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Abstract

Rolling shutter correction (RSC) is becoming increas-
ingly popular for RS cameras that are widely used in com-
mercial and industrial applications. Despite the promis-
ing performance, existing RSC methods typically employ
a two-stage network structure that ignores intrinsic infor-
mation interactions and hinders fast inference. In this pa-
per, we propose a single-stage encoder-decoder-based net-
work, named JAMNet, for efficient RSC. It first extracts
pyramid features from consecutive RS inputs, and then si-
multaneously refines the two complementary information
(i.e., global shutter appearance and undistortion motion
field) to achieve mutual promotion in a joint learning de-
coder. To inject sufficient motion cues for guiding joint
learning, we introduce a transformer-based motion embed-
ding module and propose to pass hidden states across pyra-
mid levels. Moreover, we present a new data augmenta-
tion strategy “vertical flip + inverse order” to release the
potential of the RSC datasets. Experiments on various
benchmarks show that our approach surpasses the state-of-
the-art methods by a large margin, especially with a 4.7
dB PSNR leap on real-world RSC. Code is available at
https://github.com/GitCVfb/JAMNet.

1. Introduction
As commonly used image sensors in the automotive sec-

tor and motion picture industry, CMOS sensors offer par-
ticular benefits, including low cost and simplicity in design
[15, 20, 42, 48]. The row-wise readout mechanism from top
to bottom of electronic CMOS sensors, however, results in
undesirable image distortions called the rolling shutter (RS)
effect (also known as the jelly effect, e.g., wobble, skew)
when a moving camera or object is in progress. Often, even
a small camera motion causes visible geometric distortions
in the captured RS image or video. Because of this, the RS
effect inevitably becomes a hindrance to scene understand-
ing and a nuisance in photography. As such, RS correction
(RSC), as a way to make up for such deficiencies, is gradu-
ally gaining more and more attention [5, 11, 27, 29, 58].
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Figure 1. Performance vs. Speed. Each circle represents the per-
formance of a model in terms of FPS and PSNR on the Fastec-
RS testing set [29] with 640 × 480 images using a 3090 GPU.
The radius of each circle denotes the model’s number of parame-
ters. Our method achieves state-of-the-art performance with real-
time inferences and smaller parameters compared with prior RSC
methods, including DeepUnrollNet [29], SUNet [10], JCD [56],
AdaRSC [5], and Cascaded method (i.e., SUNet + DAIN [4]).

The RSC task aims to recover a latent distortion-free
global shutter (GS) image corresponding to a specific ex-
posure time between consecutive RS frames. The re-
sulting RSC methods can be divided into traditional and
deep learning-based ones. The traditional RSC methods
[1, 13, 26, 38, 40, 48, 50] usually rely on hand-designed
prior assumptions, geometric constraints, and complex op-
timization frameworks. Consequently, such processes are
typically time-consuming and require complex parameter-
tuning strategies for different scenarios, which restricts their
real-world applications. In contrast, convolutional neural
networks have also been used to remove RS artifacts in re-
cent years due to the considerable success in many com-
puter vision tasks, such as [5, 9, 14, 29, 51, 60]. Particu-
larly, RSC methods based on multiple consecutive RS im-
ages have been heavily investigated [5, 10, 29, 56].

In general, these multi-image-based RSC approaches of-
ten consist of a two-stage network design with two key
elements: a motion estimation module and a GS frame
synthesis module, as illustrated in Fig. 2 (a). The former
is dedicated to estimating a pixel-wise undistortion field,
which is utilized to warp the RS appearance content to
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the corresponding GS instance. The latter aims to fuse
the contextual information in a coarse-to-fine manner, ul-
timately decoding the desired GS image. Although this
two-stage idea sounds relatively straightforward, it suffers
from several drawbacks. First, the two-stage RSC faces a
classic “chicken-and-egg” problem: motion estimation and
GS frame synthesis are inextricably linked; a high-quality
undistortion field improves GS frame synthesis, and vice
versa. Therefore, this step-by-step combination is not con-
ducive to information interaction and joint optimization, re-
sulting in a bottleneck for high-quality RSC. Second, the
two modules are implemented by two independent encoder-
decoders, ignoring the mutual promotion of these two key
elements for RSC. Third, the two-stage network design in-
evitably increases the model size and inference time, which
greatly limits their efficient deployment in practice.

To address these issues, we propose a novel single-
stage solution for RS correction through Joint Appearance
and Motion Learning (JAMNet). Our approach is a single
encoder-decoder structure with coarse-to-fine refinements,
as depicted in Fig. 2 (b), allowing the simultaneous learning
of complementary GS appearance and undistortion motion
information. After extracting hierarchical pyramid features,
we design an efficient decoder for simultaneous occlusion
inference and context aggregation. It leverages a warping
branch to estimate the undistortion field to compensate for
RS geometric distortions, while a synthetic branch is used
to progressively refine the GS appearance, which forms a
mutual promotion of complementary information. Among
them, a hidden state is maintained to transmit additional
cues across pyramid levels. Further, we propose to in-
ject sufficient motion priors into the network at the coars-
est level via a transformer-based motion embedding mod-
ule. Moreover, inspired by the imaging principle of RS
data, we also develop a new data augmentation strategy, i.e.
vertical flip + inverse order, in the training process, to en-
hance the robustness of RSC models. Extensive experimen-
tal results demonstrate that our JAMNet significantly out-
performs state-of-the-art (SOTA) RSC methods, especially
achieving a real-time inference speed, as shown in Fig. 1.
It is worth mentioning that our pipeline achieves a 4.7 dB
PSNR improvement on real-world RSC applications.

In a nutshell, our main contributions are summarized:

1) We propose a tractable single-stage architecture to
jointly perform GS appearance refinement and undistor-
tion motion estimation for efficient RS correction.

2) We develop a general data augmentation strategy, i.e.,
vertical flip and inverse order, to maximize the explo-
ration of the RS correction datasets.

3) Experiments show that our approach not only achieves
SOTA RSC accuracy, but also enjoys a fast inference
speed and a flexible and compact network structure.

(a) Two-stage RSC

(b) Single-stage RSC

Input RS Undistortion
Field

Latent 
GS Frame

Input RS Latent GS Frame

Undistortion Field

Figure 2. Different RSC paradigms. (a) The currently popular
two-stage structure first estimates the undistortion field, and then
completes GS recovery accordingly. (b) We propose a single-stage
RSC framework with a joint learning mechanism to estimate the
undistortion field and the latent GS frame at the same time.

2. Related Work
Geometric model based RS correction. The RS geo-
metric model was first proposed in [33]. Subsequently,
Dai et al. [7] derived a discrete RS epipolar constraint,
while Zhuang et al. [58] presented a differential one. Very
recently, Bai et al. [2] and Lao et al. [27] developed a
scanline-homography and an RS-homography to perform
plane-based RS correction, respectively. Notably, some
works have been devoted to joint RS effect removal and
other image processing tasks, such as super-resolution [3,
36], motion deblurring [32, 44], image stitching [59], and
video stabilization [17, 52]. Furthermore, some additional
assumptions are often applied to simplify the problem of
RSC. For instance, the scene structure obeys the Manhattan
world [38] or satisfies the straightness of straight lines [40],
and the camera motion is purely rotational [16,26,37,40,41]
or purely translational [3, 28]. Therefore, they cannot work
well if these underlying assumptions on scene structures
and camera motions do not hold. Also, these traditional
methods are usually time inefficient, greatly limiting their
practical applications.
Learning-based RS correction. In recent years, several
appealing deep learning-based RSC methods [5, 34, 57, 60]
have been developed, where a convolutional neural network
(CNN) is trained to warp the RS frame to its GS counterpart.
To reduce the ill-posedness of single-image RSC [39, 60],
more attention has been paid to multi-image RSC. Liu et
al. [29] took two adjacent RS frames as input and designed
a deep shutter unrolling network to recover the latent GS
frame. Afterward, Fan et al. [10] presented a symmetric
undistortion network to aggregate contextual cues. Given
three consecutive RS images, Zhong et al. [56] proposed
to deal with RS effects and blurring in real-world distorted
RS images simultaneously, and Cao et al. [5] put forward
an adaptive warping strategy for coarse-to-fine refinement.
Overall, these methods uniformly adopt a two-stage step-
by-step learning framework, as shown in Fig. 2 (b), which
is not conducive to information interaction and efficient
inference. In contrast, we propose to learn complemen-
tary appearance and motion information simultaneously in a
single-stage architecture, thus achieving light-weight, real-
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time, and high-accuracy performance. To the best of our
knowledge, our method is the first real-time RSC pipeline.

More generally, the recently popular RS temporal super-
resolution (RSSR) [9, 14] can reconstruct a high frame-rate
GS video from two consecutive RS frames. In theory, the la-
tent GS image at any timestamp in the exposure period can
be generated. However, RSSR requires supervision of GS
ground-truth at multiple moments during training, which is
more complicated than the RSC task since RSC only needs
that at a single moment. Therefore, to be fair we will not
compare with the RSSR method in this paper. Alternatively,
the video frame interpolation (VFI) method can produce a
GS video from two GS frames, such as [4,22,35]. However,
they are tailored for GS cameras and cannot be applied im-
mediately to RS images due to network defects [12].
Pixel-wise motion modeling. Correlation is designed to
model the matching cost volume between data pairs and
is often used to measure pixel-wise similarity in optical
flow estimation tasks [8, 45, 47]. FlowNet [8] and PWC-
Net [45] perform correlation on the local range and decode
optical flow in a coarse-to-fine manner. While RAFT [47]
uses all-pairs correlation followed by a correlation lookup
to estimate optical flow within an iterative structure. Mean-
while, such a practice often migrates to RS correction for
the undistortion field estimation [5, 10, 29, 56]. As the im-
provement of vision transformer, there are many works us-
ing a transformer, especially cross attention [23, 46, 53] for
cross-view modeling. This process can help enhance feature
representation through frame-wise correspondence model-
ing. Inspired by this, we also utilize the transformer with
self- and cross-attentions as a motion embedding module to
inject sufficient motion information into the network.

3. Method
Given two input RS frames R0 and R1 at adjacent time

instances, our method aims to output a latent GS image cor-
responding to the exposure time of the middle scanline of
the second RS image, consistent with [5, 29, 56]. For this
purpose, we combine appearance and motion modeling in
a single-stage architecture to achieve effective and efficient
GS recovery. As shown in Fig. 3, our approach first extracts
the pyramid features of the RS image pair by a weight-
sharing encoder. Then, we employ a transformer-based mo-
tion embedding module to enhance the discrimination of the
coarsest features for motion embedding. Finally, we de-
velop an efficient decoder to simultaneously estimate the
GS appearance and the motion field within a coarse-to-fine
refinement framework.

3.1. Feature pyramid encoder

We construct an encoder to extract L-level feature maps:
{F l

0}Ll=1, {F l
1}Ll=1. The feature pyramid does not include

the input RS image because the bottom-level feature repre-

sentations F 1
0 and F 1

1 have the same resolution as the input.
Consistent with [10, 29, 56], a 7 × 7 convolutional layer is
employed firstly, followed by a residual block [19] to extract
full-resolution image features at the bottom level. The rest
of the pyramid levels have a 3× 3 convolutional layer with
a stride of 2 for downsampling, also followed by a resid-
ual block. In particular, we attach a PReLU activation [18]
after each 2D convolution. The parameters of the feature
pyramid encoder are shared for R0 and R1. Ultimately, we
produce a hierarchical feature representation, which facili-
tates subsequent coarse-to-fine joint appearance and motion
decoding.

3.2. Transformer-based motion embedding module

Since the latent GS image is unknown, it is unreasonable
to construct an explicit motion embedding by the cost vol-
ume between the RS features. Considering that the top-level
decoder lacks guidance from prior motion, we adopt a stan-
dard yet trivial swin-transformer [30] to enhance the cross-
correlation between the coarsest features FL

0 and FL
1 , aim-

ing to implicitly inject motion information into the subse-
quent decoder. To this end, we first impose spatial informa-
tion on the features by 2D position encoding P to mask the
features as position-dependent. Then, we input the position
encoded features FL

0 +P and FL
1 +P into the transformer

layer to get the enhanced features F̄L
0 and F̄L

1 . The trans-
former layer consists of self-attention, cross-attention, and
a feed-forward network [49]. For self-attention, the query,
key, and value are projections of the same feature. While for
cross-attention, the query comes from another feature in the
feature pair, which allows the module to focus on capturing
mutual dependencies from features. This whole process is
symmetrically performed for both FL

0 and FL
1 as follows:

F̄L
0 = T (FL

0 + P, FL
1 + P ), F̄L

1 = T (FL
1 + P, FL

0 + P ),
(1)

where T denotes a Transformer with the first input as query
and the second as key and value.

3.3. Joint appearance and motion decoder

The core component in our proposed JAMNet is a multi-
level decoder that jointly learns appearance and motion in a
coarse-to-fine manner. It mainly contains two synchronized
branches: warping-based and synthesis-based. The former
gradually refines the motion fields to remove RS effects
through a warping operation, facilitating higher-quality GS
appearance restoration. The latter continuously synthesizes
latent GS appearances, promoting more accurate motion
estimation in turn. The joint action of the two branches
enables the network to focus on context aggregation and
occlusion reasoning, thereby achieving better RS effect re-
moval. Additionally, we also exploit a hidden state to pass
the rich appearance information as well as motion informa-
tion across pyramid levels.
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Transformer-based 
Motion Embedding

Figure 3. Overall architecture of our JAMNet. It has three main processes: a feature pyramid encoder, a transformer-based motion
embedding module, and a joint appearance and motion decoder. After extracting the hierarchical pyramid features, the transformer is used
for motion embedding to inject motion cues, followed by a coarse-to-fine decoder that gradually refines the GS appearance and motion
fields at the same time (cf . the red line), until synthesizing the final full-resolution GS image. A hidden state hj is also passed sequentially.

Specifically, in each pyramid level j, 1 ≤ j ≤ L − 1,
we first upsample the bilateral undistortion field Ũ j+1

g→t and
the hidden state h̃j+1 of the previous level by a deconvo-
lution layer, resulting in U j

g→t and hj . Here, t ∈ {0, 1}.
At the same time, the previously synthesized GS candidate
G̃j+1 is also bilinearly upsampled to yield Gj . Inspired
by [5, 12, 29], we update U j

g→t by multiplying the time off-
set to better explore the scanline-dependent properties of RS
images. Then, based on the RS-aware motion fields U j

g→t

and the encoded pyramidal features F j
t , a warping operation

W is applied to generate two warping-based GS candidates
F̂ j
t = W(F j

t , U
j
g→t) for intermediate feature reconstruc-

tion at current level. Note that at the bottom level, we warp
the original RS image instead of the feature map to pro-
duce Ĝ1

t for efficiency. Subsequently, the warping-based
and synthesis-based GS appearances can work together to
decode complementary information for efficient RSC.

Similar to [5, 10, 29, 56], the warping-based branch
helps to compensate for RS edge distortions and place im-
age patches in the correct position. Synchronously, in
the synthesis-based branch, the latent GS appearance is
capable of enhancing the quality of the bilateral motion
fields. Moreover, we maintain a hidden state hj to promote
more adequate information transfer. Immediately after, F̂ j

t ,
U j
g→0, U j

g→1, Gj , and hj are cascaded and fed into three
residual blocks, and its output is decoded by a simple 3× 3
convolution layer to predict both the bilateral undistortion

field Ũ j
g→t and the synthesized GS candidate G̃j . Notably,

the residual connection from U j
g→t is used to update Ũ j

g→t.
Note that, as the initialization of coarse-to-fine refinement,
we perform feature aggregation on F̄L

0 and F̄L
1 directly at

the top level. More importantly, the GS candidate G̃1 syn-
thesized at the bottom level is our final desired GS image.
Overall, the decoder process can be formulated as follows:

[UL−1
g→t , G

L−1, hL−1] = Up(DL([F̄L
0 , F̄L

1 ])),

[U j−1
g→t, G

j−1, hj−1] = Up(Dj([F̂ j
0 , F̂

j
1 , U

j
g→t, G

j , hj ])),

G̃1 = D1([Ĝ1
0, Ĝ

1
1, U

1
g→t, G

1, h1]),
(2)

where Dj (j = 2, ..., L− 1) are middle-level decoders, Up
denotes an upsampling operation, [·] indicates a concatena-
tion operation, t refers to both 0 and 1 due to spatial limits.
Note that we do not show all intermediate variables in Eq. 2
and Fig. 3 for clarity; see suppl. materials for more details.

3.4. Loss function

Our model can be end-to-end trained. Given a pair of
consecutive RS images R0 and R1, our JAMNet jointly
estimates multi-scale synthesis-based GS candidates Ĝi

(1 ≤ i ≤ L), and bilateral undistortion fields Û j
g→0, Û j

g→1

(1 ≤ j ≤ L − 1) from coarse to fine. Here, Ĝ1 is the final
full-resolution GS image we desire to obtain. We use Gi

to denote the corresponding ground-truth (GT) GS image.
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Note that the superscript i indicates 1/2i−1 resolution maps
at level i, and G1 represents the GS GT with the same res-
olution as the input RS image. Our total loss function is a
linear combination of four terms:

L = λrLr + Lp + λmcLmc + λtvLtv, (3)

where λr, λmc and λtv are trade-off hyper-parameters. The
pixel intensities of images lie in the range [0, 1].

Reconstruction loss Lr. We measure the pixel-wise re-
construction quality of the final synthesized GS image at
the bottom level as:

Lr = ρ(G1 − Ĝ1), (4)

where ρ(x) =
√
x2 + ε2 is the Charbonnier penalty func-

tion [6]. We set the constant ε to 0.001.
Perceptual loss Lp. Since using only the Lr loss may

cause blur in the final frame prediction [10, 22, 29], we ad-
ditionally employ a widely used Lp loss [24] to preserve
fine details and improve the perceptual quality of final syn-
thesized GS images. Specifically, we define the perceptual
loss Lp as:

Lp = ‖φ(G1)− φ(Ĝ1)‖1, (5)

where φ indicates the conv4 3 feature extractor of the pre-
trained VGG16 network [43].

Multi-scale consistency loss Lmc. To better guide the fi-
nal GS frame synthesis, we force the GS candidates (includ-
ing warping-based and synthesis-based ones) to be consis-
tent with the GT across different pyramid levels. Specif-
ically, from level 1 to L − 1, we combine the bilateral
undistortion fields and the warping operator W to obtain the
warping-based GS candidates Ĝj

t = W(Rt, Û
j
g→t), where

t ∈ {0, 1}, 1 ≤ j ≤ L − 1. Meanwhile, from level 2 to L,
our JAMNet produces the multi-scale synthesis-based GS
candidates Ĝi, where 2 ≤ i ≤ L. Formally, the Lmc loss
consists of a warping loss Lwarp and a synthetic loss Lsyn,
i.e.,

Lmc = Lwarp + Lsyn,

Lsyn = 1
L−1

∑L
i=2 αi · ρ(Gi − Ĝi),

Lwarp = 1
2(L−1)

∑1
t=0

∑L−1
j=1 αjβ · ρ(Gj

t − Ĝj
t ),

(6)

where α· and β depict the importance at multiple scales.
Total variation loss Ltv. Finally, to enforce the estimated

flow to be smooth [29, 31, 55], we add a smooth regulariza-
tion on the bilateral undistortion fields as:

Ltv =
1

2(L− 1)

1∑

t=0

L−1∑

j=1

‖Û j
g→t‖2. (7)

Figure 4. Illustration of our proposed data augmentation strat-
egy. Gradient colors are used for ease of understanding.

3.5. A new data augmentation strategy

Given two consecutive RS images, we predict the GS
image corresponding to the middle scanline of the second
RS frame. Nevertheless, the prevailing RSC datasets [5,29]
are often constructed based on the RS video, i.e., the GT
GS image corresponding to the middle scanline of the first
RS frame is available at the same time. To maximize the
utilization of the current RSC dataset, we propose a novel
data augmentation strategy: vertical flip + inverse order. In
this way, the last scanline of the original second RS frame
will become the first scanline of the new first RS frame;
the first scanline of the original first RS frame will become
the last scanline of the new second RS frame, as shown in
Fig. 4. This can effectively improve the performance of the
resulting RSC model, as demonstrated in Section 4.3.2.

4. Experiments
4.1. Dataset and implementation details

Datasets. We adopt the standard RSC benchmark datasets
[29] including Carla-RS and Fastec-RS. The Carla-RS
dataset is synthesized from a virtual 3D environment, in-
volving general six degrees of freedom camera motions. For
the Fastec-RS dataset, RS images are generated by row-by-
row stitching of high-frame-rate GS videos captured by a
high-speed GS camera mounted on a ground vehicle. Note
that the Carla-RS dataset provides the GT occlusion mask.
Following [10, 29], we perform quantitative evaluations as
follows: the Carla-RS dataset with occlusion mask (CRM),
the Carla-RS dataset without occlusion mask (CR), and the
Fastec-RS dataset (FR). Moreover, we utilize the recently
released real-world BS-RSC dataset [5], in which RS-GS
image pairs are acquired by a well-designed beam-splitter
acquisition system in the dynamic urban environment. In
particular, various camera and object motions (e.g., vehicles
and pedestrians) are covered in the BS-RSC dataset.
Training details. Our JAMNet is trained end-to-end us-
ing the Adam optimizer [25] for 600 epochs with a learn-
ing rate of 10−4 and a batch size of 8. Similar to [10], we
construct a 5-level pyramid, i.e., L = 5. The number of fea-
ture channels is {16, 28, 40, 64, 96} to balance accuracy and
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Table 1. Quantitative comparison against the state-of-the-art RSC methods on the Carla-RS and Fastec-RS datasets [29]. The numbers in
red and blue represent the best and second-best performance. Our approach consistently achieves the highest RSC accuracy and fastest
inference time, while maintaining a compact and lightweight network structure. Note that our method is capable of real-time RSC for the
first time, thanks to the design concept of learning both appearance and motion in a single-stage architecture.

Method # Parameters Runtime PSNR↑ (dB) SSIM↑ LPIPS↓
(Million) (ms) CRM CR FR CR FR CR FR

SUNet [10] + BMBC [35] 23.0 938 28.51 28.69 25.49 0.848 0.796 0.1033 0.2118
SUNet [10] + DAIN [4] 36.0 227 28.63 28.93 27.12 0.851 0.823 0.0919 0.1642
DiffSfM [58] - 4.7e5 25.93 22.88 21.44 0.770 0.710 0.1201 0.2180
AdaRSC [5] 4.25 302 - - 28.56 - 0.855 - 0.0796
JCD [56] 7.51 225 28.12 27.75 26.48 0.836 0.821 0.0595 0.0943
SUNet [10] 12.0 92 28.44 28.17 27.06 0.838 0.825 0.0702 0.1030
DeepUnrollNet [29] 3.91 131 27.86 27.54 26.73 0.829 0.819 0.0555 0.0995
JAMNet (Ours) 4.73 28 31.00 30.70 28.70 0.905 0.865 0.0371 0.0691

Table 2. Quantitative comparison against the state-of-the-art RSC
methods on the BS-RSC dataset [5]. Our JAMNet is far superior
to baseline methods, demonstrating the significant advantages of
our approach in real-world RSC applications.

RSC Method PSNR↑ (dB) SSIM↑
DiffSfM [58] 19.80 0.698
DeepUnrollNet [29] 25.21 0.833
SUNet [10] 27.76 0.875
JCD [56] 25.59 0.841
AdaRSC [5] 28.23 0.882
JAMNet (Ours) 32.93 0.941

efficiency. We set the hyper-parameters {λr, λmc, λtv} as
{100, 100, 0.1}. Inspired by the training process of multi-
scale networks (e.g. [8, 45]), the weights of the multi-scale
consistency loss in Eq. (6) are empirically set to α5 = α4 =
α3 = 0.25, α2 = α1 = 0.5, and β = 0.5. We uniformly
transfer hidden states with 16 channels between the pyramid
levels. The GT GS images are downsampled to yield multi-
scale supervision signals. Following [9,10,14], we keep the
vertical resolution constant and leverage a uniform random
crop with a horizontal resolution of 256 pixels during train-
ing. Meanwhile, we also augment the training data with
random “horizontal flips” and our newly proposed random
“vertical flip + reverse order” strategies (cf ., Section 3.5).
All experiments were implemented with PyTorch and exe-
cuted on a single NVIDIA RTX 3090 GPU.
Evaluation metrics. Following previous works, we apply
standard PSNR and SSIM metrics, and learned perceptual
metric LPIPS [54] to compute the quantitative result.

4.2. Comparison with SOTA methods

We perform comparisons with the following baselines.
(i) DiffSfM [58] is a traditional two-image based RSC
method that needs sophisticated differential RS optimiza-
tion. (ii) DeepUnrollNet [29] and SUNet [10] develop spe-
cialized CNNs to remove RS artifacts from two consecu-
tive RS frames. (iii) JCD [56] and AdaRSC [5] are the
deep learning solutions of three-image based RSC, recover-
ing a GS image of the intermediate moment. (iv) Cascaded
method generates two first-scanline GS images sequen-

tially from three adjacent RS inputs using SUNet, and then
interpolates an in-between GS image using BMBC [35] or
DAIN [4], called “SUNet+BMBC” or “SUNet+DAIN”.

The quantitative results are presented in Tables 1 and 2.
It can be seen that our approach consistently achieves excel-
lent RSC performance, outperforming state-of-the-art RSC
baselines by a large margin. The two-stage RSC meth-
ods [5, 10, 29, 56] have a bottleneck in efficiently removing
RS effects, which inevitably consumes a lot of inference
time. It is worth mentioning that our method can process
consecutive RS images and output a high-fidelity GS frame
in real-time, while maintaining a compact and lightweight
network design. Note that, to the best of our knowledge, we
are the first to implement real-time RSC (also see Fig. 1).
In addition, our approach surpasses the SOTA RSC method
in PSNR by 4.7 dB in real-world RS effect removal (cf . Ta-
ble 2). These achievements are of great significance for the
practical application of the RSC method. Overall, these ex-
periments validate the superiority of our single-stage RSC
architecture that explores complementary appearance and
motion information simultaneously.

We illustrate the qualitative results under the Fastec-RS
dataset and the BS-RSC dataset in Figs. 5 and 6, respec-
tively. Constrained by the specific RS model, the tradi-
tional RSC methods [58] are prone to ghosting artifacts,
and are time-consuming due to complex non-linear opti-
mization. Cascaded methods tend to be blurry and locally
inaccurate due to error accumulation, and also suffer from
the disadvantage of larger and more time-consuming mod-
els. Thanks to the joint learning of appearance and motion,
our method can automatically reason about occlusions and
complex motion contours to efficiently recover crisp and
pleasing GS images. As a result, more GS details with fewer
artifacts are restored by our method successfully.

4.3. Ablation studies

4.3.1 Ablation on network architecture

Ablation on model capacity. Based on the base model pa-
rameters of JAMNet, we apply width multipliers [21] to the
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Input RS frame 1: R1 DiffSfM [58] DeepUnrollNet [29] SUNet [10] + BMBC [35] SUNet [10] + DAIN [4]

SUNet [10] JCD [56] AdaRSC [5] JAMNet (Ours) GT

Figure 5. Qualitative results against baseline methods on the Fastec-RS dataset. Our method competently recovers higher visual quality GS
images with more details. The cascade method is prone to blurring or local ghosting due to compounding errors. Zoom in for best view.

RS frame 1 DeepUnrollNet JCD SUNet AdaRSC JAMNet GT

Figure 6. Visual comparison on the BS-RSC dataset for real-world RSC. Our method can successfully remove RS artifacts and generate
higher-fidelity GS images. With our JAMNet, clearer and more accurate GS image appearance is restored effectively and efficiently.

number of channels uniformly at each feature pyramid ex-
traction layer. For example, choosing a width multiplier of
0.5 will produce an RSC model with feature channels of
{8, 14, 20, 32, 48}. The performance of these models with
different complexity is presented in Table 3a. It can be seen
that our model design is flexible and tractable, and increas-
ing the model capacity can effectively ameliorate the model
performance. For the balance of efficiency and accuracy,
our JAMNet adopts the base setting of {16, 28, 40, 64, 96}.
Ablation on joint learning mechanism. As shown in Ta-
ble 3b, we first remove the network branches associated
with synthesis-based and warping-based GS candidates, re-
spectively. Then, similar to [29, 56], we solely warp the
feature of the second RS frame, denoted as “No context”.
One can observe that unified appearance synthesis and mo-
tion warping can better explore the underlying complemen-
tary information, which facilitates contextual aggregation
and occlusion reasoning for better RS effect compensation.
Ablation on pyramid level. To verify the impact of the
pyramids, we construct feature pyramids with different lev-
els, as shown in Table 3d. Using 3-level pyramids leads
to consistently worse results. Note that DeepUnrollNet

exploits a 3-level pyramid involving a two-stage archi-
tecture, our method however achieves better RSC perfor-
mance (27.28 dB vs. 26.73 dB) with smaller model capac-
ity (0.76M vs. 3.91M), which proves the advantage of our
single-stage design. Note also that, since the computation
of the transformer is proportional to the square of the image
resolution, the 3-level has more calculations than the 5-level
and is therefore more time-consuming. With the increase of
pyramid levels, the RSC results are significantly improved.
We reckon this is because more pyramids are beneficial for
the perception and rectification of large pixel displacements.
Ablation on motion embedding module. As reported in
Table 3e, removing this module leads to obvious perfor-
mance degradation. Compared with building cost volume at
the top level, the transformer shows a more powerful motion
modeling capability such that richer motion information can
be injected into subsequent decoders, thereby enhancing the
corrected image quality effectively.
Ablation on hidden state. Maintaining a hidden state be-
tween adjacent pyramid levels helps the network to trans-
fer information better, as shown in Table 3f. Moreover, in-
creasing its capacity is beneficial to improve the RSC per-
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Table 3. Ablation studies on the Fastec-RS dataset. Our full model is indicated in the leftmost column with underlining.
(a) Larger-capacity feature pyramid extractor
has better performance. “×N” denotes a width
multiplier of N for the number of channels.

PSNR SSIM #Paras Time
×0.5 27.98 0.846 1.24 23
×1.0 28.70 0.865 4.73 28
×1.5 28.75 0.867 10.5 35
×2.0 28.94 0.870 18.5 41

(b) Joint learning mechanism. Unified construction of
synthesis-based and warping-based GS candidate branches
facilitates occlusion inference and motion compensation.

PSNR SSIM #Paras Time
Full model 28.70 0.865 4.73 28

No synthesis 28.34 0.860 4.71 27
No warping 26.10 0.787 4.71 20
No context 27.35 0.840 4.72 26

(c) Loss function. All four loss terms
have positive effects. Lr and Lmc losses
are crucial to train an effective model.

PSNR SSIM
No Lr 26.36 0.691
No Lp 28.45 0.862
No Lmc 27.84 0.849
No Ltv 28.57 0.863

(d) More feature pyramid levels provide bet-
ter perception and rectification of large pixel dis-
placements, thus resulting in significantly better
RSC performance.

PSNR SSIM #Paras Time
3-level 27.28 0.834 0.76 79
4-level 27.95 0.850 2.00 25
5-level 28.70 0.865 4.73 28

(e) Motion embedding module. Removing the mo-
tion embedding module (Nothing) leads to lower
RSC results. Transformer has better motion mod-
eling capability than cost volume.

PSNR SSIM #Paras Time
Nothing 28.02 0.853 4.55 25

Cost volume 28.31 0.860 4.68 26
Transformer 28.70 0.865 4.73 28

(f) Hidden state. Removing the hidden state
(0) causes moderate performance loss. A
larger number of hidden state channels is ben-
eficial to deliver more information.

PSNR SSIM #Paras Time
0 28.01 0.852 4.58 23
8 28.39 0.860 4.65 27
16 28.70 0.865 4.73 28

Table 4. Ablations on our proposed data augmentation (DA)
using the Fastec-RS and BS-RSC datasets. Our DA effectively
enhances both synthesized and real-world RSC capabilities.

Methods Fastec-RS BS-RSC DAPSNR SSIM PSNR SSIM

DeepUnrollNet 26.73 0.819 25.21 0.833 �
27.01 0.828 26.13 0.850 �

JAMNet (Ours) 28.33 0.859 32.56 0.938 �
28.70 0.865 32.93 0.941 �

formance, which also reflects the flexibility of our model.
Ablation on other network details. We additionally con-
duct two ablations to our network design. First, we warp the
bottom-level feature map instead of the RS image. Exper-
iments show that decoding in high-resolution feature space
brings a small gain, but increases the inference time (31ms
vs. 28ms). Furthermore, we remove the time offset in esti-
mating the undistortion field, which does not favor the net-
work to explore the scanline-dependent properties of the RS
data [5,9,29,56], resulting in a 0.55 dB reduction in PSNR.

4.3.2 Ablation on training strategy

To further understand the effectiveness of our newly pro-
posed data augmentation strategy in Section 3.5, we retrain
DeepUnrollNet [29] and our JAMNet with and without the
augmentation. As manifested in Table 4, applying our data
augmentation can significantly improve the performance of
the RSC method, which stems from a deeper exploration
of the dataset. As a result, it can act as an effective tool for
RSC tasks. Besides, our loss function L is effective because
it performs best when all loss terms are used (cf . Table 3c).

4.4. Generalization evaluation

We apply our approach to real RS images provided by
[58] and [16] to evaluate the generalization ability. These
real RS datas are captured by fast-moving hand-held cam-
eras in outdoor scenes, which are significantly different

Figure 7. Generalization results on real RS data. The top is the
second RS image and the bottom is our recovered GS image.

from the training dataset. Also, they are widely used for us-
ability evaluation of RSC methods, e.g., [10, 27, 39, 40, 59].
As illustrated in Fig. 7, our method can effectively and ro-
bustly remove the noticeable RS artifacts and produce ge-
ometrically and visually consistent GS images, which veri-
fies the excellent generalization ability of our method.

5. Conclusion

In this paper, we have proposed an efficient and flexible
deep architecture, termed JAMNet, for rolling shutter cor-
rection. Unlike common two-stage RSC methods, JAMNet
gradually refines GS appearance features together with bi-
lateral motion fields in a single-stage framework, enabling
much simpler yet more efficient coarse-to-fine GS recov-
ery. Moreover, we have developed a new data augmenta-
tion strategy to unlock the potential of the RSC dataset. Ex-
periments on various benchmarks demonstrate our method
significantly outperforms prior arts in terms of speed and
accuracy. It is hoped that our network design concept can
shed light for future research on the RSSR task.
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