
Weak-shot Object Detection through Mutual Knowledge Transfer

Xuanyi Du*, Weitao Wan*†, Chong Sun, Chen Li
WeChat, Tencent

{duxuanyi93, wanweitao1}@gmail.com, {waynecsun, chaselli}@tencent.com

Abstract

Weak-shot Object Detection methods exploit a fully-
annotated source dataset to facilitate the detection perfor-
mance on the target dataset which only contains image-
level labels for novel categories. To bridge the gap be-
tween these two datasets, we aim to transfer the object
knowledge between the source (S) and target (T) datasets
in a bi-directional manner. We propose a novel Knowledge
Transfer (KT) loss which simultaneously distills the knowl-
edge of objectness and class entropy from a proposal gen-
erator trained on the S dataset to optimize a multiple in-
stance learning module on the T dataset. By jointly opti-
mizing the classification loss and the proposed KT loss, the
multiple instance learning module effectively learns to clas-
sify object proposals into novel categories in the T dataset
with the transferred knowledge from base categories in the
S dataset. Noticing the predicted boxes on the T dataset can
be regarded as an extension for the original annotations on
the S dataset to refine the proposal generator in return, we
further propose a novel Consistency Filtering (CF) method
to reliably remove inaccurate pseudo labels by evaluating
the stability of the multiple instance learning module upon
noise injections. Via mutually transferring knowledge be-
tween the S and T datasets in an iterative manner, the de-
tection performance on the target dataset is significantly im-
proved. Extensive experiments on public benchmarks vali-
date that the proposed method performs favourably against
the state-of-the-art methods without increasing the model
parameters or inference computational complexity.

1. Introduction
Recent rapid development of supervised object detection

models [17, 20, 22, 23] largely relies on massive human-
annotated bounding boxes and category labels. Since ob-
taining these annotations, especially the bounding boxes,
are expensive and time-consuming on large-scale datasets,
it motivates the researches of alternative algorithms with
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Figure 1. Overview of the proposed Mutual Knowledge Transfer
scheme for the weak-shot object detection task.

less annotation cost. Weakly Supervised Object Detection
(WSOD) methods [1,8,12,13,24,26,34] only require image-
level object category labels to train an object detector on
a target dataset. Though the annotation cost is consider-
ably reduced, a prominent performance gap exists between
WSOD and full-supervised models.

While noticing class-invariant visual evidence can be
transferred from base categories to unseen ones [14, 30],
researches [3, 15, 18, 32, 36] show that the WSOD perfor-
mance can be further improved by utilizing an additional
source dataset with fully annotated data. This learning
paradigm is referred to as the Weak-shot Object Detection
(WSHOD) [21], for which a widely adopted model archi-
tecture is the combination of a proposal generator (PG)
trained on the source (S) dataset and a multiple instance
learning (MIL) module trained on the target (T) dataset.
The S dataset contains both object category and bounding
box annotations, while the T dataset has only image-level
category labels and the object categories are not overlapped
with those in the S dataset.

Although a well-trained PG on a full-annotated S dataset
can assist the training of the MIL module on the T dataset,
it is still essential to bridge the gap between these two
datasets for handling non-overlapping categories. Previous
efforts to address this issue mainly focus on transferring
the knowledge about base categories from the S dataset to
the T dataset by post-processing the predicted boxes [15]
or designing various transferring scores [18, 32]. Zhong et
al. [36] constrain the training of the MIL module by an ob-
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jectness regularization loss. Unfortunately, this loss tends
to exacerbate the classification ambiguity of novel cate-
gories since it enlarges multiple class probabilities for the
same proposal (see details in Sec. 3.2). Some researches
also adopt the predicted boxes on the T dataset as pseudo
labels to refine the training of the PG module. The pre-
dicted boxes can be directly used as pseudo labels with con-
fidence thresholding [36], adjusted by confidence maps [3],
or softly weighted [21]. However, these practices are lim-
ited in discriminating inaccurate pseudo labels in the T
dataset. For example, the intra-class feature variance can
be significant, especially for the novel categories, which
makes weighting these pseudo labels upon feature similar-
ity [21] fail in discriminating inliers from outliers. More-
over, it is not exploited in previous works to incorporate the
MIL module into discriminating inaccurate pseudo labels,
which enables the knowledge transfer from the T dataset to
S dataset.

To address the aforementioned issues in narrowing the
gap between the S and T datasets, we design the Mutual
Knowledge Transfer scheme for the WSHOD task, as illus-
trated in Fig. 1. Within this scheme, a novel Knowledge
Transfer (KT) loss performs knowledge transfer from the S
dataset to T dataset by constraining the training of the MIL
module. In contrast to the regularization loss in [36], our
KT loss enforces the predicted objectness score and class
entropy of the MIL module to be consistent with the pre-
dictions of the PG, which helps to transfer the knowledge
from S dataset to facilitate the training of the MIL module.
Through mathematical analysis, we reveal that the formu-
lation of KT loss intrinsically alleviates the class ambiguity
issue of the regularization loss in [36].

Furthermore, we propose a novel and statistically robust
Consistency Filtering (CF) method to improve the quality
of the pseudo labels and boost knowledge transfer from
the T dataset to S dataset. The intuition is that, by inject-
ing noises into random regions in the feature maps of the
predicted boxes1, inaccurate boxes tend to be less stable in
maintaining the original predictions than accurate ones. In-
accurate boxes usually only cover the most discriminative
object fragment, which is a commonly addressed challenge
in previous works [18,21], so the corresponding probability
distribution of novel categories probably becomes uncertain
when the designed noises are injected into the features of
the MIL module. In contrast, accurate boxes usually con-
tain the entire object and tend to be more stable against the
injected feature noises. A detailed statistical verification for
this intuition can be found in Tab. 7. We thus discover the
inaccurate pseudo labels by evaluating the stability of the
MIL outputs when varying noises are injected. The pro-
posed CF method essentially takes advantage of the object

1“Feature maps of the predicted boxes” refers to the features produced
by the RoIAlign layer given the predicted boxes.

knowledge of the MIL module regarding the discrimina-
tion of novel categories and transfers it to the PG module
through refinement training with filtered pseudo labels.

By using the mutual knowledge transfer scheme itera-
tively, the detection performance on the T dataset with novel
categories can be greatly improved. Through theoretical
analysis and extensive experiments, we demonstrate that the
proposed method significantly outperforms previous state-
of-the-art WSHOD methods without increasing the model
parameters or inference computational complexity.

2. Related works
2.1. Weakly supervised object detection

The WSOD task aims at training an object detector us-
ing only image-level category labels. Under the most com-
monly utilized multiple instance learning (MIL) structure,
proposals are generated using unsupervised methods like
Selective Search (SS) [33], Sliding Windows (SW), or Edge
Boxes (EB) [38]. WSDDN [1] is a typical MIL-based
model, which first proposes an end-to-end architecture to
perform region selection and classification. Further im-
provements are made in OICR [29] and PCL [28] meth-
ods by adding instance refinement classifiers that facilitate
the iterative refinement of candidate boxes. To help detec-
tors focus on the entire objects rather than only the dis-
criminative parts, ICMWSD [24] employs instance-aware
self-training with bounding box regression. SDCN [16]
takes advantage of the complementary collaboration of
the weakly supervised detection and segmentation tasks.
Besides, CASD [11] enforces consistent object detection
across different transformations of the same images by
computing comprehensive attention and conducting self-
distillation on the WSOD networks. The aforementioned
models frequently adopt the multi-stage strategies like self-
training and self-distillation algorithms.

However, there remain some issues with the MIL-based
methods. Conventional algorithms commonly used for gen-
erating proposals, including the SS, SW, and EB methods,
are time-consuming. To tackle this problem, the class acti-
vation map (CAM) [37] method can be employed to gen-
erate proposals efficiently. However, CAM-based meth-
ods like TP-WSL [13], ACoL [35], and WCCN [5] can
hardly localize multiple instances of the same class in an
image [27], which restricts its generalization to real-world
object detection tasks. To address these issues, researchers
employ the Weak-shot Object Detection methods with the
merits of both fast proposal generation and the ability to de-
tect object instances of the same class.

2.2. Weak-shot object detection (WSHOD)

WSHOD methods take advantage of an existing fully-
annotated source dataset and improve the detection perfor-

19672



mance on the target dataset. WSHOD first emerges from
the method LSDA [10], and various methods [2, 15, 31, 32]
follow. The MSD method [18] adversarially learns domain-
invariant objectness to enable the MIL module to discrim-
inate inaccurate proposals. Dong et al. [6] leverage the
bounding box regression knowledge from a well-annotated
auxiliary dataset to explore a series of learnable bound-
ing box adjusters (LBBAs). Uijlings et al. [32] formulate
various knowledge scores based on the hierarchy of cate-
gories and transfer the knowledge from the S to T dataset
to improve the predictions of the MIL module, concluding
that the objectness score is more favourable than the class-
specific scores in knowledge transfer. Zhong et al. [36] im-
prove the one-time knowledge transfer from the S dataset
to T dataset by employing iterative refinement training for
the PG and the MIL modules. Based on this work, Liu et
al. [21] unify a mask generator with the object detection
network to provide mask prior information and the Sim-
Net which predicts semantic similarity to assign weights to
pseudo labels. The SCM [3] method also aims to improve
the pseudo labels by training an extra box regressor based
on the score heatmaps of the original boxes with high confi-
dence. However, the pseudo labels can be further improved
by leveraging the MIL module which learns the knowledge
of the novel categories on the T dataset. As such, we pro-
pose a pseudo label filtering method in this paper to reduce
the inaccurate pseudo labels by exploiting the MIL mod-
ule, thus transferring the knowledge from the T dataset to S
dataset in return.

3. Method
Our network architecture consists of a proposal gener-

ator (PG) and a multiple instance learning (MIL) module,
both of which are based on Faster-RCNN [23], as shown
in Fig. 2. By employing the proposed Mutual Knowledge
Transfer scheme, object knowledge is transferred between
the PG and MIL modules to improve both.

3.1. Proposal generator and MIL modules

The detection head of the PG module contains a box re-
gressor and an objectness predictor. By thresholding the
objectness scores, the positive proposals are employed for
training the MIL module. We utilize the S dataset to train
the PG module, and all the object categories are regarded as
a one-class foreground category.

The head of the MIL module consists of a classification
branch and a detection branch. Each branch is composed
of two fully connected layers. We train this module on the
T dataset containing totally C categories in a weakly su-
pervised manner. Given R proposals generated by the PG
module and the feature maps produced by the backbone, R
region feature maps are obtained through an RoIAlign layer.
The region feature maps are fed into the classification and

detection branches, obtaining matrices M c,Md ∈ RR×C ,
respectively. The row- and column-wise softmax operations
are performed for M c and Md respectively, which output
two score matrices Sc and Sd with the (i, j) entry given by

Sc
ij =

eM
c
ij∑C

n=1 e
Mc

in

, Sd
ij =

eM
d
ij∑R

m=1 e
Md

mj

, (1)

where Sc
ij is the probability of proposal i belonging to cat-

egory j and Sd
ij denotes contribution of the i-th proposal to

category j. Then we obtain the predicted score matrix S,
whose (i, j) entry can be computed as

Sij = Sd
ijS

c
ij . (2)

We perform the column-wise sum operation on S, obtaining
the image-level class probability for the j-th class as

ŷj =

R∑
i

Sij =

R∑
i

Sd
ijS

c
ij . (3)

A classification loss Lcls and the proposed Knowledge
Transfer loss Lkt (see Sec. 3.2) are employed in training
the MIL module. We exploit the binary cross entropy loss
in Eq.(4), where yj ∈ {0, 1} is the image-level label.

Lcls = − 1

C

C∑
j

[yj log ŷj + (1− yj) log(1− ŷj)], (4)

During inference, the final class probability for each pro-
posal is the element-wise product of Sc and Ṡd, in which
Ṡd = sigmoid(Md). Different from Sd, Ṡd denotes the
confidence of a certain category existing in a proposal.

3.2. Knowledge Transfer loss

The lack of bounding box annotations is a crucial is-
sue for the WSHOD task. We thus propose the Knowl-
edge Transfer (KT) loss to transfer the knowledge from the
PG module to constrain the training of the MIL module,
through which the rich annotation information of bounding
boxes on the S dataset is hopefully transferred to the MIL
module, leading to potentially better detection performance
on the T dataset.

Intuitively, the objectness score and the entropy of class
distribution predicted by the MIL module should be con-
sistent with those from the PG module trained with fully-
annotated data. Although the categories in the S dataset and
the T dataset have no overlap in our setting, this intuition
holds as many low-level class-agnostic image features can
be shared across object categories [18, 32].

It is worth noting that the PG module itself does not di-
rectly produce class distribution entropy for each proposal.
Nonetheless, the objectness score conveys whether an ob-
ject exists in a proposal, and the existence of an object
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Figure 2. Overview of our model architecture. In the main process, the proposals generated by PG module are fed into the MIL module to
produce detection predictions which are used to compute the Knowledge Transfer Loss Lkt with the predictions of the PG module. In the
refinement training of the PG module, the Consistency Filtering method is conducted to update the pseudo labels. As such, the knowledge
transfer is performed mutually between the source and target datasets.

causes large certainty of the class distribution, leading to
small entropy. As such, the class distribution entropy of
proposal i can be roughly estimated by its negative correla-
tion with the objectness score Oi ∈ (0, 1) predicted by the
PG module. Therefore, the optimization target for the class
distribution entropy of proposal i can be defined as

Ht
i = (1−Oi) logC. (5)

The class distribution entropy predicted by the MIL module
for proposal i is defined by Eq. (6), where S̃i is the i-th row
of S̃d which is obtained by performing row-wise softmax
normalization on Md in Eq. (7).

H(S̃d
i ) =

C∑
j=1

(−S̃d
ij) log S̃

d
ij , (6)

S̃d
ij =

eM
d
ij∑C

n=1 e
Md

in

. (7)

As such, the proposed Entropy Transfer loss Lent is com-
puted by

Lent =
1

R

R∑
i=1

[H(S̃d
i )− (1−Oi) logC]2. (8)

The objectness transfer loss [36] is defined by Lobj =
1
R

∑R
i=1(maxj Ṡ

d
ij − Oi)

2, where maxj Ṡ
d
ij is the object-

ness score of the MIL module for the i-th proposal. Then
the proposed KT loss Lkt is defined as

Lkt = Lent + Lobj

=
1

R

R∑
i=1

{[H(S̃d
i )− (1−Oi) logC]2+

(max
j

Ṡd
ij −Oi)

2}.

(9)

Finally, the overall loss L for training the MIL module is

L = Lcls + λLkt, (10)

where λ is a trade-off hyper-parameter.

Discussion. Prior to our work, Zhong [36] et al. also con-
sider objectness transfer during model training but only ex-
ploit the objectness loss Lobj . We find that using the ob-
jectness transfer loss Lobj alone (with the classification loss
Lcls) leads to unreasonable class distributions. For simplic-
ity, we consider an image labeled with two categories g and
h on the T dataset. Since no further constraints are enforced
on the score matrix Ṡd, a positive proposal i may simulta-
neously have peak responses for both categories, i.e., large
response values Ṡd

ig and Ṡd
ih in the score matrix. It can be

theoretically proved that such score values of Ṡd will lead
to an unreasonable score matrix Sc. With Eq.(2)-(4) and
Eq.(9)-(10), we obtain the gradient of the overall loss with
respect to Sc

ig as

∂L
∂Sc

ig

=
∂L
∂ŷg

∂ŷg
∂Sc

ig

= − 1

Cŷg
Sd
ig

= − 1

C(Sc
ig +

∑
r ̸=i S

d
rgS

c
rg

Sd
ig

)
.

(11)

Note that the lower bound of its absolute value is Sd
ig/C,

which reveals that the absolute value of the gradient with
respect to Sc

ig is positively related to Sd
ig . As a result, large

responses in Sd
ig and Sd

ih lead to high responses in both Sc
ig

and Sc
ih through the back-propagation during training. This

indicates that the proposal i is simultaneously recognized
as categories g and h, which is unreasonable for the MIL
module.
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Fortunately, this phenomenon can be alleviated by using
the proposed Knowledge Transfer loss Lkt instead. The op-
timization of Lent leads to entropy reduction for positive
proposals. As such, one element’s spiking in S̃d leads to
generally low values in other classes, ensuring a dominant
contribution to only one class from each positive proposal
in Md, as is the case in Sd. Furthermore, according to the
analysis of Eq.(11), we conclude that the optimization in
our loss L can maintain unique peak response among all
categories for each proposal in Sc. This learning paradigm
is more reasonable in the knowledge transfer and MIL train-
ing process compared to using Lobj alone.

3.3. Consistency Filtering

With the trained PG and MIL modules, we can obtain
the object detection results on both the source and target
datasets for the novel categories, which is called the process
of pseudo ground truth mining. The mined boxes are used
as pseudo labels for the next iteration of refinement train-
ing, which is elaborated in Sec. 3.4. The motivation for the
Consistency Filtering method is two-fold. First, the quality
of pseudo labels can be further improved by the proposed
approaches in addition to the naive way of abandoning the
mined boxes whose classes are not contained in the image-
level class labels. Second, object knowledge regarding the
novel categories in the T dataset can boost the training of
the PG module when transferred through label filtering.

It is a common challenge that the predicted boxes usually
only cover the most discriminative part of an object instead
of enclosing the entire object. The image features of the
object fragment contain less semantic information and thus
are susceptible to noise injections compared to those of the
entire object. Motivated by this, we apply designed noises
to random regions of feature maps corresponding to the pre-
dicted boxes. Specifically, the RoIAlign features (with spa-
tial size 7 × 7) of the pseudo boxes are obtained, in which
random regions of feature maps are replaced with noises.
With the processed feature maps, the MIL module predicts
classification probabilities and detection scores for different
boxes. After repeatedly injecting random noises to N ran-
dom regions, the evaluated pseudo box will be removed if
all the N predictions meet the proposed filter criterion.

Three key factors of the CF method are the noise re-
gion selection, the noise formulation, and the filter criterion.
First, we consider two kinds of noise regions, i.e., contin-
uous and scattered regions, respectively. The continuous
noise region selection mechanism randomly locates a rect-
angle region on the feature maps, while the scatted noise re-
gion is selected by randomly sampling pixels on the feature
maps. For the formulation of noises, we consider the trun-
cated Gaussian noise post-processed by a ReLU activation
layer. The ReLU layer is exploited to ensure consistent re-
sponses for noises and original features. In addition, we also

consider using zero values as an alternative noise formula-
tion. We propose two types of filter criterions for the CF
method. The first one measures the mined box quality con-
sidering the predicted class probability and the detection-
branch confidence of the MIL module. Two thresholds td
and tc are predefined. The boxes are abandoned if the max
detection score and classification probability are lower than
td and tc, respectively. The second criterion considers la-
bel consistency for box selection. Boxes with inconsistent
predicted class between the noisy and original input are re-
garded as inaccurate boxes. We refer to the CF method
using these two filter criterions as CF-generative (denoted
by CF-g) and CF-discriminative (denoted by CF-d), respec-
tively. Ablation studies are provided in Sec. 4.4 to compare
the performances of different variants of the CF method.

The CF method can effectively detect inaccurate pseudo
labels. Visualizations and analysis of the removed boxes
are illustrated in Fig. 3 and Sec. 4.5. Since false discard-
ing of boxes harms the refinement training, the CF method
concentrates more on its precision than recall.

3.4. Iterative training strategy

The whole network, including the PG and the MIL mod-
ules, is trained iteratively, following the training scheme
in previous works [21, 36]. The initial PG and MIL mod-
ules are trained with the source and target datasets, respec-
tively. Then candidate pseudo labels are generated on both
datasets with the trained models. By applying the proposed
CF method, we remove inaccurate predicted boxes and em-
ploy the remaining ones as pseudo labels. They are merged
with the original annotations from the source dataset for the
next refinement training of the PG module. As such, the
refinement training of the PG and MIL modules can be con-
ducted iteratively and progressively improves the detection
performance on the target dataset.

4. Experiments
4.1. Datasets and evaluation metrics

For fair comparison, our experimental setting follows
previous WSHOD works [21, 36]. Pascal VOC 2007 [7] is
adopted as the target dataset. Either MS COCO 2017 [19] or
ILSVRC 2013 [25] detection dataset is adopted as the source
dataset. Pascal VOC 2007 consists of 20 categories and is
split into a train-val set with 5,011 images and a test set
with 4,952 images. The bounding box annotations are left
unused during training. MS COCO 2017 contains 80 cat-
egories in total which covers the 20 categories in Pascal
VOC 2007. We remove all the images which contain the
target categories. The remaining source dataset, referred to
as COCO-60, consists of a training set with 21,987 images
and a validation set with 921 images. ILSVRC 2013 detec-
tion dataset originally has 200 categories. After removing
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Table 1. mAP comparisons with state-of-the-art methods on VOC 2007 test set. ‘Single scale’ denotes single-scale training and testing, and
‘+’ means multi-scale. ‘Distill’ indicates re-training a Faster-RCNN model based on the pseudo labels. ‘Ens’ indicates ensemble methods
and ‘FR’ means distilling with Fast RCNN [9] model. The backbone is ResNet50 if not specified.

Method aero bike bird boat bottl bus car cat chair cow table dog horse mbik pers. plant sheep sofa train tv mAP

Pure WSOD:
WSDDN-Ens [1] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

OICR-Ens+FR [29] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0
PCL-Ens+FR [28] 63.2 69.9 47.9 22.6 27.3 71.0 69.1 49.6 12.0 60.1 51.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.8
ICMWSD+FR [24] 66.4 69.1 58.9 32.5 27.6 71.5 73.1 66.2 32.8 75.4 47.4 53.7 63.3 71.7 34.8 28.5 57.4 54.7 62.5 67.1 55.7

CASD+FR [11] 66.6 81.3 58.4 33.5 31.6 75.7 55.2 68.3 36.8 59.5 61.0 52.9 65.4 72.0 29.1 29.4 65.7 54.2 74.5 70.7 57.1

WSHOD:
MSD [18] 70.5 69.2 53.3 43.7 25.4 68.9 68.7 56.9 18.4 64.2 15.3 72.0 74.4 65.2 15.4 25.1 53.6 54.4 45.6 61.4 51.1

OICR+UBBR [15] 59.7 44.8 54.0 36.1 29.3 72.1 67.4 70.7 23.5 63.8 31.5 61.5 63.7 61.9 37.9 15.4 55.1 57.4 69.9 63.6 52.0
Zhong et al. (single scale) [36] 64.4 45.0 62.1 42.8 42.4 73.1 73.2 76.0 28.2 78.6 28.5 75.1 74.6 67.7 57.5 11.6 65.6 55.4 72.2 61.3 57.8

Zhong et al.+ [36] 64.8 50.7 65.5 45.3 46.4 75.7 74.0 80.1 31.3 77.0 26.2 79.3 74.8 66.5 57.9 11.5 68.2 59.0 74.7 65.5 59.7
Zhong et al. (distill,vgg16)+ [36] 62.6 56.1 64.5 40.9 44.5 74.4 76.8 80.5 30.6 75.4 25.5 80.9 73.4 71.0 59.1 16.7 64.1 59.5 72.4 68.0 59.8

Zhong et al. (distill)+ [36] 65.5 57.7 65.1 41.3 43.0 73.6 75.7 80.4 33.4 72.2 33.8 81.3 79.6 63.0 59.4 10.9 65.1 64.2 72.7 67.2 60.2
TraMaS (single scale) [21] 65.6 53.7 67.4 47.2 46.9 76.3 76.6 81.7 33.0 76.9 29.3 80.9 76.8 66.2 61.1 12.6 65.8 58.9 74.4 66.7 60.9

TraMaS+ [21] 66.5 58.7 68.3 47.7 47.0 76.3 78.0 81.1 33.9 77.8 30.9 80.1 78.0 66.2 63.0 15.1 69.2 60.2 76.1 68.1 62.1
TraMaS (distill,vgg16)+ [21] 67.8 59.9 67.9 48.9 47.5 75.4 78.2 79.3 33.1 76.4 32.1 78.8 77.4 68.3 63.1 18.4 70.0 59.9 76.2 69.3 62.4

TraMaS (distill)+ [21] 68.6 61.1 69.6 48.1 49.9 76.3 77.8 80.9 34.9 77.0 31.1 80.9 78.5 66.3 64.0 19.1 69.1 62.3 74.4 69.1 62.9

Ours (single scale) 64.8 56.2 67.8 48.8 52.0 76.5 78.1 82.0 33.4 77.9 24.7 82.6 73.3 74.0 69.0 15.1 70.7 65.3 78.6 66.6 62.9
Ours+ 68.5 57.6 68.5 47.3 50.9 79.2 78.4 81.8 34.7 77.5 23.1 81.8 74.3 73.0 69.6 15.9 70.8 62.3 78.2 69.1 63.1

Ours (distill,vgg16)+ 64.9 64.6 69.4 44.9 48.3 72.0 81.4 80.9 38.7 74.5 26.4 79.3 75.3 74.2 72.1 20.2 65.5 62.3 76.4 69.6 63.0
Ours (distill)+ 68.3 64.6 71.7 48.5 50.6 77.1 80.9 80.6 39.7 81.0 28.0 81.0 76.2 72.4 72.0 21.9 70.9 66.0 79.3 68.8 65.0

Table 2. CorLoc comparisons with state-of-the-art methods on VOC 2007 trainval set. See the definition of each notation in Tab. 1.

Method aero bike bird boat bottl bus car cat chair cow table dog horse mbik pers. plant sheep sofa train tv Cor.

Pure WSOD:
WSDDN-Ens [1] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0

OICR-Ens+FR [29] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3
PCL-Ens+FR [28] 83.8 85.1 65.5 43.1 50.8 83.2 85.3 59.3 28.5 82.2 57.4 50.7 85.0 92.0 27.9 54.2 72.2 65.9 77.6 82.1 66.6
ICMWSD+FR [24] 86.2 55.8 78.8 44.7 15.9 68.8 81.8 62.2 32.2 78.3 26.3 54.7 58.0 76.9 28.6 32.9 76.1 36.5 77.2 59.6 56.6

CASD+FR [11] 83.4 79.7 75.1 46.9 42.7 76.5 72.5 53.6 75.4 46.2 37.7 32.0 44.9 86.7 27.5 46.2 74.3 70.8 79.4 65.1 60.8

WSHOD:
MSD-Ens [18] 89.2 75.7 75.1 66.5 58.8 78.2 88.9 66.9 28.2 86.3 29.7 83.5 83.3 92.8 23.7 40.3 85.6 48.9 70.3 68.1 66.8

OICR+UBBR [15] 47.9 18.9 63.1 39.7 10.2 62.3 69.3 61.0 27.0 79.0 24.5 67.9 79.1 49.7 28.6 12.8 79.4 40.6 61.6 28.4 47.6
Zhong et al. (single scale) [36] 86.7 62.4 87.1 70.2 66.4 85.3 87.6 88.1 42.3 94.5 32.3 87.7 91.2 88.8 71.2 20.5 93.8 51.6 87.5 76.7 73.6

Zhong et al.+ [36] 87.5 64.7 87.4 69.7 67.9 86.3 88.8 88.1 44.4 93.8 31.9 89.1 92.9 86.3 71.5 22.7 94.8 56.5 88.2 76.3 74.4
Zhong et al. (distill,vgg16)+ [36] 87.9 66.7 87.7 67.6 70.2 85.8 89.9 89.2 47.9 94.5 30.8 91.6 91.8 87.6 72.2 23.8 91.8 67.2 88.6 81.7 75.7

Zhong et al. (distill)+ [36] 85.8 67.5 87.1 68.6 68.3 85.8 90.4 88.7 43.5 95.2 31.6 90.9 94.2 88.8 72.4 23.8 88.7 66.1 89.7 76.7 75.2
TraMaS (single scale) [21] 88.9 66.5 87.3 69.2 70.6 86.2 90.3 90.6 49.5 95.5 31.6 93.7 93.5 87.4 73.6 24.9 93.5 67.3 89.6 82.7 76.6

TraMaS+ [21] 88.3 67.9 89.8 68.0 70.8 88.6 90.6 91.8 50.3 96.6 31.8 93.5 92.2 88.2 72.8 25.2 94.2 67.4 90.3 84.4 77.1
TraMaS (distill,vgg16)+ [21] 89.7 69.4 90.9 68.5 71.1 86.9 91.5 91.0 50.1 96.4 33.2 92.4 92.7 90.1 75.3 24.8 93.3 69.8 90.6 83.1 77.5

TraMaS (distill)+ [21] 90.6 67.4 89.7 70.5 72.8 86.6 91.7 89.8 51.0 96.1 34.0 93.7 94.8 90.3 73.0 26.5 95.2 68.2 89.8 83.1 77.7

Ours (single-scale) 88.3 75.1 87.3 77.4 76.3 90.1 93.9 88.9 54.5 97.9 30.0 90.8 94.2 91.5 81.6 34.4 95.9 69.8 92.4 82.1 79.3
Ours+ 90.4 74.8 88.6 75.0 76.1 89.6 94.0 88.8 54.7 97.2 28.8 89.9 93.8 91.9 82.2 33.6 95.9 66.9 92.8 82.2 79.4

Ours (distill,vgg16)+ 88.7 74.0 90.0 76.9 79.8 86.2 94.4 92.1 58.4 95.2 33.1 90.9 92.8 91.1 83.2 29.9 96.9 71.2 93.2 82.7 80.0
Ours (distill)+ 91.7 79.2 89.7 76.3 76.0 88.6 94.1 89.4 59.2 96.6 37.1 91.1 94.8 93.1 83.8 37.3 93.8 71.6 90.5 82.3 80.8

the images which contain the categories in the VOC dataset,
we obtain 143,095 train images and 6,229 validation im-
ages for 179 categories, which is denoted as the ILSVRC-
179 dataset. Two commonly used evaluation metrics are
adopted, namely mean average precision (mAP) and cor-
rect localization (CorLoc) [4]. Average precision (AP) is
the weighted mean of precision at each threshold and can
be calculated as the area under the precision-recall curve.
mAP is the average of AP for all categories. For a certain
category, CorLoc is the percentage of correctly localized
test images by the top-1 prediction of an algorithm.

4.2. Implementation details

We use 4 GPUs for training and set the batch size to
8. The architecture of the PG module is based on Faster-

RCNN with a ResNet50 or VGG16 backbone which is ini-
tialized by ImageNet-pretrained weights. Following [21],
the base learning rate is set to 8 × 10−3 and reduced to
8 × 10−4 after running 70% of the total training itera-
tions. We train the PG module for 20,000 iterations and
the MIL module for 5,000 iterations before the refinement
training. Then the training iterations are reduced to 10,000
and 2,000, respectively. During pseudo label generation, the
final score of the i-th bounding box is defined as sfinali =
(maxj Sij +Oi)/2. The predicted boxes with sfinal < 0.8
are removed before applying the CF method. For the itera-
tive training, we conduct 4 iterations of refinement training
following [21,36]. For multi-scale setting, the scales of 240,
320, 480, 640, and 800 are chosen for both training and test-
ing. The loss weight λ for the KT loss is set to 0.2.
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In the Consistency Filtering process, the noise injection
time N is set to 4. We use p to denote the area propor-
tion of the noise region to the entire feature maps and r
to denote the aspect ratio of the noise region. The value
p and r are set as random values ranging in (0.1, 0.33)
and (0.3, 3.3), respectively. For continuous noise regions,
a rectangle region is selected based on p and r for noise in-
jection. For scattered noise regions, the number of noisy
pixels np is determined by the randomly selected p, and the
positions of noisy pixels are randomly selected across the
feature maps. The truncated Gaussian noises are created

with a mean value of 0 and a variance of
M2

f

np
, where Mf is

the maximum value of the feature maps. For the filer crite-
rion, td and tc is set to 0.3 and 0.6, respectively. Ablation
studies for td and tc are presented in Sec. 4.4. The KT loss
and the CF method introduce no extra model parameters.
Besides, the proposed methods are conducted only at the
training stage. As such, the inference computational com-
plexity of the detection model is not increased.

4.3. Comparisons with SOTA

We compare the proposed approach with previous state-
of-the-arts in this section. To present comprehensive com-
parisons with the competitive baselines in WSHOD, we also
perform multi-scale testing or distillation training follow-
ing experiments in [21, 36]. Table 1 and 2 show the mAP
and CorLoc performance on VOC 2007 test set, respec-
tively, with COCO-60 as the source dataset. In the WSHOD
works, both [36] and [21] adopt the Faster-RCNN-based
framework. Generally, the testing performance of the best
WSHOD methods surpasses that of WSOD methods by
leveraging knowledge in the source dataset. In terms of
mAP, our method with single scale and no distillation set-
ting gains 2.0% (62.9% vs. 60.9%) compared to the pre-
vious best method [21], which demonstrates the superior-
ity of the proposed method. Besides, under the multi-scale
setting, the mAP can be increased to 63.1%. When distilla-
tion is considered, our performance reaches 65.0%, which
surpasses TraMaS by 2.1% [21]. In terms of the CorLoc
metric, the performance in single-scale testing is 79.3%,
obtaining a significant improvement of 2.7% compared to
TraMaS. Considerable improvements can also be observed
in multi-scale and distillation settings on both VGG16 and
ResNet50 backbones.

Experiments on ILSVRC-179 dataset. Results of leverag-
ing ILSVRC-179 as the source dataset are shown in Tab. 3.
We use the reported results of state-of-the-art methods for
comparison. In terms of mAP, our method gains 2.1%
(60.4% vs. 58.3%) compared to [21], which indicates that
our method is robust to different source datasets.

Table 3. Comparison with state-of-the-art methods when the
source dataset is ILSVRC-179. The backbone is ResNet50 un-
less specified.

Methods mAP CorLoc

MSD (vgg16) [18] 47.5 65.3
Zhong et al. [36] 56.5 /

TraMaS (vgg16) [21] 57.8 74.1
TraMaS [21] 58.3 74.8
Ours (vgg16) 58.9 75.7

Ours 60.4 77.5

Table 4. Ablation studies on the proposed Knowledge Transfer
loss and Consistency Filtering method. “+” and “-” means the
method is used or unused, respectively.

KT loss CF mAP (%)

- - 60.9
+ - 61.6
- + 62.1
+ + 62.9

Table 5. Ablation studies on different kinds of filter criterion. The
mAP (%) is evaluated for the final detection model, while the pre-
cision (Prec.) (%) is evaluated for the filtering operation, i.e., the
ratio of correctly removed boxes to all removed boxes.

metrics CF-d CF-g

mAP (%) 60.5 62.9

Prec. (box only) (%) 57.9 75.7
Prec. (class + box) (%) 74.4 77.9

Table 6. Ablation studies on the noise regions and noise formu-
lations. The mAP (%) of the final detection evaluation on the T
dataset is presented.

Noise formulation scattered continuous

zeros 61.6 62.9
truncated Gaussian 61.9 62.4

4.4. Ablation studies

Components of the proposed method. In this paper, we
design a novel KT loss and propose the CF method to im-
prove the performance of the WSHOD model. Table 4
demonstrates how the two proposed components contribute
to the overall performance. Without our methods, a Faster-
RCNN-based framework which uses the iterative training
strategy and adopts the objectness transfer loss as in [36]
obtains a mAP of 60.9%. The performance can be improved
to 61.6% and 62.1% by solely adopting the KT loss or the
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Table 7. Ablation studies on thresholds td and tc for the CF
method. “†” means directly filtering pseudo labels based on the
two thresholds without injecting noises. “Prec.” and “Prec.∗” are
the precisions of “box only” and “class + box”, respectively. FPR
is the ratio of falsely removed boxes to all correct boxes.

td 0.4 0.4 0.5 0.3 0.3 0.3†

tc 0.7 0.6 0.5 0.7 0.6 0.6†

mAP (%) 62.2 62.0 62.2 62.7 62.9 61.9

FPR (%) 0.9 0.7 0.8 0.5 0.4 /
Recall (%) 9.9 8.7 10.0 6.2 5.9 /
Prec. (%) 66.8 69.8 68.2 72.1 75.7 /
Prec.∗ (%) 70.6 72.7 72.0 75.5 77.9 /

Figure 3. Visualizations of pseudo boxes removed by the Consis-
tency Filtering method. The first row is the ground truth, in which
the cyan boxes are the corresponding ground-truth for the cate-
gories of the removed boxes, and the yellow ones are ground-truth
for other categories. The second row shows the removed boxes in
cyan dashed boxes and the kept pseudo labels in red solid boxes.

CF method, respectively. By jointly using the KT loss and
CF method, the mAP can be further increased to 62.9%.
Both parts of our design have contributions to the perfor-
mance gain and that they are complementary because the
combination of both can obtain further improvement.

Variants of the CF method. We study the three key fac-
tors of the CF method, i.e., the noise region selection, the
noise formulation, and the filter criterion, using COCO-60
as the source dataset. We first compare the two filter cri-
terions in terms of mAP of the ultimate detection results,
which is shown in Tab. 5. In addition, to statistically ana-
lyze the effect of the filtering operation itself, we also com-
pute the precision of the CF method, which is defined as
the ratio of the correctly removed boxes to all the removed
boxes. Regardless of the GT class, the removal is correct if
the IoU of the removed box with the Ground-Truth on the
T dataset is less than 0.7. Such a metric is referred to as
“box only”. We also compute the precision when the GT
class is also considered (i.e., the removal is correct if both
the class and box predictions are wrong), which is denoted
as “class + box” in Tab. 5. In terms of the “class + box”

metric, CF-g is slightly better than CF-d (77.9% vs. 74.4%
). However, CF-g surpasses CF-d by a large margin (75.7%
vs. 57.9%) when the “box only” metric is used. As such,
CF-g is chosen over CF-d as the method in comparison with
SOTA. Besides, we demonstrate the effects of noise formu-
lations and noise regions in Tab. 6. Generally, continuous
noise regions are more favourable than scattered ones. As
such, the zero noises on continuous regions are adopted as
our best setting. Table 7 studies the thresholds td and th for
CF-g method. The thresholds td = 0.3 and tc = 0.6 are
finally adopted. The result denoted with “†” is an impor-
tant baseline which simply filters out all boxes by the filter
criterion of CF-g method, without injecting any noises. A
large performance gap is observed in the last two columns,
which validates that random noise injection is crucial for the
effectiveness of the CF method.

4.5. Visualizations

We visualize samples of the CF method of our best set-
ting in Fig. 3. In most cases, the predicted boxes are cor-
rectly removed because they cover only part of an object,
which validates our analysis. Occlusion is a common rea-
son for the PG module to generate boxes covering object
parts. As in Fig. 3(b), the dog lying on the sofa is a dis-
traction for detecting the sofa. In addition, a number of pre-
dicted boxes only cover the most discriminative part of an
object. In Fig. 3(d), fingers of the person are recognized
while the other parts are ignored. Nonetheless, these inac-
curate predictions can be identified by the CF method. An
overly large predicted box is shown in Fig. 3(c). Features of
the bus in the box can be severely influenced by the injected
noises, leading to successful filtering of the inaccurate box.

5. Conclusions
We develop the Mutual Knowledge Transfer scheme for

the Weak-shot Object Detection task. For mitigating the
gap between the source and target datasets, we propose a
novel Knowledge Transfer loss to constrain the training of
the multiple instance learning module. Moreover, the statis-
tically robust Consistency Filtering method is proposed to
refine the proposal generator module with accurate pseudo
bounding boxes annotations. We conduct mathematical
analysis and statistical verification to demonstrate the ad-
vantages and effectiveness of the proposed Mutual Knowl-
edge Transfer scheme. Extensive experiments demonstrate
that the detection performance on the target dataset is sig-
nificantly improved against the state-of-the-art WSHOD ap-
proaches without increasing the model parameters or infer-
ence computational complexity.
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