
Modular Memorability: Tiered Representations for Video Memorability
Prediction
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Abstract

The question of how to best estimate the memorability of
visual content is currently a source of debate in the mem-
orability community. In this paper, we propose to explore
how different key properties of images and videos affect
their consolidation into memory. We analyze the impact
of several features and develop a model that emulates the
most important parts of a proposed “pathway to memory”:
a simple but effective way of representing the different hur-
dles that new visual content needs to surpass to stay in mem-
ory. This framework leads to the construction of our M3-S
model, a novel memorability network that processes input
videos in a modular fashion. Each module of the network
emulates one of the four key steps of the pathway to mem-
ory: raw encoding, scene understanding, event understand-
ing and memory consolidation. We find that the different
representations learned by our modules are non-trivial and
substantially different from each other. Additionally, we ob-
serve that certain representations tend to perform better at
the task of memorability prediction than others, and we in-
troduce an in-depth ablation study to support our results.
Our proposed approach surpasses the state of the art on
the two largest video memorability datasets and opens the
door to new applications in the field. Our code is available
at https://github.com/tekal-ai/modular-
memorability .

1. Introduction
The human brain is optimized to remember important

content and forget irrelevant information. Research has
shown that in the world of visual imagery, the brain’s recall
ability is influenced by the content itself: certain images and
videos tend to stay in memory for longer, no matter the au-
dience it is shown to or the context it appears in [3, 9]. The
property of visual content that makes it more or less mem-
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Figure 1. Our proposed modular framework. Our framework
predicts memorability by extracting low-level, mid-level and high-
level memorability-aware representations. These representations
are compared to a predefined visual context to extract features
measuring similarity with this given context. Our M3-S model
utilizes four modules to obtain these representations: a low-level
understanding module composed of traditional feature extractors,
a mid-level understanding module focused on scene and object
properties, a high-level understanding module that extracts tem-
poral patterns and actions, and a contextual similarity module that
computes features through clustering. The feature vectors pro-
duced by the modules are fused and fed to a regression module
to produce memorability scores.

orable is referred to as memorability, and current research
studies this phenomenon as an intrinsic property. Memo-
rability has been shown to be highly consistent across ob-
servers [10,13,28,40], uncorrelated with aesthetics [28,29]
and highly unintuitive [29]. Some studies are proposing that
it might be a proxy to the utility of the information carried
by visual content, as measured by the human brain [9].

Given its consistency, many previous works have tried
to develop systems to predict memorability scores from vi-
sual media directly. Some developments attempt to use
low-level image features and specific semantic information
[29, 30], while more recent work has focused on deep neu-
ral networks, leveraging their ability to learn rich represen-
tations through regressing ground-truth scores directly from
the pixel-level visual input [31]. Here, we argue that current
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DNN approaches are trying to solve the problem with black-
box predictors that do not leverage the underlying structure
governing memorability. Indeed, previous work [42] shows
that our brain processes visual stimuli by first aggregating
low level patterns (early visual areas V1 and V2), then un-
derstanding the contents of the scene (higher visual areas
V3A, V4v, V7), and finally integrating the meaning of the
event being witnessed and linking with previous knowledge
(prefrontal cortex). Although some of the existing systems
work on different dimensions of the input (optical flow, raw
pixels, text descriptions), they tend to overlook predictive
patterns that can be acquired through a specific modeling of
low-level, mid-level and high-level representations. Specif-
ically, it has been shown that memorability is sensitive to
a set of specific properties [29] (that we define and expand
on in this work), such as clutter, camera movement, distinc-
tiveness of objects, and other semantic and cognitive dimen-
sions. Some of these properties are considered low-level:
they correspond to simple transformations of the raw pixel
input, photometric properties, clarity of image, or proper-
ties of the capturing process (blurriness, camera movement,
etc). Other properties can be considered mid-level, such as
the composition of the scene, the type of objects in it, the
general setting, etc. Finally, high-level properties are usu-
ally related to the action depicted, emotion transmitted by
the content, or general goals of the actors.

We propose a new memorability framework that explic-
itly models these three categories by instantiating modules
that are specifically designed to extract representations that
are relevant for memorability, and representative of each
category. We call these representations tiered, as each rep-
resentation captures information from a different tier (low,
mid and high) of memorability properties. Our modular
memorability model additionally introduces a fourth mod-
ule that computes representations capturing the similarity
of a given input with its most likely visual context: mod-
eling this final property is key to understand contextual ef-
fects on memorability. To define these modules, we per-
form an in-depth analysis over the factors that influence
memorability. We show that each of these modules con-
tribute to memorability in their own way, that the repre-
sentations they yield are more interpretable than black box
counterparts, and that combining the information from these
representations yields competitive models on the two main
datasets for video memorability: VideoMem [13] and Me-
mento10k [40].
To summarize, our key contributions are:

1. We introduce a comprehensive analysis of the factors
that influence memorability, leading to a categoriza-
tion in tiers that we leverage to propose a new modular
framework to learn representations which capture the
essence of each tier;

2. We propose a novel memorability model based on

these modules, M3-S, that combines information from
different tiers, contrasts it with contextual data, and
uses it to perform competitively on VideoMem and
Memento10k;

3. We perform an in-depth ablation study of the model to
obtain key insights about each tier of representations,
such as their potential for interpretability, their impact
on model performance and the feature representations
they learn.

2. Related Work
Image memorability. The field of memorability started
with the discovery that intrinsic image properties directly
influence recall probabilities on randomized pools of sub-
jects [29]. Importantly, the memorability metric has been
shown to be highly consistent across observers [3,9,29,32],
which makes it predictable: Khosla et al. [31] collected a
large scale image memorability dataset (LaMem) and devel-
oped neural networks that can predict memorability scores
from pixel inputs; Bylinskii et al. [10] found that some ex-
trinsic factors such as context can influence memorability,
and built models to predict that effect; [41] introduced mod-
els that achieve close to human performance on the LaMem
dataset. Several other works have studied specific aspects
of memorability, such as the memorability of faces [4], ob-
jects [18], scenes [36] or specific categories [25]. Although
we focus on video memorability prediction, the datasets and
concepts in this subarea are relevant to our framework.

Video memorability. Following the success of image
memorability, several works have worked on advancing the
field of video memorability prediction. Large datasets were
recently collected by the community [13, 40], and models
were introduced in these works that take into account mo-
tion and visual appearance to make their predictions. The
MediaEval competition [11] has additionally introduced
several new works that explore this field [15, 17, 22, 46].
Others have worked to connect memorability to brain imag-
ing: Han et al. [27] proposes video memorability mod-
els that use fMRI features to make predictions. Finally,
Shekhar et al. [43] introduce video memorability models
that can estimate sub-shot memorability and perform com-
petitively in video summarization tasks. Importantly, all of
these methods utilize black box networks that don’t explic-
itly separate low, mid and high-level visual features, while
our model does this by design.

3. Key properties impacting memorability
3.1. Key properties

In this section, we introduce an in-depth analysis and a
categorization in tiers of the factors that influence memora-
bility, based on previous work and our own analysis. The
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low, mid and high-level factors detailed below are purely
intrinsic to an image or a video, whereas the contextual fac-
tors depend on the external context of the visual content and
involve the notion of distinctiveness between videos.

Low-level features. Color. Mean hue and saturation have
been shown to be weakly correlated to uncorrelated to mem-
orability [28, 29, 32]. However, brightness and contrast —
defined as the mean and standard deviation of the value
component of HSV — do have a weak positive correlation
with memorability [18]. This observation is supported by
the work of Goetschalckx et al. [23], whose GAN model
tend to produce more memorable images by increasing their
brightness and colorfulness.
Motion. Newman et al. [40] observed that static videos
often have a low memorability, and found that leverag-
ing motion information such as optical flow allows to re-
fine the memorability predictions of frame-based models.
Basavaraju et al. [5, 7] as well as Han et al. [27] use ex-
plicit motion cues along with input images to enhance the
performance of their model. Extreme motion however, for
instance when the camera motion is uncontrollably high,
can make the video memorability drop drastically, except if
a very specific element can be attended or is clearly identi-
fiable in the center of focus.

Mid-level features. Scene composition. Previous work
has shown that scene composition and complexity encom-
pass some memorability cues. Whereas Han et al. [27]
used the number of regions or the amount of contours in
the video as their model features, Dubey et al. [18] showed
that the memorability of a scene drops when the number
of objects in it goes up, and that this memorability simul-
taneously becomes more difficult to predict. Goetschalckx
et al. [24] characterized “good visual organizations” as the
being both easily processed and robust against transforma-
tion and found that these two metrics correlate moderately
with memorability.
Saliency. Multiple studies explored the predictive capacity
of saliency over memorability [2, 18, 27, 31, 43]. Khosla et
al. [31] demonstrated that scene involving a specific point
of focus are more easily remembered; Dubey et al. [18]
showed that the number of fixation counts on an object is ro-
bustely correlated with that object’s memorability, and that
saliency is a good predictor of object memorability in sim-
ple contexts with only few objects. The AMNet model [21]
leverages these findings and uses a soft attention mecha-
nism to refine its memorability score prediction three times,
gaining performance while also confirming through visual-
izations that images with concentrated regions of interest
tend to be more memorable than those whose visual content
is spread out across the frame.
Object semantics. Several studies demonstrated the impor-

tance of object semantics in the context of visual memo-
rability prediction [18, 25, 28, 29, 32, 41, 44]. In particu-
lar, through the study of images whose objects had been
segmented and annotated beforehand, Dubey et al. [18]
observed that “image memorability is greatly affected by
the memorability of its most memorable object”. Human-
related objects, such as faces or body parts, generally ac-
count for very memorable scenes, as opposed to landscapes
and inanimate items. The essential predictive capacity of
object semantics led to their integration to multiple compet-
itive memorability prediction models [21, 39–41, 44].

High-level features. Actions. Actions and other high-
level scene semantics play an very important role in steering
the memorability of a video. Early work pointed this im-
portance out along with that of the object semantics in their
analyses [28, 29, 32], and the more recent work of Perera et
al. [41] showed that scene classification cues are even more
predictive than object classification cues regarding memora-
bility — the better option being to use both at the same time.
Here also, human-related scenes are way more memorable:
actions taking place in interiors have much higher memo-
rability scores than landscapes and natural scenes [29, 41].
Recent video memorability models often involve a feature
extractor or a branch that focuses on unmasking the high-
level scene semantics of the input videos, for instance using
image or video captioning [12, 14, 40, 43].
Emotions. Emotionally salient objects and scenes increase
memorability [9, 31], but some emotions are more mem-
orable than others. For instance, images evoking disgust
or amusement are statistically more memorable that images
showing most other emotions; and overall, negative emo-
tions such as anger and fear tend to be more memorable
than those portraying positive ones [9, 31]. This results are
supported by the work of Goetschalckx et al. [23], where
emotion-evoking portraits tend to be more memorable than
the others. To predict memorability, several recent work
used emotion cues, either categorical [6] or textual [14].
Uncorrelated features. It is also important to note the high-
level features that do not correlate well with visual mem-
orability, even though they intuitively seem to. For in-
stance, despite that memorability is highly consistent across
observers, people are bad at predicting if an image will
be memorable or not. Even worse, human estimation of
memorability is negatively correlated with actual memo-
rability [26, 28]. Moreover, the aesthetics of images and
their interestingness are not correlated with memorability.
Interestingly, aesthetics does correlate well with assumed
memorability, as observers tend to have the wrong intuition
that beautiful and interesting images will produce a lasting
memory [9, 28, 31]. Whether this extends to videos is, to
our knowledge, yet to be shown.
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Contextual features. Videos that stand out from the rest
of the corpus (the set of images or videos from which the
memorability experimental sequence is sampled) and there-
fore that differ from the observer’s expectations are usu-
ally remembered better [35]. Additionally, when compar-
ing the memorability of labelled scenes or objects, an item
that belongs to an unusual category or whose attributes have
a low frequency in the corpus will have a higher memora-
bility [10, 28, 33, 35]. Lukavský and Děchtěrenko [35] also
showed that computing these similarity measures on deep
semantic features tend to be more predictive of memora-
bility than using low-level descriptors, although these two
approaches are actually quite complementary. Goetschal-
ckx et al. [24] compared several distinctiveness metrics, in-
cluding CNN-likelihood [10], sparseness [35] and asking
participants to estimate the distinctiveness of images them-
selves, showing that all of these metrics do correlate well
with memorability.

3.2. Predictive capacity of low-level descriptors

We first conduct a study of the predictive capacity of
low-level descriptors of a video. These low-level descrip-
tors are (i) contrast, defined as the standard deviation of the
gray-valued representation of an image; (ii) brightness, de-
fined as the mean of the hue channel of the HSV represen-
tation of an image; (iii) blurriness, as defined in [34]; (iv)
Histograms of Oriented Gradients (HOG) [16], reduced to
10 components using PCA in order to mitigate overfitting.
These image descriptors are computed on every frame of the
video and averaged over the time axis to produce a unique
scalar or vector feature. We also study: (v) the mean optical
flow of the video, computed using OpenCV’s TV-L1 imple-
mentation, averaged over each frame and over time; and
(vi) the size of the video in bytes when resized to a shape of
256× 256 and compressed using the H.264 standard.

We train a simple MLP with one 64-dimensional
layer and a sigmoid activation on Memento10k [40] and
VideoMem [13] to test the predictive capacity of each of
the aforementioned features separately, once centered and
reduced. As a baseline for our study, we use a constant
model whose output is equal to the mean of the training and
testing dataset (approximately 0.801 for Memento10k and
0.859 for VideoMem). Numerical results can be found in
Tab. 1, and additional results can be seen in the supplemen-
tal.

The best low-level predictor is, unsurprisingly, HOG: it
is the most advanced low level predictor in the set. On
Memento10k, mean optical flow performs quite well, but
not so much on VideoMem, possibly due to its observed
lack of motion. On the other hand, the size of the com-
pressed videos has a much stronger predictive capacity for
VideoMem than for Memento10k. This could be connected
to the more skewed distribution of movement in VideoMem,

Table 1. Predictive capacity of raw descriptors. We report the
Spearman Rank Correlation ρ and the Mean Square Error (MSE)
value between the ground truth memorability scores and the pre-
dictions of the MLP, that both give insights on the predictive ca-
pacity of the features.

Memento10k [40] VideoMem [13]

Descriptor ρ ↑ MSE ↓ ρ ↑ MSE ↓
All 0.383 0.0096 0.334 0.0058
HOG 0.293 0.0103 0.311 0.0059
Mean OF 0.222 0.0109 0.116 0.0064
Contrast 0.112 0.0112 0.025 0.0065
Brightness 0.104 0.0113 0.098 0.0065
Size (bytes) 0.087 0.0113 0.147 0.0064
Blurriness – 0.138 0.0114 0.136 0.0065
Baseline – 0.0114 – 0.0145

as the H.264 compression standard removes temporal re-
dundancies. The combination of all factors unsurprisingly
ends at the top position for both datasets, as feature fusion
has been shown to improve empirical results in the memo-
rability prediction literature.

4. Memorability modules and the pathway to
memorability

We hypothesize that memorability prediction can im-
prove if distinct modules could estimate the prevalence of
each of the features defined in Section 3 individually. Ad-
ditionally, the separation in low, mid, high and contextual
features lends itself to the construction of a framework re-
lating feature “tiers” to the final memorability of a visual
input. We propose the concept of “pathway to memora-
bility”, a conceptual way of representing the hurdles that a
visual input must overcome to achieve high memorability.
We make the assumption that memorability is modulated
by the presence and type of features exhibited by the visual
stimuli, and that the modulation occurs through four feature
encoders, flow, fmid, fhigh and g, in the following way:

r = flow(x)⊕ fmid(x)⊕ fhigh(x)

m = h(g(r, c)⊕ r) ,

where m is memorability, x is the visual stimuli, ⊕ is con-
catenation, g is the function that estimates contextual fea-
tures, c is the context for x, flow, fmid, fhigh are the functions
that estimate the prevalence of low, mid and high-level fea-
tures respectively, and h is the function that predicts mem-
orability from concatenated features.

This representation allows us to think of memorability
prediction as a combination of different factors, where each
factor can be modeled individually. Based on this, we pro-
pose a new model architecture for video memorability pre-
diction that instantiates specific networks for each function.
We call this architecture Modular Memorability Model with
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Similarity (M3-S): a model where each module (low, high
and mid) contributes to the prediction, and similarity esti-
mations connecting each module to a broader context are
computed to take context into account.

5. M3-S: Modular Memorability Model with
Similarity

We first propose the M3 model, a model that instantiates
low, mid and high-level networks that compute representa-
tions for a given input, fuses them, and performs a regres-
sion to obtain a memorability score. The M3-S model cor-
responds to adding a contextual similarity module on top of
this backbone (Fig. 1). The module takes one or more of the
outputs of the previous modules, and yields a fourth feature
vector, which is fused with the three others and fed to the
memorability regression module.

This conceptual architecture can be instantiated with any
set of modules that satisfy the concepts evoked in Sec. 4.
In this section, we introduce a simple way of instantiating
it using both perceptual and semantic descriptors — with
an emphasis on the latter, as it has been shown that deep
features tend to be more efficient than perceptual ones to
predict visual memory performance [9, 18, 31, 43].

Modeling low-level video understanding. In order to
target the main low-level factors of memorability, we ex-
plore the following set of image and video descriptors, de-
fined and studied individually in Sec. 3.2: (i) contrast, (ii)
brightness, (iii) blurriness, (iv) HOG reduced to 10 com-
ponents. These image descriptors are computed on every
frame of the videos and averaged over the time axis to pro-
duce a unique scalar or vector feature. We found that tak-
ing into account the temporal standard deviation did not im-
prove the prediction capacity of our models. We also use:
(v) mean optical flow of the video, and (vi) the size of the
video in bytes when compressed using the H.264 standard.
The output of the module is then the fusion of the outputs
of the aforementioned descriptors. Although we showed
in Sec. 3.2 that some features have low predictive scores
when taken individually, performing a leave-one-out abla-
tion study on their grouping gives evidence on the fact that
we need them all to perform well on multiple datasets (see
supplemental). We call this module Raw perception, as it
estimates the contribution of the low-level perceptual fac-
tors to memorability.

Modeling mid-level video understanding. We choose
a semantic segmentation network for the mid-level mod-
ule. We use HRNetV2 [45], a recently proposed network
that retains high resolution representations throughout the
model. As a decoder for HRNetV2, we use a simple aver-
age pooling that reduces the output vector to a dimension

(B × 720× 1× 1), where B is the batch size. We call this
module Scene parsing as it detects objects and their distri-
bution in the scene.

Modeling high-level video understanding. To model a
high-level of understanding of the videos, we use the action
recognition ip-CSN-152 network [47], whose ResNet back-
bone is stopped after the average pooling in order to yield
a (B × 2048 × 1 × 1) feature vector. We call this module
Event understanding.

Modeling contextual similarity. We perform the contex-
tual similarity measure on both scene parsing and event un-
derstanding modules but not on the raw perception one (see
Fig. 2), as it has been shown that semantic similarity is more
predictive of memorability than perceptual similarity [10].
As shown on Fig. 6 and discussed in Sec. 6, these two
learned representations are substantially different from each
other and similarity in these feature spaces is very close to
human semantic similarity, justifying the use of a similarity
module that operates on them. As a means to evaluate how
unusual a sample video is, we propose to cluster the feature
space and utilize whether the video belongs to a cluster or
not as an distinctiveness indicator.

We use the DBSCAN algorithm [19], as it relies on the
density in the feature space, indicator of the commonness
of a video sample in our dataset. For both scene and event
modules separately, we reduce the dimensionality of the
output features to 10 using PCA, then to 3 using t-SNE, be-
fore clustering the training output features. We then train a
simple multi-layer perceptron (MLP) to perform label clas-
sification over the validation features, in order to obtain a
label for each sample in the dataset.

In addition to using DBSCAN, we also explore a large
number of similarity metrics, such as fractional distance [1],
euclidean distance, cosine similarity and Kernel Density Es-
timation (KDE). We find that while some of these metrics
yield distinctiveness values that can be reasonable predic-
tors of memorability (distances from a feature to reference
points in feature space allow to pinpoint the location of the
feature), only DBSCAN significantly improves the perfor-
mance of the M3 model. A summary of the results is pro-
vided in Tab. 2, and the full study can be found in the sup-
plemental.

Predicting memorability from the features. To perform
the memorability regression, we use a simple multi-layer
perceptron (MLP) with two fully connected layers of size
512 and 64, using two Mish [37] and one sigmoid activation
functions.

The detailed architecture of the instantiated M3-S model
is depicted in Fig. 2. Additional details on the implementa-
tion can be found in the supplemental.
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Figure 2. Detailed architecture of
the M3-S model. The low-level
descriptors used for the raw per-
ception module are HOG, contrast,
brightness, blurriness, mean optical
flow, and video size in bytes. ∗For
a model trained on Memento10k.
The number of similarity features,
i.e. the number of clusters given by
the DBSCAN clustering, depends
on the dataset used.
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Table 2. Predictive capacity of similarity measures on the Me-
mento10k dataset. We trained a simple MLP on 15 epochs to pre-
dict memorability based on the similarity features only. We lever-
age most similarity metrics with multiple different techniques and
we report the results in this table. We define the contribution ∆ρ
of a similarity measure s to the M3-S model as the difference be-
tween the Spearman score of the model using s and the M3 model,
with no similarity module. For more details on the results and the
techniques used, see the supplement.

Metric ρ ↑ MSE ↓ ∆ρ ↑
Fractional distance 0.491 0.00919 −0.0138
Euclidean distance 0.514 0.00852 −0.0021
Cosine similarity 0.321 0.01033 +0.0008
KDE 0.449 0.00928 −0.0025
DBSCAN clusters 0.340 0.01026 +0.0053

6. Experiments and results
We train our model and evaluate its performance on the

two on the two main datasets for video memorability, Me-
mento10k [40] and VideoMem [13]. Memento10k consists
in 10,000 3-seconds “in-the-wild” clips taken from the In-
ternet, encompassing a lot of variability in motion inten-
sity and video quality, with additional captions that describe
the content of the scenes; VideoMem consists in 10,000 7-
second clips taken from professional video footage. Both
datasets span a large semantic content diversity.

Previous work has showed that retraining is often un-
necessary when it comes to visual memorability prediction,
and that this approach was more likely to suffer from over-
fitting to the training set [41]. For this reason, we use pre-
trained weights on the scene and event modules, and only
train the memorability regression MLP. We use a HRNetV2
pretrained on ImageNet [38], a CSN pretrained on IG-65M
and fine-tuned on Kinetics-400 [20], and we use the Me-
mento10k dataset [40] to train and evaluate our memorabil-
ity predictor. We train our M3-S models for 20 epochs with
a MSE loss and Adam optimizer, a weight decay of 10−5, a
batch size of 32, and a learning rate of 10−3 that decays by
a factor 5 every 5 epochs. Because the most difficult sam-

GT: 0.863

Memorable semantics, non-memorable motion, low distinctiveness.
GT: 0.822

Memorable motion, non-memorable event, low distinctiveness.

Figure 3. Our M3-S model uses each level of the tiered repre-
sentation to produce precise memorability predictions. Here, we
consider the predictions of the four modules alone (raw, scene,
event, similarity) to separate their respective contributions, and
compare them to the M3-S prediction. We report the deviation
of these scores from ground truth. Top: The scene and event mod-
ules detect highly memorable semantics, like a human, but the raw
and similarity modules detect a static and common clip and mod-
erate these predictions. Bottom: Action semantics indicate a low-
memorability video clip, while the raw perception module detects
memorable dynamic patterns.

ples are often in the tails of the ground truth memorability
distribution, adding a penalization p(m) in the loss function
accounting for the distance of a ground truth memorability
score m to the center of the distribution usually helps reach-
ing a better performance. We approximate this by a simple
penalization of the form p(m) = α|m − m̄|k, where m̄ is
the average memorability of the dataset and α, k > 0 are
parameters that depend on the dataset. The loss function
takes the form:

L1(m, m̂) =
[
1 + p(m)

]
LMSE(m, m̂),

and we choose α = 2 and k = 4 on Memento10k. We
also train and test our model on the VideoMem dataset [13],
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0.967GT:
Pred: 0.966

(b)0.891GT:
Pred: 0.891

(a) 0.816GT:
Pred: 0.814

(c)

0.505GT:
Pred: 0.727

(d) 0.655GT:
Pred: 0.842

(e) 0.902GT:
Pred: 0.702

(f)

Worst predictions

Best predictions

Figure 4. Best and worst predictions of M3-S. Our model per-
forms very well on scenes that involve a specific action (a) or a
specific object (b) and on scenes whose semantic context is pecu-
liar (c). On the contrary, it can fail when given a video with strong
color or scene variations (d), a scene that contains a specific ac-
tion but that is blurry or dark (e), or a scene in which the uncertain
outcome appeals to the viewer’s anticipation (f).

0.899GT:
Pred: 0.610

(d) 0.918GT:
Pred: 0.718

(f)0.990GT:
Pred: 0.893

(e)

0.511GT:
Pred: 0.746

(b)0.623GT:
Pred: 0.798

(a) 0.514GT:
Pred: 0.725

(c)

Under-predictions

Over-predictions

Figure 5. Under and over-predictions of M3-S. Our model over-
estimates the memorability of semantically bland scenes with hu-
mans (a), of very dynamic scenes with no clear action (b), and
of scenes that contains memorable elements, such as humans or
faces, but that are very shaky (c), cluttered or blurry. Conversely,
it underestimates the memorability of scenes that are emotionally
salient — scary (d), funny (e) — and of bland scenes containing a
semantic content that is hard to grasp (f).

for which we use a combination of the MSE loss and of
the Spearman Rank Correlation loss LSpearman proposed by
Blondel et al. [8] that depends on the current training epoch
ep ∈ {0, . . . , Nep − 1} through the multiplicative factor
αep = ep

Nep−1 :

L2(m, m̂) = (1−αep)LMSE(m, m̂)+αepLSpearman(m, m̂).

To evaluate the performance of our model, we compare
against prior work in video memorability prediction. We
use the image memorability model MemNet [31] averaged
over 7 frames of the video, the best performing video mem-
orability models from Cohendet et al. [13], and the more

Table 3. Comparison to state-of-the-art on Memento10k and
VideoMem, on which our approach, M3-S, surpasses the state-
of-the-art in term of Spearman Rank Correlation ρ between the
ground truth and predicted memorability scores. ∗As reported
by [40]. †Without captions for fair comparison.

Spearman RC ρ ↑

Approach Memento10k VideoMem
MemNet baseline∗ [31] 0.485 0.425
Cohendet et al. (Semantic)∗ [13] 0.552 0.503
Cohendet et al. (ResNet3D)∗ [13] 0.574 0.508
SemanticMemNet† [40] 0.659 0.556
M3-S (ours) 0.670 0.563

recent work by Newman et al. [40]. We evaluate the mod-
els in term of Spearman Rank Correlation (RC), which is
a popular metric [13, 29, 31] as rankings of memorability
scores are more robust across experimental choices and ex-
ternal contexts. The results of our evaluations are in Tab. 3.
Additionally, Figs. 4 and 5 show some prediction examples
(best and worst cases as well as under and over predictions).

It is worth noting that the representations learned by our
scene parsing and event understanding modules are substan-
tially different from each other and that the similarity in the
feature space is very close to the human perceptual seman-
tic similarity. To demonstrate this, we perform t-SNE on
the features of each module (raw, HRNet, CSN) and dis-
play a portion of the resulting image (Fig. 6). This justifies
the use of a similarity module that operates on the feature
space of the scene and event understanding modules, which
is why we use the DBSCAN clustering algorithm. Details
on DBSCAN clusters can be found in the supplemental.

Furthermore, we observe that the tiered representation
allows each module to contribute to predicting a relevant
memorability score using its specific level of video com-
prehension, as shown in Fig. 3.

7. Ablation Studies

We provide an in-depth ablation study of our M3-S
model. The most significant study concerns the ablation of
the different modules of the M3-S module. Its results can be
found in Tab. 4 and the associated training curves are in the
supplemental. We evaluate the models in term of Spearman
Rank Correlation but also in term of Mean Square Error
(MSE) so that we consider performance on both rankings
and individual memorability values.

Out of the four modules of our M3-S architecture (raw,
scene, event and similarity), the event module is the most
crucial, and the importance of each module decreases with
the level of understanding of the video it provides. This sup-
ports the idea that the memorability of a video lies first in
its high-level semantics, and only then can low-level con-
siderations — such as color, shape or motion — separate
videos with the same semantics. For both datasets, the com-
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(a) Low-level (HOG only) (b) Mid-level (HRNet) (c) High-level (CSN)

Figure 6. t-SNE visualizations: each of our modules learns representations that are substantially different from each other. (a): The
raw perception module clusters clips based on shapes, colors, and motion. The t-SNE visualization of HOG features shows that video clips
sharing similar shape properties are gathered by the HOG descriptor (top of the figure). (b): The HRNet module show a higher level of
content understanding as it groups together clips with the same objects, even if they share different color and shape properties (e.g. vehicles,
middle-right of the figure) (c): The CSN module goes even further and gathers clips sharing the same action semantics (e.g. swimming,
bottom-right of the figure), even if they do not involve the same objects. See supplemental for parameters used to generate the figures.

Table 4. Ablation study of our M3-S model. We measure performance by computing the Spearman Rank Correlation ρ between the
ground truth and predicted memorability scores, as well as the Mean Square Error (MSE), on both Memento10k and VideoMem. For
each ablated version of M3-S, we also report the total number of features used by the MLP and its number of parameters. The number of
similarity features, i.e. the number of clusters given by the DBSCAN clustering, depends on the dataset used.

Memento10k [40] VideoMem [13]

Model ρ ↑ MSE ↓ Features Parameters ρ ↑ MSE ↓ Features Parameters

M3-S 0.6699 0.00621 3,635 1.89M 0.5626 0.00469 3,482 1.82M
M3-S without sim. 0.6303 0.00674 2,783 1.46M 0.5052 0.00476 2,630 1.38M
M3-S without raw 0.6249 0.00685 3,620 1.89M 0.4942 0.00483 3,467 1.81M
M3-S without scene 0.6139 0.00705 2,915 1.53M 0.4926 0.00489 2,762 1.45M
M3-S without event 0.5692 0.00779 1,587 0.85M 0.4433 0.00520 1,434 0.77M

Only event 0.5988 0.00726 2,048 1.08M 0.4757 0.00493 2,048 1.08M
Only scene 0.5295 0.00814 720 0.40M 0.4157 0.00525 720 0.40M
Only raw 0.3989 0.00950 15 0.04M 0.3321 0.00576 15 0.04M
Only sim. 0.3405 0.01027 852 0.47M 0.2267 0.00621 699 0.39M

bination of all modules gives the best performance, which
shows that each level of understanding of the video plays a
role in its overall memorability, and reinforces the relevance
of a tiered approach to the video memorability prediction
problem. Secondary ablation studies can be found in the
supplemental.

8. Conclusion
Our contributions. We introduced a new paradigm for
modeling memorability that instantiates separate modules
focusing on key aspects of memory consolidation. We hy-
pothesized that this modular formulation is competitive for
memorability prediction, and our M3-S model confirms this
hypothesis by surpassing the state of the art on two datasets.

Our ablation studies show how each module contributes to
memorability and shed light on the importance of a frag-
mented approach to this problem.

Limitations and future work. Video memorability predic-
tion remains an open problem; Fig. 4 shows cases where
our model fails to produce a good memorability score, of-
ten because of complex semantics, extreme pixel intensity
or extreme motion. We believe that there is still room for
understanding how to research each module, and that other
instantiations could improve performance. One interest-
ing possibility could be to overhaul the high-level module
through emotion prediction; the bottleneck here appears to
be the absence of competitive models and datasets for video
emotion prediction decoupled from human faces.
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