL im-
proves performance by neglecting the negative correlations.
This comparison suggests that inefficient navigation is gen-
erally caused by positively correlated navigation states.

5. Conclusion
In this paper, we proposed an effective navigation state

learning approach for visual navigation, named History-
inspired Navigation Policy Learning (HiNL). Our HiNL in-
volves two innovate parts: a history-aware state estima-
tion module (HaSE) and a history-based state regularization
(HbSR). HbSR eliminates the negative impacts of dominant
historical states and enables current states to reflect newly
observed visual information. HbSR significantly reduces
the correlations among navigation states, thus leading to
more informative states as well as effective actions. Ex-
tensive results demonstrate that our HiNL significantly im-
proves navigation performance.

Acknowledgement
This research is funded in part by ARC-Discovery

grant (DP220100800 to XY), ARC-DECRA grant
(DE230100477 to XY) and ARC Centres of Excellence
grant (CE200100025). We thank all anonymous reviewers
and ACs for their constructive suggestions.

2570



References
[1] Ziad Al-Halah, Santhosh Kumar Ramakrishnan, and Kristen

Grauman. Zero experience required: Plug & play modular
transfer learning for semantic visual navigation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17031–17041, 2022. 2
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