
Federated Learning with Data-Agnostic Distribution Fusion

Jian-hui Duan, Wenzhong Li*, Derun Zou, Ruichen Li, Sanglu Lu
State Key Laboratory for Novel Software Technology, Nanjing University

Nanjing, China
djhbarca@163.com, lwz@nju.edu.cn

Abstract

Federated learning has emerged as a promising dis-
tributed machine learning paradigm to preserve data
privacy. One of the fundamental challenges of federated
learning is that data samples across clients are usually not
independent and identically distributed (non-IID), leading
to slow convergence and severe performance drop of the
aggregated global model. To facilitate model aggregation
on non-IID data, it is desirable to infer the unknown
global distributions without violating privacy protection
policy. In this paper, we propose a novel data-agnostic
distribution fusion based model aggregation method called
FedFusion to optimize federated learning with non-
IID local datasets, based on which the heterogeneous
clients’ data distributions can be represented by a global
distribution of several virtual fusion components with
different parameters and weights. We develop a Variational
AutoEncoder (VAE) method to learn the optimal parameters
of the distribution fusion components based on limited
statistical information extracted from the local models, and
apply the derived distribution fusion model to optimize
federated model aggregation with non-IID data. Extensive
experiments based on various federated learning scenarios
with real-world datasets show that FedFusion achieves
significant performance improvement compared to the
state-of-the-art.

1. Introduction

Federated learning (FL) has emerged as a novel
distributed machine learning paradigm that allows a global
deep neural network (DNN) model to be trained by
multiple participanting clients collaboratively. In such
a paradigm, multiple clients train their local models
based on datasets generated by edge devices such as
sensors and smartphones, and the server is responsible

*The corresponding author is Wenzhong Li (lwz@nju.edu.cn).

to aggregate the parameters from the local models to
form a global model without transferring local data to
the central server. Nowadays federated learning has been
drawn much attention in mobile-edge computing [21, 39]
with its advantages in preserving data privacy [17, 49] and
enhancing communication efficiency [30, 38, 43].

The de facto standard algorithm for federated learning
is FedAvg [30], where parameters of local models are
averaged element-wise with weights proportional to sizes
of the client datasets. Based on FedAvg, a lot of algorithms
have been proposed to improve the resource allocation
fairness, communication efficiency, and convergence rate
for federated learning [16, 29], which include LAG [3],
Zeno [45], AFL [31], FedMA [43], etc.

One of the fundamental challenges of federated learning
is the non-IID data sampling from heterogeneous clients. In
real-world federated learning scenarios, local datasets are
typically non-IID, and the local models trained on them
are significantly different from each other. It was reported
in [48] that the accuracy of a convolutional neural network
(CNN) model trained by FedAvg reduces by up to 55% for
a highly skewed non-IID dataset. The work in [43] showed
that the accuracy of VGG model trained with FedAvg and
its variants dropped from 61% to under 50% when the client
number increases from 5 to 20 on heterogeneous data.

Several efforts have been made to address the non-IID
challenges. FedProx [26] modified FedAvg by adding
a dissimilarity bound on local datasets and a proximal
term on the local model parameter to tackle heterogeneity.
However, it poses restrictions on the local updates to be
closer to the initial global model, which may lead to model
bias. Zhao et al. [48] proposed a data sharing strategy
to improve training on non-IID data by creating a small
subset of data to share between all clients. However,
data sharing could weaken the privacy requirement of
federated learning. Several works [5, 28, 32] adopted data
augmentation and model bias correction to deal with non-
IID data. The clustered federated learning [2, 6, 7, 46]
tackled non-IID settings by partitioning client models into
clusters and performed model aggregation in cluster level.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8074

The personalized federated learning [18, 34, 35, 37] aimed
to train personalized local models on non-IID data with the
help of federated model aggregation. However, none of the
existing works have considered to optimize federated model
aggregation from the perspective of inferring the unknown
global distribution based on the observed local model
parameters, and yet the feasibility of global distribution
inference subject to the data privacy policy of federated
learning remains unexplored.

In this paper, we propose a novel data-agnostic dis-
tribution fusion method called FedFusion for federated
learning on non-IID data. We introduce a distribution
fusion model to describe the global data distribution as a
fusion of several virtual distribution components, which
is ideal for representing non-IID data generated from
heterogeneous clients. However, applying a distribution
fusion for federated learning is not a trivial work. Due to the
data privacy policy of federated learning, the local datasets
are inaccessible and their distributions are unknown to the
server, so it is challenging for the server to derive the
distribution parameters of a fusion model without observing
to the real local data samples.

To tackle these issues, we propose an efficient method
to optimize the distribution fusion federated learning with
variational inference. Since the local data is inaccessible
to the server, our method is based on the limited statistical
information embedded in the normalization layers of the
DNN models, i.e., the means and standard deviations of
the feature maps (the outputs of intermediate layers). As
shown in the proposed method, those information can be
extracted from the local model parameters, which can be
further used to infer a global distribution. Specifically, we
develop a Variational AutoEncoder (VAE) method to learn
the optimal parameters of distribution fusion components
based on the observed information, and apply the derived
parameters to optimize federated model aggregation with
non-IID data. Extensive experiments based on a variety
of federated learning scenarios with non-IID data show
that FedFusion significantly outperforms the state-of-
the-arts.

The contributions of our work are as follows.

• We propose a novel data-agnostic distribution fusion
based model aggregation method called FedFusion
to address the data heterogeneity problem in federated
learning. It represents the global data by a fusion
model of several virtual distribution components with
different fusion weights, which is ideal to describe
non-IID data generated from heterogeneous clients.

• We develop a VAE method to learn the optimal
parameters for the data-agnostic distribution fusion
model. Without violating the privacy principle of
federated learning, the proposed method uses limited

statistical information embedded in DNN models to
infer a target global distribution with a maximum
probability. Based on the inferred parameters, an
optimal model aggregation strategy can be developed
for federated learning under non-IID data.

• We conduct extensive experiments using five main-
stream DNN models based on four real-world datasets
under non-IID conditions. Compared to FedAvg and
the state-of-the-art for non-IID data (FedProx, FedMA,
IFCA, FedGroup, etc), the proposed FedFusion has
better convergence and training efficiency, improving
the global model’s accuracy up to 12%.

2. Related Work
Federated learning [20] is an emerging distributed

machine learning paradigm that aims to build a global
model based on datasets distributing across multiple clients.
One of the standard parameter aggregation methods is
FedAvg [30], which combined local stochastic gradient
descent (SGD) on each client with a server that performs
parameter averaging. Later, the lazily aggregated gradient
(LAG) method [3] allowed clients to run multiple epochs
before model aggregation to reduce communication costs.
The q-FedSGD [27] method improved FedAvg with a
dynamic SGD update step using a scale factor to achieve
fair resource allocation among heterogeneous clients. The
FedMA [43] demonstrated that permutations of layers could
affect the parameter aggregation results, and proposed a
layer-wise parameter-permutation aggregation method to
solve the problem. The FedDyn [1] method proposed
a dynamic regularizer for each client at each round of
aggregation, so that different models are aligned to alleviate
the inconsistency between local loss and global loss.

Several works focused on optimizing federated learning
under non-IID data. Zhao et al. used the earth
mover’s distance (EMD) to quantify data heterogeneity
and proposed to use globally shared data for training to
deal with non-IID [48]. The RNN-based method [14]
adopted a meta-learning method to learn a new gradient
from the received gradients and then applied it to update
the global model. FedProx [26] modified FedAvg by
adding a heterogeneity bound on local datasets and a
proximal term on the local model parameter to tackle
heterogeneity. FedBN [28] suggested keeping the local
Batch Normalization parameters not synchronized with the
global model to mitigate feature shifts in non-IID data.
FedGN [10] replaced Batch Normalization with Group
Normalization to avoids the accuracy loss induced by the
skewed distribution of data labels. Yang et al. provided
theoretical evidence on linear speedup for convergence
of FedAvg under non-IID datasets with partial worker
participation [47]. Duan et al. proposed a framework called

8075

Astraea [5] to tackle local data distribution unbalance with
data augmentation based on Z-score. The BVR-L-SGD [32]
method used an additional local correction process to
reduce the bias and variance of local gradient updates, and
directly choose one local model as the global model rather
than averaging them. The VHL method [40] allowed clients
share an IID noisy dataset without any exact private data and
used this virtual dataset to calibrate local training.

Personalized federated learning aims to train person-
alized local models on non-IID data with the help of
federated model aggregation. The federated cluster
learning [2] [46] [7] partitioned clients into clusters to
address data heterogeneity, and aggregated different models
for different clusters. For example, IFCA [7] alternately
estimated the cluster identities of the clients and optimized
the model parameters for the clusters via gradient descent.
FedGroup [6] grouped clients based on similarities between
their optimization directions to improve training efficiency.
The works of [18] [35] [37] [34] further adopted multi-
task learning and meta-learning to train personalized model
for individual client. Different from clustered FL and
personalized FL that form multiple personalized models,
our work focuses on training a single global model from
heterogeneous clients.

Despite the great efforts, there is lack of consideration of
inferring the unknown global distribution based on limited
observations. This paper proposes a novel data agnostic
distribution fusion model with variational inference to
optimize model aggregation in federated learning under
non-IID conditions, which has not been explored in the past.

3. Problem Formulation
Federated learning methods involve multiple remote

clients training local models based on their device-
generated data and transferring local model’s parameters
to a central server periodically to form a global model.
Typically the objective of conventional federated learning
such as FedAvg [30] is to solve:

min
w

L(w) =

K∑
k=1

pkLk(w), (1)

where L(w) is the global objective; K is the number of
clients; Lk(w) is the local objective learned with local data;
pk ≥ 0 and

∑
k pk = 1 is the aggregation weight; and

w is the model parameters to be learned. Generally, the
aggregation weight is set to pk = nk

n , where nk is the
number of local samples in client k and n =

∑
k nk is the

total number of samples.
In the above equation, the global model is aggregated

by the weighted average of the local models proportional to
the fixed sample size of the local dataset. If the training
samples are IID distributed among the clients, the above
aggradation provides an unbias estimation of the global

Client-1 Client-2 Client-3 Client-4 Client-5

0 1 2

0.522

0.147
0.331

Figure 1. Illustration of Non-IID data from five clients being
represented by a distribution fusion model with three virtual
components.

model. However, if the training samples are Non-IID
(which are more common in reality due to the heterogeneity
of devices and users), the above fixed weighted averaging
results in slow convergence and accuracy drop [10, 48].

To address the above issue, we introduce a distribu-
tion fusion federated learning model to optimize model
aggregation with dynamic weights. We assume the local
data distribution is unknown, and the global data can be
described by a distribution fusion model with a mixture
of several virtual components belonging to the same
parametric family of distributions. As an example, Fig. 1
illustrates that the Non-IID data from five clients can be
represented by a distribution fusion model with three virtual
components with different mixture weights.

Note that the proposed data fusion model looks similar
to a Gaussian Mixture Model (GMM). The major difference
lies in that GMM assumes both global and local data are
Gaussian distribution, while the proposed data fusion model
allows any distribution on local data, which is more general
and practical in federated learning scenarios.

We use D̃ to denote the target global data distribution,
which have M (1 ≤ M ≤ K) virtual components: D̃ =∑M

m=1 πmD̄m, where D̄m (m = 1, · · · ,M) is the mth
virtual distribution component and πm ≥ 0,

∑M
m=1 πm = 1

are the fusion weights. Note that each client’s local data can
be allocated into some of the M components. We further
introduce the following notations to describe the model.

• ck ∈ {0, 1}M is a zero-one vector representing
distribution allocation, where ckm = 1 represents that
the distribution of the kth client is allocated to the mth
virtual component.

• bk = {bkm ∈ [0, 1]|m = 1, · · · ,M}, s.t.,∑M
m=1 bkmckm = 1, represents the sampling ratio

of the kth client which are hyperparameters in the
proposed distribution fusion model. Noted that the
sampling ratio bkm ̸= 0 only when the corresponding
allocation component ckm = 1. Specifically, bk

is used to sample a proportion of data from the
allocated components to reconstruct the original data
distribution for model optimization.

8076

In brief, the above ck represents an allocation policy and
bk represents a sampling policy, and they are parameters to
be optimized for the distribution fusion model.

With the above notations, federated learning with
distribution fusion can be described as the following
objective:

min
w

L(w) =

M∑
m=1

πm

K∑
k=1

bkmLk(w). (2)

Note that in an extreme condition where the data are IID
among all clients, the number of virtual components M =
1 and the objective in Eq. (2) equals to simple averaging,
which makes the conventional FedAvg [30] (i.e., Eq. 1) a
special case of the proposed model.

However, due to the privacy policy of federated learning,
the local datasets are inaccessible and their distributions
are unknown to the server, so it is impossible for the
server to derive the distribution parameters πm, ck, bk by
observing the real data. Next, we propose a variational
inference method to approximate the optimal parameters for
the distribution fusion model.

4. Variational Inference for Data-Agnostic
Distribution Fusion

Due to privacy protection, the local data distributions
are unknown to the server, making derivation of target
distribution D̃ difficult. We argue tha although the private
data is unknown, there are some statistical information
embedded in the received model parameters which can be
used by the server to infer the local distributions. For
example, in a DNN model, the statistical information
can be extracted from the normalization layers such as
batch normalization [12], layer normalization, instance
normalization, and group normalization, which typically
contain the following statistical variables:

• µ̂k, σ̂k: the means and standard deviations of the
feature maps (the outputs of intermediate layers) of the
kth client’s DNN model.

• β̂k, γ̂k: the shifted means and scaled standard
deviations [12] of the feature maps of the kth client’s
DNN model.

Note that the above parameters are either “pooling” from
the batch channel or learned from the data samples [12],
which contain statistical information such as means and
deviations of feature maps that implicitly correlate to the
dataset’s distribution. We use dk = {µ̂k, σ̂k, β̂k, γ̂k} to
denote the observed statistical variables of the kth client.
Since the real distribution is unknown, we can approximate
the objective in Eq. (2) by optimizing the allocation policy
ck and sampling policy bk for the distribution fusion model

given the received models’ statistical information. Hence
we convert a dataset-dependent optimization problem into
a data-agnostic problem based on the observable statistical
information on the server.

4.1. Variational AutoEncoder

We propose a Variational AutoEncoder (VAE) method to
derive the optimal parameters πm, ck and bk of the fusion
model. The plate notions of the VAE are shown in Fig. 2.

dk

κm

ζm

ν
′

m

ς
′

m

νm

ςm

z̃m

bk

ck

λk

πm

zk

ϕ

θ

M K

K

1

Figure 2. The variational Bayesian autoencoder using plate
notations, where ϕ and θ are global variables representing the
encoder’s parameters and the decoder’s parameters respectively.

Using the stick-breaking construction of the Indian
Buffet Process (IBP) [41], we infer that ck is sampled from
a Bernoulli distribution which is parameterized by λk =
{λkm|m = 1, · · · ,M}, where λk is sampled in i.i.d. from a
Beta distribution Beta(ζm,κm) parameterized by ζm,κm.
Similarly, we infer that bk is sampled from a Gaussian prior
distribution N (νm, ςm) which is parameterized by νm and
ςm.

We denote zk =
∑M

m=1 bkm · z̃m, which is a latent
variable used by a variational decoder θ to reconstruct
the observed dk. In the expression, z̃k means the latent
vector sampled from every allocated distribution of kth
client from the Gaussian prior distribution N (ν

′

m, ς
′

m),
which can adaptively adjust the latent posterior to a suitable
probabilistic distribution as discussed in [19].

As illustrated in Fig. 2, the parameters of
Beta(ζm,κm), N (νm, ςm) and N (ν

′

m, ς
′

m)
can be inferred with an variational encoder ϕ
based on the observable information dk, i.e.,
{νm, ςm,ν

′

m, ς
′

m, ζm,κm} = ϕ(dk). In the meanwhile,
the variables of bk and z̃m are used to compute a
latent variable zk, which is further fed to a decoder
θ to reconstruct the observed data dk with nonlinear
transformation. By optimizing the parameters of the
encoder-decoder, the optimal allocation policy ck and the

8077

sampling policy bk can be derived, which can be further
used to derived the fusion weights πm.

The details of the encoder-decoder process are explained
as follows.

Encoder ϕ: As shown in Fig. 2, in order to infer
the latent vector zk, we should derive the variational
posterior qϕ(λk, ck,bk). We employ a multi-head
nonlinear model to infer the approximation of true posterior
p(λk, ck,bk|dk) with variational posteriors, and apply
the stochastic gradient variational Bayes (SGVB) [19]
algorithm to learn the model.

From Fig. 2 we know that variables in variational
posterior are conditionally independent with the priori
p(dk). So we can decouple the variables as: qϕ(λ, c,b) =∏K

k=1

∏M
m=1 qϕ(bkm) · qϕ(ckm|λkm) · qϕ(λkm), where the

variational posterior distributions can be derived as [33]:

bk ∼ N (νm, ςm),

λk
i.i.d.∼ Beta(ζm,κm),

ck ∼ Bernoulli(

M∏
m=1

λkm).

(3)

Decoder θ: The decoder θ takes the latent variable zk as
input to reconstruct the original observed data. According
to Fig. 2, the derivation of zk relies on three variables bk,
λk, and ck, whose variational posteriors are Gaussian, Beta,
and Bernoulli distribution respectively, as shown in Eq. (3).
We infer the three latent variables as follows.

Since the posterior of bk is a Gaussian distribution with
differentiable Monte Carlo expectations, it can be easily
inferred with the Stochastic Gradient Variational Bayes
(SGVB) estimator as [19].

The posterior of λk is a Beta distribution, which is
hard to be inferred with conventional variational inference
methods. Following the works of [23, 33], we approximate
the posterior Beta with the Kumaraswamy distribution,
a two-parameter continuous distribution also on the unit
interval with a density function defined as:

Kumaraswamy(x; ζk,κk) = ζkκkx
ζk−1(1− xζk)κk−1, (4)

where ζk and κk are parameters of the distribution. It was
proved that the Kumaraswamy approaches to the Beta albeit
with high entropy, and it satisfies the differentiable and non-
centered parameterization (DNCP) property with its closed-
form inverse CDF [33]. Therefore the samples of λk can be
drawn via the inverse transform of Kumaraswamy, which is
expressed by

λk ∼ (1− ξ
1

κk)
1
ζk , where ξ ∼ Uniform(0, 1). (5)

For the zero-one allocation vector ck, we reparameterize
it with the Beta distribution as in Eq. (3). Using the

Gumbel-Max trick [13] to draw samples from a Bernoulli
distribution with binary probabilities, we have:

ckm = argmax
i

(gi + log

2∏
i=1

λki), (6)

where gi is an IID sample drawn from Gumbel(0, 1).
After deriving bk and ck and sampling latent vector z̃k
from every component where client k is allocated, we can
compute the latent variable zk by zk =

∑M
m=1 bkm · z̃m.

Then we use zk to reconstruct the original observed data
dk with pθ(µ̂k, σ̂k, β̂k, γ̂k|zk). In our implementation. the
decoder θ is parameterized by using a deep neural network
to learn the model.

To derive the component weight πm, we use a variant of
the EM algorithm [4] with a softmax function:

πm =
exp(1

K

∑K
k=1 qϕ(ckm) · bkm)∑M

m=1 exp(
1
K

∑K
k=1 qϕ(ckm) · bkm)

. (7)

4.2. Optimizing the Variational AutoEncoder

In this section, we introduce the algorithm to optimize
the variational autoencoder based on the derivation in the
above section. For convenient, we omit the latent variables
{bk, ck,λk} and their priors in representing the encoder
model ϕ.

The dashed lines in Fig. 2 denote the generative
model pθ(zk)pθ(dk|zk), and the solid lines denote the
variational approximation qϕ(zk|dk) to the intractable
posterior pθ(zk|dk). We approximate pθ(zk|dk) with
qϕ(zk|dk) by minimizing their KL-divergence [15]:

ϕ∗,θ∗ = argmin
θ,ϕ

DKL(qϕ(zk|dk) || pθ(zk|dk)). (8)

To derive the optimal value of the parameters ϕ and θ, we
compute the marginal likelihood of dk:

log p(dk) = DKL(qϕ(zk|dk) || pθ(zk|dk))

+ Eqϕ(zk|dk)

[
log

pθ(zk,dk)

qϕ(zk|dk)

]
,

(9)

where the first term is the KL-divergence of the approximate
distribution and the posterior distribution, and the second
term is called the ELBO (Evidence Lower BOund) on the
marginal likelihood of the k-th client’s dataset.

Since log p(dk) is non-negative, the minimization
problem of Eq. (8) can be converted to maximizing the
corresponding ELBO. To solve the problem, we change its
form as:

Eqϕ(zk|dk)

[
log

pθ(zk,dk)

qϕ(zk|dk)

]
=

Eqϕ(zk|dk)

[
log

p(zk)

qϕ(zk|dk)

]
︸ ︷︷ ︸

Encoder

+Eqϕ(zk|dk)[log pθ(dk|zk)]︸ ︷︷ ︸
Decoder

.

(10)

8078

0 20 40 60 80 100
Comm. Rounds

1.0

1.5

2.0

2.5

3.0

Lo
ss

FedAvg
FedProx
Fed-GN
FedMA
FedFusion

(a) ResNet18 on CIFAR10

0 20 40 60 80 100
Comm. Rounds

1.0

1.5

2.0

2.5

Lo
ss

FedAvg
FedProx
Fed-GN
FedMA
FedFusion

(b) DenseNet121 on CIFAR10

0 20 40 60 80 100
Comm. Rounds

1.5

2.0

2.5

3.0

3.5

Lo
ss

FedAvg
FedProx
Fed-GN
FedMA
FedFusion

(c) MobileNetV2 on CIFAR10

0 25 50 75 100
Comm. Rounds

1.0

1.5

2.0

2.5

3.0

Lo
ss

FedAvg
FedProx
Fed-GN
FedMA
FedFusion

(d) BiLSTM on Sent140

Figure 3. Training loss of different algorithms.

0 20 40 60 80 100
Comm. Rounds

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
Fed-GN
FedMA
FedFusion

(a) ResNet18 on CIFAR-10

0 20 40 60 80 100
Comm. Rounds

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
Fed-GN
FedMA
FedFusion

(b) DenseNet121 on CIFAR-10

0 20 40 60 80 100
Comm. Rounds

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
Fed-GN
FedMA
FedFusion

(c) MobileNetV2 on CIFAR-10

0 20 40 60 80 100
Comm. Rounds

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

FedAvg
FedProx
Fed-GN
FedMA
FedFusion

(d) BiLSTM on Sent140

Figure 4. Training efficiency of different algorithms.

The above form is a variational encoder-decoder structure:
the model qϕ(zk|dk) can be viewed as a probabilistic
encoder that given an observed statistics dk it produces a
distribution over the possible values of the latent variable
zk. The model pθ(sk|zk) can be refered to as a probabilistic
decoder that reconstructs the value of dk based on the
latent variable zk. According to the theory of variational
inference [19], the problem in Eq. (10) can be solved
with the SGD method using a nonlinear deep neural
network (DNN) to optimize the mean squared error loss
function. The overall FedFusion algorithm is illustrated
in Algorithm 1, and its convergence is provided in the
following theorem (proof in the supplementary).
Theorem 1 (Convergence Bound): With learning epoch T ,
local epoch E, diameter of domain Γ, and learning rate η,
the following convergence bound holds for FedFusion:

E[f(wT)]− f(w∗) ≤ L

E + T

(
A

τ
+

E + 1

2
Γ2

)
. (11)

5. Experiments
5.1. Experimental Setup

Implementation: We implement the proposed
FedFusion1 algorithm and the considered baselines
in PyTorch. We train the models in a simulated federated
learning environment consisting of one server and multiple
participating clients. Unless explicitly specified, the default
number of clients is 50, and the learning rate β = 0.01.

1https://github.com/LiruichenSpace/FedFusion

Algorithm 1: The FedFusion algorithm.

1 Initialize w0.
2 for each communication round t = 0, 1, . . . , T − 1

do
3 wt+1

k := the model received from client k
4 dk := (µ̂k, σ̂k, β̂k, γ̂k) // extracted from wt+1

k

5 repeat
6 Inference κm, ζ,, νm, ςm, ν

′

m and ς
′

m based
on encoder ϕ

7 bk, λk, ck := sampling from distributions
with Eq. 3, 5, 6

8 z̃m := sampling from N (ν
′

m, ς
′

m)

9 zk :=
∑M

m=1 bkm · z̃m
10 Recover zk to dk based on decoder θ with

Eq. 10
11 until VAE converge;
12 wt+1 :=

∑M
m=1 πm

∑K
k=1 bkm · ckm ·wt+1

k //
model aggregation

13 broadcast wt+1 to all clients

We conduct experiments on a GPU-equipped personal
computer (CPU: Intel Core i7-8700 3.2GHz, GPU: Nvidia
GeForce RTX 2070, Memory: 32GB DDR4 2666MHz,
and OS: 64-bit Ubuntu 16.04).

Models and datasets: Our experiments are based on
5 mainstream deep learning models: ResNet18 [9], LeNet
[24], DenseNet121 [11], MobileNetV2 [36], and BiLSTM.

8079

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0

0.2

0.4

0.6

0.8

1.0

(c)

0.0

0.2

0.4

0.6

0.8

1.0

(d)
Figure 5. Visualization of data distribution. (a) the original distribution of MNIST, (b) the inferred distribution of MNIST with
FedFusion, (c) the original distribution of CIFAR-10, (d) the inferred distribution of CIFAR-10 with FedFusion.

Dataset CIFAR-10 FMNIST MNIST Sent140
Model ResNet18 DenseNet121 MobileNetV2 LeNet LeNet BiLSTM

Single-model

FedAvg 68.78 (±0.89) 63.33 (±0.67) 54.69 (±3.92) 79.20 (±1.15) 97.32 (±0.04) 58.33 (±2.03)
FedProx 70.18 (±0.45) 66.85 (±0.93) 55.03 (±2.77) 80.03 (±0.98) 97.55 (±0.02) 59.73 (±1.38)
Fed-GN 72.57 (±0.78) 70.02 (±1.36) 56.43 (±1.92) 81.11 (±0.74) 97.88 (±0.02) 63.41 (±1.94)
FedMA 73.43 (±1.03) 70.13 (±1.71) 59.61 (±2.01) 81.02 (±1.35) 98.06 (±0.03) 60.86 (±2.42)

Multi-model

FeSEM 67.78 (±2.58) 62.65 (±0.82) 53.82 (±3.69) 78.18 (±1.45) 96.24 (±0.17) 59.57 (±3.41)
IFCA 73.04 (±1.45) 70.85 (±2.03) 58.93 (±2.45) 80.82 (±1.29) 97.09 (±0.11) 60.82 (±2.74)

FedCluster 72.57 (±0.78) 68.77 (±1.38) 58.18 (±1.22) 79.11 (±0.74) 97.88 (±0.02) 63.41 (±1.94)
FedGroup 74.38 (±1.92) 71.63 (±0.74) 59.86 (±2.09) 81.32 (±2.07) 97.37 (±0.61) 63.61 (±3.26)

FedFusion 81.26 (±0.82) 75.92 (±1.25) 62.88 (±1.21) 83.16 (±0.74) 98.49 (±0.04) 67.51 (±1.71)

Table 1. Comparison of average test accuracy on non-IID datasets.

We use 4 real world datasets: MNIST [25], Fashion-
MNIST [44], CIFAR-10 [22], and Sentiment140 [8], which
are widely used for evaluating FL algorithms in the
literature. MNIST is a dataset for hand written digits
classification with 60000 samples of 28×28 greyscale
image. Fashion-MNIST is an extended version of MNIST
for benchmarking machine learning algorithms. CIFAR-10
is a large image dataset with 10 categories, each of which
has 6000 samples of size 32×32. Sentiment140 is a natural
language process dataset containing 1,600,000 extracted
tweets annotated in scale 0 to 4 for sentiment detection.

We generate non-IID data partition according to the
work [30]. For each dataset, we use 80% as training dada
to form non-IID local datasets as follows. We sort the data
by their labels and divide each class into 200 shards. Each
client draw samples from the shards to form a local dataset

with probability pr(x) =

{
η ∈ [0, 1], if x ∈ classj ,
N (0.5, 1), otherwise. It

means that the client draws samples from a particular class
j with a fixed probability η, and from other classes based
on a Gaussian distribution. The larger η is, the more likely
the samples concentrate on a particular class, and the more
heterogeneous the datasets are. By default we set η = 0.5.

5.2. Performance Comparison

We compare the performance of FedFusion with 4
state-of-the-art methods: FedAvg [30], FedProx [26], Fed-
GN [10], and FedMA [43]. The results are analyzed as
follows.

Convergence: In this experiment, we study the
convergence of the compared algorithms by showing the
total communication epochs versus train loss. Fig. 3
shows the convergence of different algorithms for different
models on different datasets. It is shown that the loss
of all algorithms tends to be stable after a number of
communication rounds. Clearly, FedFusion has the
lowest loss, and converges the fastest among all algorithms.

Training Efficiency: In this experiment, we study the
test accuracy versus time during the training of a DNN
model with federated learning. Fig. 4 shown the results of
training different models on different datasets. It is shown
that FedFusion trains much faster than the baseline
algorithms, and it reaches higher accuracy in a shorter
period.

Visualization of Data Distribution: To intuitively illus-
trate how well the proposed FedFusion can approximate
the original data distribution, we visualize the results in
Fig. 5. Firstly, we plot the original distribution by projecting
the data samples of the full dataset from all clients to
a 2D plane with t-SNE [42] as shown in Fig. 5(a) and
Fig. 5(c). Then, we apply the proposed algorithm to infer
the parameters of the distribution fusion model, based on
which we generate the same number of synthetic data
samples as the original dataset. The synthetic data are
further projected to a 2D plane with t-SNE as shown in
Fig. 5(b) and Fig. 5(d) for comparison. According to
the figure, the inferred distribution looks very close to the
original distribution, which implies that the federated server

8080

can well approximate the global distribution parameters
without accessing to local data.

Bias of Model Parameters: To show the power of
the proposed VAE method for parameter optimization, we
calculate the mean absolute error (MAE) of the statistical
parameters (µ̂k, σ̂k, β̂k, γ̂k) compared to a centrally-
trained model based on global dataset, and the results
are illustrated in Fig. 6(a) and Fig. 6(b). It is shown
that FedFusion has a much lower bias in the statistical
parameters than that of the other algorithms, which means
that FedFusion provides a better approximation to the
global data distribution.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

FedFusion
FedMA
FedAvg

FedProx
Fed-GN

(a) ResNet18 on CIFAR-10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

FedFusion
FedMA
FedAvg

FedProx
Fed-GN

(b) BiLSTM on Sent140

Figure 6. Comparison of parameter bias.

Global Model Accuracy: In this experiment, we
compare the global model accuracy of different federated
parameter aggregation algorithms after training to converge.
For thorough comparison, we include 4 clustered and
personalized FL algorithms FeSEM [46], IFCA [7],
FedCluster [2], and FedGroup [6] as additional baselines.
Since clustered and personalized FL methods output
multiple models, we show the average results of all their
output models. We repeat each experiment for 20 rounds
and show the average performance in Table 1. Comparing
the global model accuracy of different federated learning
methods, FedFusion significantly outperforms the other
algorithms for all DNN models. It outperforms FedMA
by 7.83%, 5.79%, and 3.27% for accuracy in ResNet18,
DenseNet121, and MobileNetV2 respectively on CIFAR-
10. It achieves 2.14% improvement in LeNet on F-
MNIST; 0.37% improvement in LeNet on MNIST; and
6.65% improvement in BiLSTM on Sent140 accordingly.
Compared to FedAvg, the performance improvement of
FedFusion is significant, which achieves up to 12.59%
higher in DenseNet121 on CIFAR-10. In comparison
to clustered/personalized FL, FedFusion outperforms
the state-of-the-art method FedGroup by 6.88%, 1.84%,
1.12%, and 3.90% on the 4 datasets. In summary,
FedFusion achieves the highest accuracy among all
compared algorithms, which shows the superiority of
federated model aggregation with the inference of the
proposed global model distribution fusion.

0 0.5 1.0

0.55

0.65

0.75

0.85

Te
st

 A
cc

ur
ac

y

FedFusion
FedMA
FedAvg
FedProx
Fed-GN

Figure 7. Test accuracy with
different heterogeneity η
(ResNet18 on CIFAR-10).

20 50 100
Clients

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

FedFusion
FedMA
FedAvg
FedProx
Fed-GN

Figure 8. Test accuracy with
different number of clients
(ResNet18 on CIFAR-10).

Hyperparameter Analysis: We further analyze the
influence of two hyperparameters: the heterogeneity of
local datasets and the number of clients involved in
federated learning.

The heterogeneity of local datasets is represented by η,
the probability that a client tends to sample from a particular
class. The more η approaches to 1, the more heterogeneous
the local datasets are. Fig. 7 shows the test accuracy
under different levels of heterogeneity. As η increases,
the test accuracy of all models decreases. FedFusion
yields the highest test accuracy and slowest performance
drop among all compared algorithms, showing more robust
against η, i.e., the degree of heterogeneity under non-IID
data partition.

Fig. 8 compares the test accuracy of the global model
for a different numbers of involved clients. When the
number of clients increases from 20 to 100, the accuracy
of FedFusion decreases much slower than that of the
baselines, and it achieves the highest test accuracy among
all compared federated learning algorithms in all cases.

6. Conclusion
This paper proposed a novel data-agnostic distribution

fusion method called FedFusion to optimize federated
learning with data heterogeneity. In the proposed method,
the server aggregated the local models by allocating the
clients’ data distributions into several virtual distribution
components with different fusion weights. The optimal
parameters of the distribution fusion model were derived by
a variational autoencoder (VAE) method. Extensive exper-
iments showed that FedFusion significantly outperforms
the state-of-the-art on a variety of scenarios.

Acknowledgments
This work was partially supported by the Natural Science

Foundation of Jiangsu Province (Grant No. BK20222003),
the National Natural Science Foundation of China (Grant
Nos. 61972196, 61832008, 61832005), the Collaborative
Innovation Center of Novel Software Technology and
Industrialization, and the Sino-German Institutes of Social
Computing.

8081

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew

Mattina, Paul Whatmough, and Venkatesh Saligrama.
Federated learning based on dynamic regularization. In
ICLR, 2021. 2

[2] Cheng Chen, Ziyi Chen, Yi Zhou, and Bhavya Kailkhura.
Fedcluster: Boosting the convergence of federated learning
via cluster-cycling. In Big Data, pages 5017–5026, 2020. 1,
3, 8

[3] Tianyi Chen, Georgios Giannakis, Tao Sun, and Wotao Yin.
Lag: Lazily aggregated gradient for communication-efficient
distributed learning. NIPS, pages 5050–5060, 2018. 1, 2

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society, Series B, 39(1):1–
38, 1977. 5

[5] Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu,
Yujuan Tan, and Liang Liang. Self-balancing federated
learning with global imbalanced data in mobile systems.
IEEE Transactions on Parallel and Distributed Systems,
pages 59–71, 2021. 1, 3

[6] Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang
Liang, Xianzhang Chen, and Yujuan Tan. Fedgroup:
Ternary cosine similarity-based clustered federated learning
framework toward high accuracy in heterogeneous data.
CoRR, abs/2010.06870, 2020. 1, 3, 8

[7] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan
Ramchandran. An efficient framework for clustered
federated learning. In NeurIPS, 2020. 1, 3, 8

[8] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment
classification using distant supervision, 2009. 7

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. CVPR, pages
770–778, 2016. 6

[10] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B.
Gibbons. The Non-IID data quagmire of decentralized
machine learning. ICML, 2020. 2, 3, 7

[11] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely connected convolutional
networks. In CVPR, 2017. 6

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:
accelerating deep network training by reducing internal
covariate shift. ICML, 1:448–456, 2015. 4

[13] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. In ICLR, 2017. 5

[14] Jinlong Ji, Xuhui Chen, Qianlong Wang, Lixing Yu, and
Pan Li. Learning to learn gradient aggregation by gradient
descent. In IJCAI, pages 2614–2620, 2019. 2

[15] James M. Joyce. Kullback-leibler divergence. International
Encyclopedia of Statistical Science, 2011. 5

[16] P. Kairouz, H. McMahan, B. Avent, Aurélien Bellet, Mehdi
Bennis, A. Bhagoji, Keith Bonawitz, and et al. Advances and
open problems in federated learning. ArXiv, abs/1912.04977,
2019. 1

[17] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
Making SPDZ great again. In EUROCRYPT, volume 10822,
pages 158–189, 2018. 1

[18] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S
Talwalkar. Adaptive gradient-based meta-learning methods.
In NeurIPS, volume 32, 2019. 2, 3

[19] Diederik Kingma and Max Welling. Auto-encoding
variational bayes. In ICLR, 2014. 4, 5, 6

[20] Jakub Konečnỳ, H. Brendan McMahan, and Daniel Ramage.
Federated optimization: Distributed optimization beyond
the datacenter. NIPS Optimization for Machine Learning
Workshop, 2015. 2

[21] Jakub Konecný, H. Brendan McMahan, Daniel Ramage,
and Peter Richtárik. Federated optimization: Distributed
machine learning for on-device intelligence. ArXiv,
abs/1610.02527, 2016. 1

[22] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 7

[23] Ponnambalam Kumaraswamy. A generalized probability
density function for double-bounded random processes.
Journal of Hydrology,, 1980. 5

[24] Yann Lecun, LÃ©on Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, pages 2278–2324,
1998. 6

[25] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST
handwritten digit database. ATT Labs, 2, 2010. 7

[26] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar
Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. In MLSys, pages
429–450. 2020. 1, 2, 7

[27] Tian Li, Maziar Sanjabi, and Virginia Smith. Fair resource
allocation in federated learning. In ICLR, 2020. 2

[28] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp,
and Qi Dou. FedBN: Federated learning on non-IID features
via local batch normalization. In ICLR, 2021. 1, 2

[29] Wei Yang Lim, Nguyen Cong Luong, D. Hoang, Y. Jiao,
Ying-Chang Liang, Qiang Yang, D. Niyato, and Chunyan
Miao. Federated learning in mobile edge networks: A
comprehensive survey. IEEE Communications Surveys &
Tutorials, 22:2031–2063, 2020. 1

[30] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
AISTATS, 54:1273–1282, 2017. 1, 2, 3, 4, 7

[31] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh.
Agnostic federated learning. In ICML, volume 97, pages
4615–4625, 2019. 1

[32] Tomoya Murata and Taiji Suzuki. Bias-variance reduced
local sgd for less heterogeneous federated learning. In
Proceedings of the 38th International Conference on
Machine Learning, pages 7872–7881, 2021. 1, 3

[33] Eric T. Nalisnick and Padhraic Smyth. Stick-breaking
variational autoencoders. In ICLR, 2017. 5

[34] Yifan Niu and Weihong Deng. Federated learning for face
recognition with gradient correction. In AAAI 2022, pages
1999–2007, 2022. 2, 3

[35] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko.
Federated adversarial domain adaptation. In ICLR, 2020. 2,
3

8082

[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L. Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018. 6

[37] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik.
Personalized federated learning using hypernetworks. In
Proceedings of the 38th International Conference on
Machine Learning, pages 9489–9502, 2021. 2, 3

[38] V. Smith, S. Forte, C. Ma, M. Takac, M. I. Jordan, and M.
Jaggi. Cocoa: A general framework for communication-
efficient distributed optimization. Journal of Machine
Learning Research, 18(230):1–47, 2018. 1

[39] Shizhao Sun, Wei Chen, Jiang Bian, Xiaoguang Liu, and
Tie-Yan Liu. Ensemble-compression: A new method for
parallel training of deep neural networks. In ECML-KDD,
pages 187–202, 2017. 1

[40] Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xin He,
Bo Han, and Xiaowen Chu. Virtual homogeneity learning:
Defending against data heterogeneity in federated learning.
In Proceedings of the 39th International Conference on
Machine Learning, pages 21111–21132, 2022. 3

[41] Yee Whye Teh, Dilan Grür, and Zoubin Ghahramani. Stick-
breaking construction for the indian buffet process. In
AISTATS, volume 2, pages 556–563, San Juan, Puerto Rico,
21–24 Mar 2007. 4

[42] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-SNE. Journal of Machine Learning Research,
9:2579–2605, 2008. 7

[43] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris
Papailiopoulos, and Yasaman Khazaeni. Federated learning
with matched averaging. In ICLR, 2020. 1, 2, 7

[44] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
MNIST: a novel image dataset for benchmarking machine
learning algorithms. 2017. 7

[45] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno:
Distributed stochastic gradient descent with suspicion-based
fault-tolerance. In ICML, volume 97, pages 6893–6901,
2019. 1

[46] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi
Wang, and Jing Jiang. Multi-center federated learning.
CoRR, abs/2005.01026, 2020. 1, 3, 8

[47] Haibo Yang, Minghong Fang, and Jia Liu. Achieving
linear speedup with partial worker participation in non-IID
federated learning. In ICLR, 2021. 2

[48] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and V. Chandra. Federated learning with Non-IID
data. ArXiv, abs/1806.00582, 2018. 1, 2, 3

[49] H. Zhu and Y. Jin. Multi-objective evolutionary federated
learning. IEEE Transactions on Neural Networks and
Learning Systems, 31(4):1310–1322, 2020. 1

8083

