
SuperDisco: Super-Class Discovery Improves Visual Recognition for the Long-Tail

Yingjun Du1, Jiayi Shen1, Xiantong Zhen1,2*, Cees G. M. Snoek1

1AIM Lab, University of Amsterdam 2Inception Institute of Artificial Intelligence

Abstract

Modern image classifiers perform well on populated
classes, while degrading considerably on tail classes with
only a few instances. Humans, by contrast, effortlessly han-
dle the long-tailed recognition challenge, since they can
learn the tail representation based on different levels of se-
mantic abstraction, making the learned tail features more
discriminative. This phenomenon motivated us to propose
SuperDisco, an algorithm that discovers super-class repre-
sentations for long-tailed recognition using a graph model.
We learn to construct the super-class graph to guide the
representation learning to deal with long-tailed distribu-
tions. Through message passing on the super-class graph,
image representations are rectified and refined by attending
to the most relevant entities based on the semantic simi-
larity among their super-classes. Moreover, we propose to
meta-learn the super-class graph under the supervision of a
prototype graph constructed from a small amount of imbal-
anced data. By doing so, we obtain a more robust super-class
graph that further improves the long-tailed recognition per-
formance. The consistent state-of-the-art experiments on the
long-tailed CIFAR-100, ImageNet, Places and iNaturalist
demonstrate the benefit of the discovered super-class graph
for dealing with long-tailed distributions.

1. Introduction
This paper strives for long-tailed visual recognition. A

computer vision challenge that has received renewed at-
tention in the context of representation learning, as real-
world deployment demands moving from balanced to im-
balanced scenarios. Three active strands of work involve
class re-balancing [15, 22, 32, 43, 65], information augmenta-
tion [34, 51, 54] and module improvement [29, 31, 76]. Each
of these strands is intuitive and has proven empirically suc-
cessful. However, all these approaches seek to improve the
classification performance of the original feature space. In
this paper, we instead explore a graph learning algorithm
to discover the imbalanced super-class space hidden in the
original feature representation.

*Currently with United Imaging Healthcare, Co., Ltd., China.

(a) 100 original classes (b) 20 ground truth super-classes

(c) 16 discovered super-classes (d) 32 discovered super-classes

Figure 1. SuperDisco learns to project the original class space
(a) into a relatively balanced super-class space. Different color
curves indicate the different imbalance factors on the long-tailed
CIFAR-100 dataset. Like the 20 super-class ground truth (b) our
discovered super-classes for 16 super-classes (c) or 32 super-classes
(d) provide a much better balance than the original classes.

The fundamental problem in long-tailed recognition [18,
32, 44, 77] is that the head features and the tail features are
indistinguishable. Since the head data dominate the feature
distribution, they cause the tail features to fall within the
head feature space. Nonetheless, humans effortlessly handle
long-tailed recognition [2, 16] by leveraging semantic ab-
stractions existing in language to gain better representations
of tail objects. This intuition hints that we may discover
the semantic hierarchy from the original feature space and
use it for better representations of tail objects. Moreover,
intermediate concepts have been shown advantageous for
classification [5, 36] by allowing the transfer of shared fea-
tures across classes. Nevertheless, it remains unexplored
to exploit intermediate super-classes in long-tailed visual
recognition that rectify and refine the original features.

In the real world, each category has a corresponding super-
class, e.g., bus, taxi, and train all belong to the vehicle super-
class. This observation raises the question: are super-classes
of categories also distributed along a long-tail? We find em-
pirical evidence that within the super-class space of popular
datasets, the long-tailed distribution almost disappears, and
each super-class has essentially the same number of samples.
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In Figure 1, we show the number of training samples for each
of the original classes and their corresponding super-classes
in the long-tailed CIFAR-100 dataset. We observe the data
imbalance of super-classes is considerably lower than those
of the original classes. This reflects the fact that the original
imbalanced data hardly affects the degree of imbalance of
the super-classes, which means the distribution of the super-
classes and original data is relatively independent. These
balanced super-class features could be used to guide the orig-
inal tail data away from the dominant role of the head data,
thus making the tail data more discriminative. Therefore, if
the super-classes on different levels of semantic abstraction
over the original classes can be accurately discovered, it will
help the model generalize over the tail classes. As not all
datasets provide labels for super-classes, we propose to learn
to discover the super-classes in this paper.

Inspired by the above observation, we make in this paper
two algorithmic contributions. First, we propose in Section 3
an algorithm that learns to discover the super-class graph
for long-tailed visual recognition, which we call SuperDisco.
We construct a learnable graph that discovers the super-class
in a hierarchy of semantic abstraction to guide feature rep-
resentation learning. By message passing on the super-class
graph, the original features are rectified and refined, which
attend to the most relevant entities according to the similarity
between the original image features and super-classes. Thus,
the model is endowed with the ability to free the original
tail features from the dominance of the head features using
the discovered and relatively balanced super-class represen-
tations. Even when faced with the severe class imbalance
challenges, e.g., iNaturalist, our SuperDisco can still refine
the original features by finding a more balanced super-class
space using a more complex hierarchy. As a second contri-
bution, we propose in Section 4 a meta-learning variant of
our SuperDisco algorithm to discover the super-class graph,
enabling the model to achieve even more balanced image
representations. To do so, we use a small amount of balanced
data to construct a prototype-based relational graph, which
captures the underlying relationship behind samples and al-
leviates the potential effects of abnormal samples. Last, in
Section 5 we report experiments on four long-tailed bench-
marks: CIFAR-100-LT, ImageNet-LT, Places-LT, and iNatu-
ralist, and verify that our discovered super-class graph per-
forms better for tail data in each dataset. Before detailing our
contributions, we first embed our proposal in related work.

2. Related work
Long-tailed recognition. Several strategies have been

proposed to address class imbalance in recognition. We cate-
gorize them into three groups. Those in the first group are
based on class re-balancing [8,30,44,75], which balance the
training sample numbers of different classes during model
training. Class re-balancing methods also could be catego-

rized into three different groups, i.e., re-sampling [22, 32, 43,
67], cost-sensitive learning [14, 37, 56, 78, 79, 86] and logit
adjustment [27, 45, 57, 59]. Class re-balancing methods im-
prove the performance of the tail classes at the expense of the
performance of the head classes. The second group is based
on information augmentation, introducing additional infor-
mation into model training to improve long-tailed learning
performance. We identify four kinds of methods in the infor-
mation augmentation scope, i.e., transfer learning, which in-
cludes head-to-tail knowledge transfer [6, 42, 64, 73], knowl-
edge distillation [28, 40, 71], model pre-training [9, 33, 72]
and self-training [24, 68, 74]. The third group focuses on
improving network modules in long-tailed learning. This
group includes representation learning [13, 46, 76], classifier
learning [32, 41, 42, 69, 73], decoupled training [31, 32, 82],
and ensemble learning [20, 83]. These methods introduce
additional computation costs for increased performance. Our
method belongs to the third group as it aims to learn a better
representation of unbalanced training samples by the super-
class graph, which is unexplored for long-tail recognition.

Super-class learning. Super-class learning adds super-
class labels as intermediate supervision into traditional deep
learning. A super-class guided network [38] integrated the
high-level semantic information into the network for im-
age classification and object detection, which took two-level
class annotations that contain both super-class and finer class
labels. In [11], a two-phase multi-expert architecture was
proposed for still image action recognition, which includes
fine-grained and coarse-grained phases. However, they lever-
aged the ground truth of the super-class as supervision during
the coarse-grained phase. Wu et al. [70] propose a taxonomic
classifier to address the long-tail recognition problem, which
classified each sample to the level that the classifier is com-
petent. Zhou et al. [85] clustered the original categories into
super-classes to produce a relatively balanced distribution in
the super-class space, which also leveraged the ground truth
of the super-class in the training phase. In contrast with the
previous super-class learning, we do not use ground truth
to group the original categories into the super-class space.
To the best of our knowledge, no work exists that relies on
graph learning to discover the super-class for long-tailed
visual recognition, thus motivating this work.

Graph neural networks. Recently, several graph neural
network models (GNN) have been proposed to exploit the
structures underlying graphs to benefit a variety of applica-
tions. There are two main research lines of GNN methods:
non-spectral methods and spectral methods. The spectral
methods [4, 10, 26, 35] focus on learning graph represen-
tations in a spectral domain, in which the learned filters
are based on Laplacian matrices. The non-spectral meth-
ods [21,63] develop an aggregator to aggregate a local set of
features. Note that, message passing [19] is a key mechanism
that allows GCNs and other graph neural networks to capture
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Figure 2. Illustration of proposed SuperDisco (a) and visualization of the similarity between the classes and discovered super-class at
different levels (b), (c). In (a), we show two levels of super-class graphs C1 and C2 . The colour in each graph represents the discovered
super-class. SuperDisco discovers the potential super-class at different levels hidden in each category from (b) and (c). C1 roughly categorizes
the original classes into three relatively balanced super-classes, and C2 then finely categorize them into four more balanced super-classes.

complex relationships and dependencies between nodes in a
graph, and is a major reason why they have been successful
in a variety of tasks involving graph-structured data. Our
method belongs to the non-spectral methods, which leverage
a GNN as the base architecture to discover the super-class
representation. Our proposed super-class graph would refine
and rectify the original imbalanced feature to a relatively
balanced feature space, which has not been explored for
long-tail recognition either.

Meta-learning for the long-tail. Meta-learning or learn-
ing to learn [3,53,58,80,81], is a learning paradigm where a
model is trained on the distribution of tasks so as to enable
rapid learning on new tasks. Ren et al. [51] first proposed
meta-learning for the long-tailed problem by reweighting
training examples. Shu et al. [54] proposed Meta-weight-
Net to adaptively extract sample weights to guarantee ro-
bust recognition in the presence of training data bias. Li et
al. [39] introduced meta-semantic augmentation for long-
tailed recognition, which produces diversified augmented
samples by translating features along many semantically
meaningful directions by meta-learning. Our uniqueness is
that our model aims to discover an improved super-class rep-
resentation by meta-learning, which enables the original fea-
ture representation to adjust its corresponding higher-level
super-class space.

3. Learning to discover the super-class graph
In this section, we discuss how to learn to discover the

super-class graph from the training samples and then expand
on how to leverage such a graph to benefit the unbalanced
data by refining the feature representations of samples. The

overall illustration of SuperDisco and a visualization of the
discovered super-class hierarchy are shown in Figure 2.

Preliminary. For long-tailed visual recognition, the goal
is to learn an image classification model from an imbalanced
training set and to evaluate the model on a balanced test set.
We first define the notation for long-tailed recognition used
throughout our paper. We define a training input xk ∈ R, i ∈
{1, · · · , n}, where n is the number of training samples in
the dataset. The corresponding labels are yk ∈ 1, 2, · · · , C,
where C is the number of classes. Let nj denote the number
of training samples for the class j. Here, we assume that ni ≥
nj when i < j shows the long-tailed problem simply. In this
work, we typically consider a deep network model with three
main components: a feature extractor f(·), a proposed graph
model g(·) and a classifier h(·). The feature extractor f(·)
first extracts an image representation as z=f(x; θ), which
is then fed into the proposed graph model to refine a new
representation as g(z;ϕ)=z̃. The final class prediction ỹ is
given by a classifier function h(·), i.e., ỹ=argmaxh(z̃;ψ).
Before detailing our approach, we add Table 1 to detail the
meaning of each symbol for easy lookup.

SuperDisco. We construct the super-class graph to orga-
nize and distill knowledge from the training process. The
vertices represent different types of super-classes (e.g., the
common contour between birds and airplanes) and the edges
are automatically constructed to reflect the relationship be-
tween different super-classes. Our super-class graph contains
multiple levels, which is closer to the relationship between
various objects in the real world. Before detailing the struc-
ture, we first explicate why the multi-level super-class graphs
are preferred over a flat super-class graph: a single level of
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super-class groups is likely insufficient to model complex
task relationships in real-world applications; for example,
the similarities among different bird species are high, but
there are also similarities between birds and mammals, e.g.,
they are both animals.

We assume the vertex representation g as hg ∈ Rd,
and define the super-class graph as Cl=(Hl

C ,A
l
C), where

Hl
C={hil |∀il ∈ [1, Cl]} ∈ RCl×d is the vertex feature matrix

of the l-th super-class level and Al
C={Al

C(h
il ,hjl)|∀il, jl ∈

[1, Cl]} ∈ RCl×Cl

is the vertex adjacency matrix in the l-th
super-class level, Cl denotes the number of vertices in the
l-th super-class level. Our vertex representation Hl

C of the
super-class graph is defined to get parameterized and learned
during training. The initial vertex representations of each
super-class level are randomly initialized, which encourages
diversity of the discovered super-classes.

Next, we introduce how to compute the edge weight Al
C

in the super-class graph. The edge weight Al
C(h

il ,hjl) be-
tween a pair of vertices i and j is gauged by the similarity
between them. Formally:

Al
C(h

il ,hjl )=σ(Wl
c(|hil − hjl |/γl

c) + bl
c), (1)

where Wl
c and bl

c indicate learnable parameters of the l-
th super-class level, γl

c of l-th super-class level is a scalar
and σ indicates the Sigmoid function, which normalizes
the weight between 0 and 1. To adjust the representation
of training samples by the involvement of super-classes,
we first query the training samples in the super-class graph
to obtain the relevant super-class. In light of this, we con-
struct a new graph R, which adds the original sample fea-
ture z to the super-class graph. We define zl as the re-
fined feature after the l-th super-class graph. Here we define
graph Rl=(Hl

R,Al
R), where Hl

R={[zl,hil ]|∀il ∈ [1, Cl]} ∈
R(Cl+1)×d denotes the vertex feature matrix of the l-th super-
class level, and Al

R={[Al
R(hil , zl), Al

R(hil ,hjl)]|∀il, jl ∈
[1, Cl]} ∈ RCl+1×Cl+1

denotes the vertex adjacency matrix
in the l-th super-class level. The link between zl and vertex
hi in the hierarchical graph is constructed by their similar-
ity. In particular, analogous to the definition of weight in
the super-class graph in Eq. (1), the weight Al

R(hil , zl) is
constructed as:

Al
R(hil , zl)=σ(Wl

r(|hil − zl|/γl
r) + bl

r), (2)

where Wl
r and br

c indicate learnable parameters of the l-th
super-class level, γl

r of the l-th super-class level is a scalar.
After constructing the new graph R, we propagate the

most relevant super-class by message passing [19] from the
discovered super-classes C to the features zl by introduc-
ing a Graph Neural Network (GNN). The message passing
operation over the graph is formulated as:

H
(m+1)
R =MP(Al

R,H
(m)
R ;W(m)), (3)

where MP(·) is the message passing function, H(m) is the
vertex embedding after m layers of GNN and W(m) is a

Notation Description
h Vertex representation
z Original sample feature
C Super-class graph
HC Vertex feature matrix of Cl

AC Vertex adjacency matrix of Cl

R Graph which adds z to graph Cl

P Prototype graph
CP Vertex feature matrix of P
AP Vertex adjacency matrix of P
S Super graph which connecting P and C
A Vertex feature matrix of S
M Vertex adjacency matrix of S

Table 1. Summary of the core notation used for SuperDisco.

learnable weight matrix of layer m. After stacking M GNN
layers, we get the information-propagated feature represen-
tation z̃L for each level of the super-class graph C. Once we
obtain the refined representation z̃L for a training sample
by the super-class graph, we feed them into the classifier to
make the predictions and compute the corresponding loss,
i.e., Cross-entropy loss for optimization. Using gradient de-
scent, we then update the super-class graph C. To be able
to discover a more accurate super-class graph in the face
of severe imbalance problems, we propose meta-learning
super-class graph discovery in the next section.

4. Meta-learning super-class graph discovery
To explore and exploit a more accurate and richer super-

class graph, we propose the Meta-SuperDisco to discover
the super-class graph using meta-learning, making the model
more robust. In the traditional meta-learning setting [17, 50],
it includes meta-training tasks and meta-test task. Each task
contains a support set S and a query set Q. Each task is first
trained by S to get the task-specific learner and Q optimizes
this learner to update the meta-learner. For long-tailed recog-
nition with meta-learning, previous works [51, 54] randomly
sample a small amount of balanced data denoted as M. The
imbalanced data and the small balanced data can be seen as
S and Q in the training phase. The goal of meta-learning for
long-tailed recognition is to use a small set of balanced data
to optimize the model obtained from unbalanced data. We
follow [51, 54] by randomly selecting the same number of
samples (e.g., ten) as M per class from the training set.

Meta-SuperDisco. To meta-learn the super-class graph,
we construct a prototype graph P from M, since M is a
balanced dataset. The prototype graph extracts the sample-
level relation information, which captures the underlying
relationship behind samples and alleviates the potential ef-
fects of abnormal samples. For the prototype graph, we need
to compute the prototype of each category [55], which is
defined as: ck= 1

Nk

∑Nk

i=1 zj , where Nk denotes the number
of samples in class k, zj is the feature from M .

After calculating all prototype representations {ck|∀k ∈
[1,K]}, which serve as the vertices in the prototype graph Pi,
we further need to define the edges and the corresponding
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edge weights. The edge weight AP(c
i, cj) between two

prototypes ci and cj is gauged by the similarity between
them. The edge weight is calculated as follows:

AP (ci, cj) = σ(Wp(|ci − cj |/γp) + bp), (4)

where Wp and bp are the learnable parameters, γp is a scalar.
Thus, we denote the prototype graph as P=(CP ,AP), where
CPi={ci|∀i ∈ [1,K]} ∈ RK×d represent a set of vertices,
with each one corresponding to the prototype from a class,
while AP={|AP(c

i, cj)|∀i, j ∈ [1,K]} ∈ RK×K gives the ad-
jacency matrix, which indicates the proximity between proto-
types. We then use the prototype graph to guide the learning
of the meta super-class graph. We construct a super graph S
by connecting prototype graph P to super-class graph C. In
the super graph S, the vertices are M=(Cl

Pl ;H
l
Cl), where

P l denotes the refined prototype graph vertex after the l-th
level super-class graph. Then, we calculate the link weight
Al

S(c
i, {hj}) of the super graph as:

Al
S(c

i,hjl ) =
exp(−∥(ci − hjl )/γl

s∥22/2)∑J

jl
′
=1

exp(−∥(ci − hjl
′
)/γl

s∥22/2)
, (5)

where γls is a scaling factor. Note that, here we use soft-
max to ensure that the total weight of edges between the
prototype graph P and the super-class graph C is equal to
1, giving the prototype graph a unique influence on the ex-
pression of each super-class. Thus, the adjacent matrix and
feature matrix of the super graph Sl=(Al,Ml) is defined as
Al=(AP ,A

l
S ;A

l
S
T
,Al

C) and Ml=(Cl
Pl ;H

l
Cl). Once we con-

structed the super graph S , we use message-passing again to
propagate the most relevant knowledge from the prototype
graph P to the super-class graph C. Similar to eq. (3):

M(m+1) = MP(Al,M(m);W(m)). (6)

We leverage the graph S to refine the super-class graph. Fi-
nally, we feed the original feature z into the super-class graph
to get the information-propagated feature representation z̃L,
which refines the original feature by its corresponding dis-
covered super-classes. We provide the complete SuperDisco
and Meta-SuperDisco algorithm specifications in the supple-
mental material.

5. Experiments
Datasets. We apply our method to four commonly used

long-tail recognition benchmarks. Sample images and the
number of categories for all datasets are provided in the
supplement material. CIFAR-100-LT reduces the number of
training samples per class according to an exponential func-
tion n=niµi, where i is the class index, ni is the original
number of training samples, and µ ∈ (0, 1). The imbal-
ance factor of a dataset is defined as the number of train-
ing samples in the most populated class divided by the mi-
nority class. We consider imbalance factors {10, 50, 100}.
ImageNet-LT [44] is a subset of ImageNet [12] consisting of

Imbalance ratio

10 20 50 100 200

Baseline 60.3 57.3 47.5 44.9 39.3

SuperDisco 65.9 60.7 57.2 50.9 45.2
Meta-SuperDisco 68.5 63.1 58.3 53.8 47.5

Table 2. Benefit of SuperDisco and Meta-SuperDisco. Su-
perDisco achieves better performance compared to a baseline fine-
tuning on all imbalance factors, while Meta-SuperDisco is even
better for long-tailed recognition.

115.8K images from 1000 categories, with maximally 1,280
images per class and minimally 5 images per class, and a
balanced test set. Places-LT [44] has an imbalanced training
set with 62,500 images for 365 classes from Places [84]. It
contains images from 365 classes and the number of images
per class ranges from 4980 to 5. The test sets are balanced
and contain 100 images per class. iNaturalist [61] is a real-
world long-tailed dataset with 675,170 training images for
5,089 classes, where the top 1% most populated classes con-
tain more than 16% of the training images. Additionally,
there is also a severe imbalance among the super-classes of
iNaturalist. The 13 ground truth super-classes images range
from 158,407 to 308.

Implementation details. We follow [32] by first train-
ing a feature extractor with instance-balanced sampling, and
then training our graph model and classifier based on the
trained features. For CIFAR-100-LT, we follow [54] and use
a ResNet-32 backbone. For ImageNet-LT, we use ResNeXt-
50 [23] as our backbone, following [32]. For Places-LT, we
report results with ResNet-152 following [44]. For iNatural-
ist, we use a ResNet-50 backbone. We train each dataset for
200 epochs with batch size 512. We use random left-right
flipping and cropping as our training augmentation. For all
experiments, we use an SGD optimizer with a momentum
of 0.9 and a batch size of 512. We randomly selected 10
images per class from the training set for all datasets as M.
Code available at: https://github.com/Yingjun-
Du/SuperDisco.

Benefit of SuperDisco and Meta-SuperDisco. To show
the benefit of SuperDisco, we compare it with a fine-tuning
baseline, which retrains the classifier only. Table 2 shows
SuperDisco improves over fine-tuning on CIFAR-100-LT,
and the results for the other long-tailed datasets are pro-
vided in the supplemental materials Table 1. In the most
challenging setting with the largest imbalance factor of 200,
our SuperDisco delivers 45.2%, surpassing the baseline by
5.9%. We attribute improvement to our model’s ability to
refine original features, allowing the discovered super-class
graph to guide the tail features away from the dominant role
of head features, thus leading to improvements over the orig-
inal features. We also investigate the benefit of meta-learning
with Meta-SuperDisco. The Meta-SuperDisco consistently
surpasses the SuperDisco for all imbalance factors. The con-
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Imbalance ratio

10 20 50 100 200

Baseline 60.3 57.3 47.5 44.9 39.3

(20) 61.2 60.1 49.9 47.3 41.9
(2, 4, 8) 65.3 62.7 53.1 49.8 43.2

(4, 8, 16) 69.1 64.2 55.2 52.3 45.9
(4, 8, 16, 32) 68.5 63.1 58.3 53.8 47.5

(4, 8, 16, 32, 64) 66.9 62.7 58.9 52.9 46.3

Oracle super-classes 66.9 63.2 54.7 51.4 43.2

Table 3. Effect of number of super-class levels on CIFAR-100-LT.
Compared to a baseline [32] and an oracle setting, Meta-SuperDisco
provides higher performance gains with more complex hierarchies.

Many Medium Few All

Baseline 65.0 66.3 65.5 65.9

(13) 71.8 70.2 66.1 70.8
(2, 4, 8) 70.5 69.3 65.9 69.4

(4, 8, 16) 72.2 70.9 66.4 70.3
(4, 8, 16, 32) 73.6 70.2 67.3 70.9

(4, 8, 16, 32, 64) 73.4 72.9 68.3 72.3
(4, 8, 16, 32, 64, 128) 72.1 71.3 66.2 70.9

Oracle super-classes 70.7 70.5 65.9 70.2

Table 4. Effect of number of super-class levels on iNaturalist.
Meta-SuperDisco achieves consistent performance gains with more
complex hierarchies.

sistent improvements confirm that Meta-SuperDisco learns
even more robust super-class graphs, leading to a discrimi-
native representation of the tail data.

Effect of the number of super-class levels. A signifi-
cant challenge with any structure-aware learning algorithm
is determining the appropriate complexity for the knowledge
structure. So, we further analyze the effect of the super-class
hierarchies, including the level (number of depths L) or the
number of super-classes in each level. The results are shown
in Table 3 and Table 4. The super-class number from the
bottom layer to the top layer is saved in a tuple. For example,
(2, 4, 8) represents three depth, with two super-classes in
the top layer. The baseline is Decouple-LWS [32], which
only inputs the original feature to learn a new classifier.
The oracle super-classes are first trained on two long-tailed
datasets using the ground truth super-class labels for super-
class classifications. Once the training is completed, each
oracle super-class is obtained by averaging the samples of
each super-class. We constructed a one-layer super-class
graph using these super-classes, where the vertices of the
graph are for each super-class, and the edges of the graph are
computed according to Eq. (1). Then, we use the message
passing by Eq. (3) to refine the original features and input
them into the classifier to get the final predictions. From
Table 3, we observe that using oracle super-classes achieves
better performance compared to the learned super-class (20)
since it uses the ground truth super-classes as supervision.
We also conclude that too few levels may not be enough

(a) SuperDisco (b) Meta-SuperDisco
Figure 3. Similarity between discovered super-classes and
classes. SuperDisco discovers super-classes hidden in each class,
while Meta-SuperDisco discovers more accurate super-classes.

to learn the precise super-classes (e.g., tuple (20) or (2, 4,
8)). In this dataset, increasing levels (e.g., tuple (4, 8, 16,
32)) achieves better performance on the smaller imbalance
factor (e.g., 10), and similar performance compared with (4,
8, 16). For the real-world long-tailed dataset iNaturalist [62]
in Table 4, we find no significant improvement for the few-
shot classes in the performance of the oracle super-class
compared to the baseline, and the same is true for the per-
formance of the discovered super-class structure (13). This
is because the super-class of iNaturalist also have serious
long-tailed problems, resulting in the refined features of tail
classes remaining indistinguishable from the refined features
of head classes. However, with a more complex graph struc-
ture (4, 8, 16, 32, 64), the few-shot performance improves
by a good margin compared with the baseline, and even the
oracle super-classes. We attribute this to our model’s abil-
ity to explore relatively balanced super-class spaces, thus
making the refined tail category features discriminative. By
comparing Table 3 and Table 4, we conclude that deeper as
well as wider graphs are needed to discover the super-classes
in the case of severe class imbalance.

Visualization of SuperDisco. To understand the meaning
of the discovered super-classes more clearly, we present a
visualization in Figure. 3. We selected 12 different categories
from the CIFAR-100 test dataset. We calculate the similarity
of each of these 12 categories to the different vertices in
the graph we explore. Here we show the similarity with the
second layer of graph vertices (C1, C2, C3, C4). We can see
different categories mainly activate different vertices, e.g.,
bus → C3 and road → C2. As shown in this heatmap, we
find that C1 reflects the super-class of flowers, C2 reflects the
super-class of buildings, C3 reflects the super-class of vehi-
cles, C4 reflects the super-class of fish. Another observation
is that the second-largest activated super-class is also mean-
ingful, promoting knowledge transfer between super-classes.
For example, road and bridge are related to the C3 super-
class, since some vehicles may be on the road and bridge.
This visualization reflects that we can use graph models to
discover the super-classes and the relationships between each
super-class. We also visualize the discovered meta-learning
super-classes in Figure 3 (b). The discovered super-classes
are even more accurate, e.g., roses have high similarity to
C2, which mainly reflects the buildings super-class, while it
has high similarity to C1, which is the flowers super-class.
This once again validates the benefit of Meta-SuperDisco.
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(a) Original features (c) Refined features by SuperDisco

(b) Training distribution (d) Refined features by Meta-SuperDisco

Figure 4. Visualization of refined features on CIFAR-100-LT, with the original features (a) and their corresponding training distribution
(b). Colours indicate categories. SuperDisco (c) guides the original features on being clustered into the corresponding super-class space at
different levels, while Meta-SuperDisco (d) obtains even more discriminative intra-class features.
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Figure 5. Effect of refined features. Accuracy increases along with
the increased super-class levels, revealing that more accurate and
richer super-classes facilitate better long-tailed recognition.

Furthermore, in the (c) learned the hierarchical concept of
each class, we can see that bus and bridge have the same
concept C2 in the last concept level, which may be due to
the possible presence of cars on the bridge.

Visualization of refined features. To understand the em-
pirical benefit of SuperDisco, we visualize in Figure 4 the
original features and refined features with super-class graphs
of the different levels using t-SNE [60]. We choose the ver-
tices numbers as (2, 4, 6), meaning the super-class graph
has three different levels, each with a different number of
vertices. The original features of the category with a small
sample size will overlap with the (original) features of the
category with a large sample size. Super-class graphs dis-
covered by our model project the original features into a
high-level super-class space, where the imbalance is rela-
tively small. Hence, its corresponding subcategory can be
predicted more accurately. It is worth noting that when com-
paring the two different super-class graphs on top and below,
the features obtained by Meta-SuperDisco are even more
distinctive and distant from each other. To better measure the
goodness of the refined features obtained at different levels,

Many Medium Few All

Baseline 58.4 49.3 34.8 52.7
Multi-layer perceptron 63.5 51.8 35.9 55.0
Graph convolution network 66.1 53.3 37.1 57.1

Table 5. Analysis of super-class mechanism on ImageNet-LT. The
super-class mechanism contributes most, the graph convolution
network improves results further.

we show in Figure 5 the prediction accuracy using different
refined features. We find that the accuracy increases along
with the increased super-class levels, which shows that using
more accurate and richer super-classes facilitates better per-
formance. This again demonstrates that Meta-SuperDisco is
most suitable for long-tailed visual recognition.

Analysis of super-class mechanism. To demonstrate that
the improved performance of our SuperDisco cannot solely
be attributed to the graph convolutional network module,
we conducted an experiment where we replaced it with a
multi-layer perceptron to obtain the representation per sam-
ple. In Table 5, the performance gains of our method are
primarily due to the super-classes rather than the graph con-
volution network. The results suggest that incorporating the
super-classes mechanism plays a crucial role in improving
the performance of long-tailed problems. Furthermore, the
results improve further when we replace the multi-layer per-
ceptron with our graph convolution network module.

Comparison with the state-of-the-art. We evaluate our
method on the four long-tailed datasets under different im-
balance factors in Table 6 and 7. Our model achieves state-
of-the-art performance on the tail data of all datasets. For
ImageNet-LT, our model achieves state-of-the-art perfor-
mance on both few-shot and all data. In the most challenging
Places-LT, our model delivers 40.3% on all classes, surpass-
ing the second-best Parisot et al. [47] by 1.1%. On the real-

19950



ImageNet-LT Places-LT iNaturalist

Venue Many Medium Few All Many Medium Few All Many Medium Few All

Kang et al. [32] ICLR 19 60.2 47.2 30.3 49.9 40.6 39.1 28.6 37.6 65.0 66.3 65.5 65.9
Kang et al. [31] ICLR 21 61.8 49.4 30.9 51.5 - - - - - - - 68.6
He et al. [25] ICCV 21 64.1 50.4 31.5 53.1 - - - - 70.6 70.1 67.6 69.1
Li et al. [40] CVPR 21 66.8 51.1 35.4 56.0 - - - - - - - 69.3
Samuel et al. [52] ICCV 21 64.0 49.8 33.1 53.5 - - - - - - - 69.7
Alshammari et al. [1] CVPR 22 62.5 50.4 41.5 53.9 - - - - 71.2 70.4 69.7 70.2
Zhang et al. [75] CVPR 21 61.3 52.2 31.4 52.9 40.4 42.4 30.1 39.3 69.0 71.1 70.2 70.6
Parisot et al. [47] CVPR 22 63.2 52.1 36.9 54.1 39.7 41.0 34.9 39.2 - - - -
Park et al. [48] CVPR 22 66.4 53.9 35.6 56.2 - - - - 73.1 72.6 68.7 72.8
This paper 66.1 53.3 37.1 57.1 45.3 42.8 35.3 40.3 72.3 72.9 71.3 73.6

Table 6. Comparison with the state-of-the-art on ImageNet-LT, Places-LT and iNaturalist. Best and second best results are highlighted
in bold and italic bold. Our Meta-SuperDisco achieves either better or comparable performance than state-of-the-art methods under the tail
and all data for long-tailed visual recognition.

Imbalance ratio

Venue 10 50 100

Park et al. [49] ICCV 21 59.5 47.4 42.0
Li et al. [40] CVPR 21 62.3 50.5 46.0
Zhong et al. [82] CVPR 21 62.5 51.5 46.8
Samuel et al. [52] ICCV 21 63.4 57.6 47.3
Wang et al. [66] ICLR 21 61.8 51.7 48.0
Zhu et al. [87] CVPR 22 64.9 56.6 51.9
Cui et al. [7] ICCV 21 64.2 56.0 52.0
Alshammari et al. [1] CVPR 22 68.8 57.7 53.3

This paper 69.3 58.3 53.8

Table 7. Comparison with the state-of-the-art on CIFAR-100-LT.
Our model achieves best performance.

world long-tailed dataset iNaturalist, our model achieves
the three best performances under four different shots. On
the long-tailed synthetic dataset CIFAR-100-LT, our model
achieves the best performance under each imbalance fac-
tor. The consistent improvements on all benchmarks under
various configurations confirm that our Meta-SuperDisco is
effective for long-tailed visual recognition.

Limitations. We show that SuperDisco and Meta-
SuperDisco achieve good performance on tail data while
being less successful on the head data. Based on this result,
we also perform an experiment on balanced CIFAR-100 in
Figure 6. With SuperDisco and Meta-SuperDisco, there is
only a slight change in performance at the expense of an
increased inference time. This reveals that our SuperDisco
does not change the original features much through mes-
sage passing on a balanced dataset. This may be because the
obtained super-classes are still the original class itself. In
addition, as the computation of graphs involves many matrix
operations, our model also requires a relatively long com-
putational speed. Due to introducing a prototype graph and
more data, Meta-SuperDisco takes longer to compute. In ad-
dition, the training time of SuperDisco and its meta variants
is also 1.5 times higher than the baseline. Future work could
investigate how to use the discovered super-class graph in
balanced datasets and how to reduce the computation time.

Inference time (ms)
Ac

cu
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cy
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)

Figure 6. Limitation. Accuracy (%) vs. speed (ms) comparison
with different methods on balanced CIFAR-100. SuperDisco has
little impact on the performance of balanced datasets at the expense
of increased inference time.

6. Conclusions

This paper proposes learning to discover a super-class
graph for long-tailed visual recognition. The proposed super-
class graph could rectify and refine the original features by
message passing, which results in attending to the most rel-
evant entities based on their semantic similarity between
concepts for more accurate predictions. To obtain a more
informative super-class graph and more balanced image rep-
resentations, we further propose to meta-learn the super-class
graph based on the prototype graph from a small amount of
imbalanced data. We conduct thorough ablation studies to
demonstrate the effectiveness of the proposed SuperDisco
and Meta-SuperDisco algorithms. The state-of-the-art per-
formance on the long-tailed version of four datasets further
substantiates the benefit of our proposal.
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