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Abstract

Facial micro-expressions (MEs) refer to brief sponta-
neous facial movements that can reveal a person’s gen-
uine emotion. They are valuable in lie detection, crimi-
nal analysis, and other areas. While deep learning-based
ME recognition (MER) methods achieved impressive suc-
cess, these methods typically require pre-processing using
conventional optical flow-based methods to extract facial
motions as inputs. To overcome this limitation, we pro-
posed a novel MER framework using self-supervised learn-
ing to extract facial motion for ME (SelfME). To the best of
our knowledge, this is the first work using an automatically
self-learned motion technique for MER. However, the self-
supervised motion learning method might suffer from ignor-
ing symmetrical facial actions on the left and right sides of
faces when extracting fine features. To address this issue,
we developed a symmetric contrastive vision transformer
(SCViT) to constrain the learning of similar facial action
features for the left and right parts of faces. Experiments
were conducted on two benchmark datasets showing that
our method achieved state-of-the-art performance, and ab-
lation studies demonstrated the effectiveness of our method.

1. Introduction

Personality and emotions are crucial aspects of human
cognition and play a vital role in human understanding
and human-computer interaction [20]. Facial expressions
provide an important cue for understanding human emo-
tions [3]. According to neuropsychological research, micro-
expressions (MEs) are revealed when voluntary and invol-
untary expressions collide [8]. As a slight leakage of ex-
pression, MEs are subtle in terms of intensities, brief in du-
ration (occur less than 0.5 seconds), and affect small facial
areas [3]. Because MEs are hard to be controlled, they are
more likely to reflect genuine human emotions, and thus
have been implemented in various fields, such as national
security, political psychology, and medical care [41]. De-
spite the fact that MEs are valuable, their unique character-
istics bring multifarious challenges for ME analysis.
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Figure 1. MEs may be imperceptible to the naked eye, but the mo-
tion between the onset (the moment when the facial action begins
to grow stronger) and the apex (the moment when the facial action
reaches its maximum intensity) makes them readily observable.
SelfME learns this motion automatically.

The task of ME recognition (MER) is to classify MEs
by the type of emotion [3]. Due to the small sample size
of datasets, almost all methods for MER have used hand-
crafted features, which can be non-optical flow-based [2,
44, 50] or optical flow-based [25, 32, 42]. The extracted
features were then fed into either traditional classification
models [40, 43, 47], or deep learning-based classification
models [12, 24, 51, 52]. Although recently proposed meth-
ods claimed they are deep learning-based methods, the ones
with the highest performance often rely on traditional op-
tical flow [10, 49] between the onset and apex frames as
inputs. These optical flow methods are computed in a com-
plex manner, and a number of researchers even proposed
approaches for further processing the optical flow features
prior to inputting them into the networks to improve their
performance. This type of pipeline may hinder the develop-
ment of MER in the deep learning era.

To overcome this limitation, we proposed a novel MER
framework using self-supervised learning to extract facial
motion for ME (SelfME) in this work. To the best of
our knowledge, this is the first work with an automatically
self-learned motion technique for MER. We visualized the
learned motion by SelfME in Fig. 1. The symmetry of fa-
cial actions is important in MER, as spontaneous expres-
sions are more symmetric than posed ones, or have inten-
sity differences between left and right faces that are negligi-
ble [9,13]. However, the learned motion may suffer from ig-
noring symmetrical facial actions on the left and right sides
of the face when extracting fine features. To address this
issue, we developed a symmetric contrastive vision trans-
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former (SCViT) to constrain the learning of similar facial
action features for the left and right parts of the faces, mit-
igating asymmetry information irrelevant to MER. Experi-
ments were conducted on two benchmark datasets, showing
that our method achieved state-of-the-art performance. In
addition, the ablation studies demonstrated the effectiveness
of our method.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 describes our method-
ology. Section 4 presents the experiments with analysis and
discussions. Limitations and ethical concerns are discussed
in Section 5. Section 6 concludes the paper.

2. Related Work

2.1. Micro-Expression Recognition

Numerous methods were proposed for tackling MER,
but the majority of them rely on handcrafted features [2,44,
50]. To capture the dynamic texture, Zhao et al. proposed
local binary patterns from three orthogonal planes (LBP-
TOP) [50], which combined the local binary pattern (LBP)
histogram in spatial and time dimensions. To capture tex-
tures in all directions and remove the redundant features, the
hot wheel pattern with three orthogonal planes [2], and LBP
with six intersection points [44] were proposed, respec-
tively. Another group of researchers discovered the signifi-
cance of optical flow features for MER and developed sev-
eral enhanced optical flow extraction methods [25, 32, 42].
Patel et al. estimated optical flow features in selected re-
gions and integrated them into spatiotemporal features [32].
Wang et al. proposed a main directional maximal difference
algorithm to extract optical flow features in the maximal dif-
ference direction [42]. Liong et al. presented a bi-weighted
approach for weighting the histograms of directed optical
flow utilizing both magnitude and optical strain values (Bi-
WOOF) [25].

One of the earliest attempts at deep learning-based MER
methods was proposed in [31], where the authors employed
several pretrained networks to extract ME features, fol-
lowed by an evolutionary feature selection. Following this
success, numerous methods based on deep learning were
presented. Gan et al. proposed optical flow features from
apex frame network (OFF-ApexNet) by feeding the hor-
izontal and vertical optical flow features as two streams
into the networks [12]. A shallow triple stream three-
dimensional convolutional neural network (STSTNet) fur-
ther added an optical strain feature to form three opti-
cal flow input streams [24]. Dual-Inception enhanced the
OFF-ApexNet network by utilizing two Inception networks
to process optical flows in horizontal and vertical direc-
tions [52]. On the basis of [52], Zhou et al. proposed a fea-
ture refinement network with an expression-shared and an
expression-specific module for MER [51]. Although deep

learning-based MER methods achieved impressive success,
they still suffer from sophisticated preprocessing when us-
ing traditional optical flow extraction methods to extract fa-
cial motions as inputs. To alleviate this problem, we pro-
posed a novel framework, SelfME, to learn the motion rep-
resentation of ME in a self-supervised manner, moving a
further step for transforming the ME pipeline to a fully end-
to-end manner.

2.2. Self-Supervised Learning

Self-supervised learning is a powerful technique that al-
lows for feature representation learning without the need
for labeled data. Solving pretext tasks, such as coloriza-
tion [18, 19], Jigsaw puzzle [29, 45], and ordering shuf-
fled image patches [6], requires high-level understanding,
so they can be used in self-supervised learning for learning
generalized representations that can help with downstream
learning tasks. Contrastive learning (CL) solves the self-
supervised learning problem by pulling positive pairs closer
while pushing negative pairs far apart [4, 14, 46]. When la-
bels are available, supervised contrastive learning can fur-
ther improve the performance by pulling the representations
of positive samples from the same class together [16]. To
address the issue of the learned motion representations suf-
fering from ignoring symmetrical facial actions, we intro-
duce a novel way of using contrastive learning by pulling
together the left and right parts of the faces to preserve fa-
cial symmetry information.

For videos, self-supervised signals can be provided by
reconstructing a target frame given a source frame in the
same video clip, as done in self-supervised optical flow
learning [26, 27]. This approach has been used in facial at-
tribute learning [17] and facial action unit detection [22,23].
The facial attributes network (FAB-Net) learns facial at-
tributes by encoding source and target frames into embed-
dings and combining them to estimate the optical flow for
reconstructing the target frame [17]. Twin-cycle autoen-
coder (TCAE) [23] and its variant [22], proposed for AU
detection, improved FAB-Net by disentangling facial ac-
tions and head movements. However, MEs are subtle move-
ments, so these approaches with less accurate estimation of
flow may not be effective for MER. Our SelfME can extract
fine-grained subtle motions by leveraging intrinsic keypoint
detectors and fusing local motions into dense motions.

3. Methodology
3.1. SelfME Framework

In this work, we proposed a novel MER framework
(SelfME) using self-supervised learning to extract facial
motion representation, as depicted in Fig. 2. SelfME con-
sists of two stages: a motion learning stage and a classifica-
tion stage. In the motion learning stage, the self-supervised
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Figure 2. Framework of SelfME. SelfME consists of two stages: a motion learning stage and a classification stage. In the motion learning
stage, the self-supervised motion learner was trained on a source frame Xs and a target frame Xt in ME sequences with a reconstruction
objective, to warp the source frame Xs into the estimated target frame X̂t. A B-spline transformation expands the size of the motion field to
a similar size as the original image input, producing the improved motions Φ that are fed into the classification stage. In the classification
stage, an SCViT was used to constrain the learning of similar facial action features for the left and right parts of faces.

motion learner was trained on ME sequences using a recon-
struction objective, so that the learned motion is capable of
warping the source image into the estimated target image.
However, the learned motions may be nonsmooth, folding,
and of low resolution, which would affect the accuracy of
MER. Thus, we applied a scaling-and-squaring cubic B-
spline transformation to ensure the diffeomorphism of the
motion field, and expand the size of the motion field. These
motions were then fed into the classification stage. In the
classification stage, we adopted an SCViT to let the network
focus on small and subtle ME features. As learned motions
may ignore symmetrical facial actions when extracting fine
features, SCViT can also constrain the learning of similar
facial action features for the left and right parts of faces.

3.2. Self-supervised Motion Learning

Given a sequence X = {X1, . . . ,XT } ∈ RH×W×3×T ,
our purpose is to learn the motion pattern between two
frames. However, we do not have the ground truth mo-
tion for transforming one frame to another frame. There-
fore, rather than directly estimating the motion between two
frames in a fully-supervised manner, we formed an alterna-

tive self-supervised learning task by reconstructing the tar-
get frame with a given source frame, in which the motion
was implicitly learned to achieve the motion learning task.
The pipeline of self-supervised motion learning is shown as
the motion learning stage in Fig. 2.

MEs are subtle in terms of intensities and cover limited
face regions [3]. Typically, small movements occur around
the eyes, eyebrows, and lips. To reduce the influence of
noise and illumination variants on subtle movement extrac-
tion, we learned the motion pattern by focusing on key fa-
cial moving parts. In particular, we addressed the problem
of learning the motion pattern through two subtasks: 1) de-
tecting motion-related keypoints and computing their local
motions; 2) obtaining a dense motion field by a weighted
combination of the local motions.

Similar to [35], a source frame Xs and a target frame Xt

were randomly selected from the sequence X. K keypoints
of the two frames are estimated respectively by a shared
network Fkp as

{zki }Kk=1 = Fkp(Xi), i ∈ {s, t}, (1)

where zks and zkt are the k-th keypoint for the source and
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target frames, respectively. Then, the local motions were
computed as the location displacements of corresponding
keypoints in Xs and Xt:

Φk(u) = γ(zks − zkt ), ∀u ∈ U, (2)

where γ is a motion amplification (MA) factor, and U is
a lattice of size H̃ × W̃ . H̃ and W̃ are one-fourth of the
original image size H and W as the motion can be learned
better in a smaller and compact space.

To compute the dense motion field Φ̃ by a weighted
combination of the local motions, we estimated weights
ψk(u) for each motion Φk(u). The weights were estimated
from aligned frames {χk}Kk=1 and heatmaps {Hk}Kk=1. The
aligned frames {χk}Kk=1 are obtained by warping the source
frame Xs according to the local motion fields in Eq. 2. The
heatmaps {Hk}Kk=1 preserve the keypoint information in
the form of a keypoint location confidence map, which is
computed using the following equation:

Hk(u) = exp(−(u−Φk(u))⊤Σ−1(u−Φk(u))), (3)

where Σ is the covariance matrix. All aligned frames
{χk}Kk=1 and heatmaps {Hk}Kk=1 are concatenated and
passed to a network Fdense to generate the predicted
weights ψk for each local motion as

{ψk}Kk=1 = Fdense({χk}Kk=1, {Hk}Kk=1). (4)

Finally, we can obtain the dense motion Φ̃ by a weighted
summation of local motions as

Φ̃ =

K∑
k=1

ψkΦ
k. (5)

To predict an estimated target frame X̂t, we utilized a
generator network that warps the feature of the source frame
Xs as shown in the upper right part of Fig. 2. To learn the
motion, we use a feature reconstruction loss and an equiv-
ariance loss. The feature reconstruction loss is similar to the
perceptual loss [15] as

Lι,m
rec =

1

nιm

∣∣∣F ι,m
V GG(X̂t)−F ι,m

V GG(Xt)
∣∣∣ , (6)

where F ι,m
V GG refers to the m-th feature map of VGG-19

with ι-th scale inputs. nιm is the corresponding number of
pixels. The equivariance loss is used to constrain the key-
point detection task as

Leqv = |Fkp(Trand(Xs))− Trand(Fkp(Xs))|, (7)

where Trand is a known random thin-plate spline transfor-
mation. Finally, we can obtain the final loss for the motion
learning stage through a weighted summation as

Lml =
∑
ι

∑
m

(λι,mrecLι,m
rec ) + λeqvLeqv, (8)

where {λm,ι
rec } and λeqv are the weights.

To prepare inputs for the classification stage, only the
motion between the onset and apex frames needs to be ex-
tracted from each video sequence, while the self-supervised
learning of the motion learning stage leverages all frames
of the video. One problem is that Φ̃ may be nonsmooth and
folding, which would affect the accuracy of MER. In addi-
tion, the generated dense motion field Φ̃ is smaller than the
original image size. To address these problems, we adopt
a scaling-and-squaring cubic B-spline transformation strat-
egy to ensure diffeomorphism of the motion field and ex-
pand the motion field’s size to be similar to the original
image. Diffeomorphism preserves topology and guarantees
invertibility, which would be beneficial for MER. The ex-
panded motion field Φ is obtained using a weighted combi-
nation of cubic B-spline basis functions β(·) [33]:

Φ(v) =
∑
u∈G

Φ̃(u)

2∏
δ=1

βδ
u(v

δ − uδ), (9)

where vδ is the δ-th coordinate of the point v in the ex-
panded motion field Φ, and uδ is the δ-th coordinate of the
point u in the control gridG. Then, the scaling and squaring
algorithm [1] is adopted to generate the group exponential
of the stationary velocity field for Φ to ensure diffeomor-
phism. The diffeomorphic motion field generated after the
scaling and squaring algorithm is also denoted as Φ.

3.3. Symmetric Contrastive Vision Transformer

Spontaneous expressions are more symmetric than posed
ones, or have intensity differences between left and right
faces that are negligible [9, 13]. However, the learned mo-
tion does not show such symmetry. To tackle this problem,
we developed an SCViT to preserve the facial symmetric in-
formation. Our motivation for imposing the symmetric con-
straint is to improve the discrimination of ViT by preserv-
ing the facial geometry destroyed by using patches as input,
thus learning similar representations for left and right faces,
and mitigating asymmetry information irrelevant to MER.
A graphical illustration of symmetric contrastive (SC) is
shown in Fig. 3.

Given the need of local attention capability and tiny de-
tails in the ME images, we adopted ViT [7] to focus on
the small crucial regions for extracting subtle ME features.
Transformers received 1D sequences as inputs. To handle
2D inputs, a split operation is used to embed the image
(motion) Φ ∈ RH×W×C into a sequence of flattened 2D
patches Φp = {Φi

p}Ni=1 ∈ RN×(HpWpC), where H ×W is
the original image resolution, C is the number of channels,
Hp × Wp is the patch resolution, and N = HW/HpWp

is the number of generated patches. Each flattened patch
Φi

p is then linearly projected with trainable weights E ∈
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Figure 3. The graphical illustration of SC with a batch of two sam-
ples. To mimic the facial action coding process, the patches Φd

are regrouped according to the upper left, upper right, bottom left,
and bottom right regions. Then, the patches are averaged within
each group, generating 4 regional embeddings Φ̄UL, Φ̄UR, Φ̄BL,
and Φ̄BR. The SC loss is then applied to symmetrical regions of
the same image and across the samples within the batch.

R(HpWpC)×D to a D-dimensional feature vector Φi
d:

Φd = [Φ1
pE; Φ2

pE; · · · ; ΦN
p E], (10)

= [Φ1
d; Φ

2
d; · · · ; ΦN

d ]. (11)

However, these patches are directly fed to the trans-
former blocks in ViT, which do not preserve facial geometry
features and may violate the prior knowledge that most ME
are symmetrical. To overcome this limitation, we explicitly
regularized the learning of ME feature representations by
introducing an SC loss. The SC loss is designed to mimic
the facial action coding process [11]. The patches Φd are re-
grouped according to the upper left (UL), upper right (UR),
bottom left (BL), and bottom right (BR) regions of the orig-
inal input images. Then, the patches of each group are aver-
aged to form a single embedding Φ̄α which represents the
region α as

Φα = [Φα1

d ; Φα2

d ; · · · ; ΦαN0

d ], (12)

Φ̄α =
1

N0

N0∑
i=1

Φαi

d , (13)

where α ∈ R = {UL,UR,BL,BR} represents the index set
for the corresponding regions, andN0 = N/4 is the number
of patches for each region.

To increase the similarity between the left and right facial
action features, we constrained the region symmetry of ME
and the samples in a batch. Let i ∈ I be the index of an
arbitrary sample. The proposed SC loss can be expressed as

Lsc =
∑
i∈I

−1
|P (i,α,β)|

∑
α,β∈R

∑
p∈P (i,α,β)

log
exp(Φ̄α

i ·Φ̄β
p/τ)∑

a∈A(i,α,β)

exp(Φ̄α
i ·Φ̄β

a/τ)
, (14)

whereA(i, α, β) ≡ {a ∈ I : a ̸= i if α = β}. P (i, α, β) ≡
{p ∈ I : (yp = yi) ∩ (α, β identical or symmetrical)} is

the set of indices of all positive regrouped embeddings. The
symmetrical pairs are UL-UR and BL-BR. |P (i, α, β)| is
the cardinality of P (i, α, β). τ is the temperature parame-
ter. This loss is inspired by supervised contrastive learning
loss [16], which could also push away the samples with dif-
ferent classes.

To perform the classification task, a learnable class rep-
resentation Φcls is prepended to the embedded patches ob-
tained by Eq. 11. In addition, another learnable position em-
beddings Epos ∈ R(N+1)×D are added to the patch embed-
dings to retain positional information. These embeddings
are then fed into a transformer encoder to learn patch-level
relationships [39]. The transformer encoder comprises mul-
tiple alternating layers of a multi-head self-attention (MSA)
module and a feed-forward (FF) module. The final out-
put of the corresponding class representation zcls is passed
through a layer norm (LN) and a multi-layer perceptron
(MLP) with one hidden layer for mapping the output di-
mension to the desired number of classes as

ŷ = MLP(LN(zcls)). (15)

We then used a standard multi-class cross-entropy loss
Lcls computed between the predicted ŷ and the ground truth
y. The final loss for the classification stage is

Lc = Lcls + ωLsc, (16)

where ω is a trade-off weight for balancing the classification
and the SC objectives.

4. Experiment

4.1. Dataset

CASME II. CASME II [48] has 35 participants and 247
ME sequences. Videos are at 200 frames per second (FPS)
and resolutions of 640 × 480 with 280 × 340 for the face.

SMIC-HS. SMIC-HS [21] has 164 spontaneous ME
clips at 100 FPS from 16 individuals at the same resolution
as CASME II, but with 190 × 230 for the face.

4.2. Evaluation Metrics

Experiments were conducted using a leave-one-subject-
out cross-validation setting. Each time, samples from one
subject were set aside for testing, while all remaining sam-
ples were utilized for training. The experiment was re-
peated S times, where S is the total number of subjects.
The unweighted F1-score (UF1) and unweighted average
recall (UAR) were used to measure the performance. UF1
is calculated as the average F1 across all classes nc as

UF1 =
1

nc

∑
j

F1j , (17)
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Table 1. Ablation study of key components. SC plays a crucial role
by pulling together the left and right facial action features, while
B-spline transformation and MA also bring some improvements.

B-spline SC MA UF1 UAR
- - - 0.8468 0.8849
✓ - - 0.8629 0.8903
- ✓ - 0.8903 0.9028
- - ✓ 0.8718 0.8851
✓ ✓ - 0.8923 0.8984
- ✓ ✓ 0.8951 0.9109
✓ - ✓ 0.8784 0.8960
✓ ✓ ✓ 0.9078 0.9290

where F1j =
2
∑S

s=1 TPs
j

2
∑S

s=1 TPs
j+

∑S
s=1 FPs

j+
∑S

s=1 FNs
j

is the F1 for

the j-th class. UAR is defined as the average recall as

UAR =
1

nc

∑
j

Recallj , (18)

where Recallj =
∑S

s=1 TPs
j∑S

s=1 FPs
j+

∑S
s=1 FNs

j

. TPs
j , FPs

j , and FNs
j

are true positives, false positives, and false negatives for the
j-th class of the s-th subject.

4.3. Implementation Detail

The PyTorch framework [30] was used. The model
for motion learning was pre-trained on the VoxCeleb
dataset [28] and fine-tuned on the ME datasets by randomly
selecting two frames each time. SCViT was initialized with
pre-training from ImageNet and trained with motions ex-
tracted between the onset and apex frames. All encoder-
decoder-like networks are Hourglass networks. The ViT
is ViT-S/16. They were optimized by an adaptive moment
(Adam) optimizer with an initial learning rate of 2 × 10−6

and 1×10−4, respectively. A multistep learning rate sched-
uler was utilized to dynamically reduce the learning rate by
10 at epochs 20 and 30 for motion learning. The SCViT
was trained with a batch size of 32 and exponential learning
rate decay with a factor of 0.9 for 60 epochs per experiment.
The MA factor γ was always set as 1 during training, while
it was empirically set as 2 during inference (See Section 4.7
for more discussions). A high-performance computer with
4 CPU cores, 1 NVIDIA V100 GPU card, and 32 GB mem-
ory was utilized for training the model.

4.4. Ablation Study

Experiments were conducted on CASME II in order to
evaluate the contribution of B-spline transformation, SC,
and MA. As indicated by Table 1, the following observa-
tions can be made:

(1) SC plays the most important role. When only one
component is employed, it outperformed the b-spline by

2.74% in UF1 and 1.25% in UAR, and outperformed MA
by 1.85% in UF1 and 1.77% in UAR. This suggests that
pulling the left and right facial action features together in
a contrastive manner is beneficial for MER, given ME con-
tains relatively symmetric expressions, but learned motions
may not show this.

(2) When combining the learned motion with B-spline
transformation, performance improved by 0.20% in UF1
over only using the SC loss. This finding demonstrates
that improving the motion’s diffeomorphism by B-spline
transformation when expanding the motion’s size is advan-
tageous for MER.

(3) MA also brings some improvements. Although it
amplifies the motions to make the ME-associated motions
more distinct, it may also amplify other motions that are not
related to ME. Further discussion on MA is in Section 4.7.

4.5. Comparison with the State-of-the-art

We compared SelfME with existing state-of-the-art
methods on two popular ME benchmarks in Table 2.
SelfME stands out as the only and first method to utilize
self-supervised motion representation, while most of the
other methods rely on dense optical flow estimation using
total variation regularization with L1-norm (TV-L1) regu-
larization [49]. LBP-TOP [50] and Bi-WOOF [25], which
are traditional methods without any deep learning tech-
niques, produced comparatively lower performance than
deep learning-based models. CapsuleNet, which utilized a
single apex frame as input rather than motion, performed
significantly worse than other concurrent methods. These
results demonstrate the importance of motion-based ap-
proaches in MER and show the potential of self-supervised
learning techniques.

SelfME achieved the highest performance on CASME II,
surpassing the second-best method by 4.17% in UAR and
1.63% in UF1, with scores exceeding 90% in both metrics.
On SMIC-HS, FeatRef [51] took the lead, while SelfME
delivered a similar performance. It is worth noting that
the comparison with fully-supervised methods on SMIC-
HS might not be entirely fair. When considering the av-
erage results on the two benchmarks, SelfME achieved the
best overall performance among all methods, showing its
effectiveness.

4.6. Impact of the Learned Motion

To analyze the impact of the learned motion by SelfME,
SelfME was separated into SelfME’s motion and SCViT
for experiments on CASME II (Table 3). In the first part,
SelfME’s motion was compared to TV-L1 motion with ei-
ther ViT or SCViT as the classifier, showing SelfME’s mo-
tion was superior. In the second part, we showed that
highly accurate motion estimation is more essential for ME
than other facial tasks, such as AU recognition, by adopt-
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Table 2. Comparison with the state-of-the-art methods. Experiments were conducted on CASME II and SMIC-HS datasets with three
classes: Negative, Positive, and Surprise. Among all methods, our SelfME is the only and first method using self-supervised learned
motion as inputs, whereas the majority of methods use a conventional optical flow extractor. LBP: local binary pattern; Apex: apex frame
only; TV-L1: optical flow generated by the total variation regularization with L1-norm approach; Learned: self-supervised learned motion.

Method Input CASME II SMIC-HS Average
UF1 UAR UF1 UAR UF1 UAR

LBP-TOP [50] LBP 0.7026 0.7429 0.2000 0.5280 0.4513 0.6355
CapsuleNet [38] Apex 0.7068 0.7018 0.5820 0.5877 0.6444 0.6448
Bi-WOOF [25] TV-L1 0.7805 0.8026 0.5727 0.5829 0.6766 0.6928
GoogLeNet [37] TV-L1 0.5989 0.6414 0.5123 0.5511 0.5556 0.5963
VGG16 [36] TV-L1 0.8166 0.8202 0.5800 0.5964 0.6983 0.7083
OFF-ApexNet [12] TV-L1 0.8764 0.8680 0.6817 0.6695 0.7791 0.7688
Dual-Inception [52] TV-L1 0.8621 0.8560 0.6645 0.6726 0.7633 0.7643
STSTNet [24] TV-L1 0.8382 0.8686 0.6801 0.7013 0.7592 0.7850
FeatRef [51] TV-L1 0.8915 0.8873 0.7011 0.7083 0.7963 0.7978
SelfME Learned 0.9078 0.9290 0.6972 0.7012 0.8025 0.8151

Table 3. Analysis of the impact of the learned motion. Learned
motion of SelfME demonstrated superior performance than the
motion derived from TV-L1 and TCAE.

Method UF1 UAR
TV-L1+ViT 0.8060 0.8016
TV-L1+SCViT 0.8460 0.8305
TCAE+FC [23] 0.4836 0.5491
TCAE’s motion+ViT 0.5681 0.5752
TCAE’s motion+SCViT 0.6158 0.5926
SelfME’s motion+ViT 0.8784 0.8960
SelfME’s motion+SCViT 0.9078 0.9290

ing TCAE for comparison. Initially, we used the exact
pipeline of TCAE to encode faces into a low-dimensional
facial action vector followed by FC for classification, but
the performance was not satisfactory. We attribute this to
the fact that the low-dimensional representation vector is
insufficient for ME, which requires subtle motions. Then,
we modified TCAE to obtain its motion field for classi-
fication, but its performance still did not improve signifi-
cantly. While TCAE’s advantages of disentangling facial
actions and head movements may be useful for other fa-
cial tasks, they are not applicable to MER. Its less accurate
motion field causes it to fail in MER. SelfME’s superior
performance is attributed to its ability to extract subtle and
fine-grained motions, highlighting the importance of learn-
ing accurate motion representation for MER.

4.7. Hyperparameter Analysis

Trade-off Weight ω. ω balances the classification ob-
jective and the degree of symmetric contrast. Fig. 4a shows
that the optimal ω is around 0.1, with 0.11 being the op-
timal. When ω approaches zero, the degree of SC reduces,
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Figure 4. Hyperparameter analysis on the SMIC-HS dataset. (a)
The evaluation metrics for different ω with τ = 0.07. (b) The
evaluation metrics for different τ with ω = 0.1.

resulting in a decline in performance. When ω grows exces-
sively large, the performance decreases because the ultimate
classification objective is affected.

Sharpen Temperature τ . τ provides the flexibility to
slightly modify the entropy of Φi in Eq. 14. Fig. 4b shows
the effect with different τ . When τ > 1, the distribution
flattens, which reduces the model’s sensitivity to predic-
tions. When τ < 1, it is equivalent to optimizing for hard
positives and negatives, applying stronger constraints of the
similarity between the left and right sides of the facial action
features. The best temperature is τ = 0.07.

Motion Amplification Factor γ. When the motion is
extracted, we can amplify the motion with a factor γ be-
fore inputting it into the classification stage. The effects of
MA are shown in Table 4. When we amplify the motion
by a factor of 2, we observe a prominent increase, because
the subtle ME motions are amplified to be observed easily.
However, when the motion is amplified by 3 times, the per-
formance drops significantly. The results suggest that when
the motions are amplified too much, their distinct pattern
might disappear and the noise will be amplified as well.

13840



Table 4. Hyperparameter analysis on the SMIC-HS dataset for MA
(γ). There is a notable increase when the motion is amplified by a
factor of 2, since the subtle ME motions are amplified so that they
can be detected easily.

MA (γ) UF1 UAR
× 1 0.6768 0.6798
× 2 0.6972 0.7012
× 3 0.6523 0.6622

4.8. Visualization

We conducted visualizations of the motion learned by
self-supervision, and a gradient-weighted class activation
mapping (GradCAM) visualization [34] in Fig. 5.

Learned Motion by Self-supervision. We present
the learned motion representations obtained through self-
supervision in column 3 of Fig. 5. We observe that the
pulling up of lip corners, which is challenging to detect
in the positive ME sequence with onset and apex frames,
is clearly visible in the learned motion despite some noise.
Similarly, the depression of the lip corners, which is a key
feature of negative ME, is not readily discernible in the orig-
inal images but is evident in the learned motion. The learned
motions capture critical facial features around the eyes and
mouth regions, where MEs typically manifest. Although
the learned motions appear to be sufficient, there is a dis-
tinct discrepancy in motion intensity between the left and
right sides, which may affect MER. In order to address this
issue, we propose SC to constrain the learning of similar
features for the left and right parts of facial action features.

Symmetric Contrastiveness. To provide further evi-
dence of the effectiveness of SC, we utilized GradCAM to
visualize the attention maps in columns 4 and 5 of Fig. 5.
For the positive ME, the model with SC exhibited better
symmetrical attention around the corners of the lips, while
the model without SC did not show this behavior and was
confused by the noisy motions. For the negative ME, the
model with SC constraints demonstrated improved symmet-
rical attention for the positive lip corner pulling-up action,
whereas the method without SC constraints was misled by
the eye-opening action, which did not contribute to the neg-
ative ME. These visualizations demonstrate that SC effec-
tively encourages the model to focus on symmetrical fea-
tures, which are more indicative of MEs.

5. Limitation and Ethical Concern
Limitation. SelfME cannot currently handle grayscale

input like SAMM dataset [5]. The disparity between color
and grayscale spaces may cause instability in training and
prevent accurate extraction of motions. SelfME requires
detection of the onset and apex in advance. If this is inaccu-
rate, performance may be poor. Recognition of non-frontal
faces, where symmetrical compensation may not work, was

Onset Apex Motion w/o SC w/ SC

Pos

Neg

Figure 5. Motion representation learned by self-supervision, and
GradCAM visualization with (w/) and without (w/o) SC of the
positive (Pos) and negative (Neg) MEs. Although the motions
seem satisfactory, there is a distinct difference between the left
and right motion intensities. SC demonstrated better symmetri-
cal attention to the facial actions on the left and right sides of the
faces, and was robust to noisy actions that did not contribute to the
corresponding MEs.

not evaluated and this could significantly impact perfor-
mance. Future work will focus on developing more robust
and efficient methods to address these limitations.

Ethical Concern. SelfME may be biased due to biases
in collecting and labeling the training data. Current ME data
are lab-controlled scenarios with subjective labeling by an-
notators. Deep learning models could learn those biases and
may be inaccurate for some demographic groups. Personal
and sensitive information could be revealed by ME, so in-
formed consent is needed for their ethical development and
deployment. Weights in these models are patterns learned
from the data and may reveal sensitive information about
individuals. The privacy of the raw data and the learned
patterns in deep learning models must be guarded. Secure
model storage and privacy techniques are needed to prevent
leakage of sensitive information. Addressing these con-
cerns is crucial to ensure the ethical development and de-
ployment of MER systems.

6. Conclusion
In this study, we presented the SelfME framework

for MER. SelfME advances the pipeline for MER by using
self-supervised motion representation instead of sophisti-
cated traditional optical flow inputs. In addition, by pulling
together the representations of left and right facial motions,
our SCViT demonstrated superior performance. Effective
results were demonstrated on CASME II and SMIC-HS
datasets. In the future, we will address the limitations, and
expand the SelfME framework to create a unified pipeline
for both ME spotting and MER tasks.

Acknowledgement
This work is supported by Hong Kong Research Grants

Council (Project 11204821) and Hong Kong Innovation and
Technology Commission (InnoHK Project CIMDA).

13841



References
[1] Vincent Arsigny, Olivier Commowick, Xavier Pennec, and

Nicholas Ayache. A log-euclidean framework for statistics
on diffeomorphisms. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention,
pages 924–931. Springer, 2006. 4

[2] Xianye Ben, Xitong Jia, Rui Yan, Xin Zhang, and Weix-
iao Meng. Learning effective binary descriptors for micro-
expression recognition transferred by macro-information.
Pattern Recognition Letters, 107:50–58, 2018. 1, 2

[3] Xianye Ben, Yi Ren, Junping Zhang, Su-Jing Wang, Kidiyo
Kpalma, Weixiao Meng, and Yong-Jin Liu. Video-based fa-
cial micro-expression analysis: A survey of datasets, features
and algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021. 1, 3

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In International Conference on
Machine Learning, pages 1597–1607. PMLR, 2020. 2

[5] Adrian K Davison, Cliff Lansley, Nicholas Costen, Kevin
Tan, and Moi Hoon Yap. SAMM: A spontaneous micro-
facial movement dataset. IEEE Transactions on Affective
Computing, 9(1):116–129, 2016. 8

[6] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1422–1430, 2015. 2

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16×16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020. 4

[8] Paul Ekman and Wallace V Friesen. Nonverbal leakage and
clues to deception. Psychiatry, 32(1):88–106, 1969. 1

[9] Paul Ekman, Joseph C Hager, and Wallace V Friesen. The
symmetry of emotional and deliberate facial actions. Psy-
chophysiology, 18(2):101–106, 1981. 1, 4
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