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Abstract

Robust principal component analysis (RPCA) is widely
studied in computer vision. Recently an adaptive rank es-
timate based RPCA has achieved top performance in low-
level vision tasks without the prior rank, but both the rank
estimate and RPCA optimization algorithm involve singular
value decomposition, which requires extremely huge com-
putational resource for large-scale matrices. To address
these issues, an efficient RPCA (eRPCA) algorithm is pro-
posed based on block Krylov iteration and CUR decomposi-
tion in this paper. Specifically, the Krylov iteration method
is employed to approximate the eigenvalue decomposition
in the rank estimation, which requires O(ndrq + n(rq)

2
)

for an (n× d) input matrix, in which q is a parameter with
a small value, r is the target rank. Based on the estimated
rank, CUR decomposition is adopted to replace SVD in up-
dating low-rank matrix component, whose complexity re-
duces from O(rnd) to O(r2n) per iteration. Experimen-
tal results verify the efficiency and effectiveness of the pro-
posed eRPCA over the state-of-the-art methods in various
low-level vision applications.

1. Introduction

Robust principal component analysis (RPCA) aims to re-
cover a low-rank matrix L and a sparse matrix S from the
corrupted observation matrix D ∈ Rn×d: D = L + S.
The RPCA can be formulated as the following optimization
problem [1]:

min
L,S

rank(L) + λ∥S∥0 s.t.D = L+ S (1)

*Shiqian Wu is corresponding author.

where ℓ0-norm is the number of nonzero elements in the
matrix, the paramter λ > 0 provides the trade-off between
the rankness and sparsity.

RPCA has been widely studied and applied in computer
vision. For example, “background” in a video clip captured
by a static camera has a low-rank property, which can be
considered in background modeling [2]. The requirement
of detecting sparse outliers from the observed imagery data
leads to RPCA applications in image or video processing
[3]. In industry, RPCA is also applicable to point cloud
filtering [4], surface defects detection [5], shock sensing [6],
etc.

It is noted that the optimization problem (1) is NP-hard.
The convex relaxation of RPCA has been studied to achieve
an exact recovery in [1, 7–12], where the RPCA problem
was relaxed as the sum of the nuclear norm and ℓ1-norm.
But the convex methods always have a rate of sublinear con-
vergence and high computation in practice [13]. It is neces-
sary to exploit the structure of the underlying data and de-
velop more efficient algorithms for RPCA. Zhou et al. [14]
extended the equality constraint of RPCA to inequality in
order to deal with noisy data, thus the RPCA is reformu-
lated as the following constrained non-convex optimization
problem:

min
L,S
∥D −L− S∥2F

s.t. rank(L) ≤ r and ∥S∥0 ≤ s
(2)

with the target rank r and target sparse number s.
The key idea of Eq. (2) is to formulate a constrained non-

convex optimization problem. Among the nonconvex opti-
mization mthods of RPCA, Zhou et al. [15] substituted the
hard thresholding of Eq. (2) with a soft ℓ1 regularization to
reduce the complexity of S. Netrapalli et al. [16] added the
deterministic sparsity assumption and devoted themselves
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to recovering a low-rank matrix from the sparse corruptions
that were of unknown value and support. The RPCA algo-
rithm via gradient descent on the factorized space in [17]
achieved linear convergence with proper initialization and
step size, whose sparse estimator is to guarantee that the
fraction of nonzero entries in each column and row of S
is bounded above. Inspired by these methods, GoDec+
[18] made the model become an ordinary low-rank projec-
tion problem based on the correntropy of noise and half-
quadratic optimization theory. In [19], RPCA problem is
considered for the first time without heuristics, such as loss
functions, convex and surrogate constraints, which provides
a new direction for potential research on online algorithms.
In addition, Ornhag et al. [20] used second-order methods to
convert the original objectives to differentiable equivalents,
benefitting from faster convergence.

Meanwhile, the efficient algorithms for RPCA have been
widely investigated for large-scale matrices. In [16], the de-
veloped algorithm involved alternating projections between
a set of low-rank matrices and a set of sparse matrices,
whose projection idea was also widely studied. Inspired
by [16], a proximal block coordinate descent method was
proposed in [21] to find an ϵ-stationary solution in O(1/ϵ2)
iterations. Furthermore, an accelerated alternating projec-
tion strategy was studied in [22] for RPCA, which project a
matrix onto a specific low-dimensional subspace before ob-
taining a new estimate of the low-rank matrix via truncated
SVD.

Most of RPCA and its variants contain SVD, which re-
quires significant computational cost for large-scale matri-
ces. Hintermüller [23] directly considered a least-squares
problem subject to rank and cardinality constraints based
on matrix manifolds, which favorably avoids singular value
decompositions in full dimension. Phan et al. [24] pro-
posed an accelerated algorithm with iteratively reweighted
nuclear norm to ensure that every limit point is a critical
point, which leads to small singular values and obtains fast
result. Some different computing strategies were employed
to substitute SVD so that the computation of RPCA was sig-
nificantly reduced. Cai et al. [25] introduced CUR decom-
position at each iteration, which only required O(r2n) flops
per iteration and preserved more information than SVD.

Generally, the aforementioned algorithms achieved ef-
ficient and effective performance in different computer vi-
sion tasks. It is highlighted that these methods require the
rank of a low-rank matrix to be known a prior, which is
inappropriate in most practical applications. To bridge this
gap, Xu et al. [26] proposed a rank estimation method based
on Gerschgorin disk theorem (GDE), whose computational
complexity is O((d− 1)

3
) at each iteration. Furthermore,

an adaptive weighting RPCA was developed based on iter-
atively estimated rank, which outperforms the state-of-the-
art RPCA methods in various computer vision applications.

More specifically, the adaptive weighting RPCA in [26] was
formulated as the following optimization problem:

min
L,S
∥L∥W + λ∥S∥1 s.t.D = L+ S (3)

where ∥L∥W = Σiωiσi(L) and ωi are non-negative
weights. Based on the estimated rank of L, the weights
can be updated iteratively.

Although the adaptive weighting RPCA [26] achieves
top performance in recovering a low-rank matrix and a
sparse matrix, both the rank estimation and RPCA opti-
mization algorithm contain SVD, which takes significant
computational costs for large-scale matrices. Recently, ran-
domized block Krylov iteration [27] was introduced to ap-
proximate the singular value decomposition in fewer iter-
ations with better accuracy guarantees. This motivates us
to use the block Krylov iteration method to accelerate the
GDE-based rank estimation in this work. The computa-
tional complexity of the proposed Krylov GDE (KGDE)-
based rank estimation is reduced to O(ndrq + n(rq)

2
),

where q is a parameter with a small value. On the other
hand, CUR decomposition is also adopted to replace SVD
in the updates of a low-rank matrix, thus the computational
complexity of RPCA is significantly reduced. Since the
rank of a matrix is required to be known for CUR decompo-
sition, it is natural that the proposed KGDE is used to adap-
tively estimate the rank of the low-rank matrix within the it-
erative RPCA computing. Furthermore, a new non-convex
low-rank regularized term is used to replace the weighted
nuclear norm in (3) which can improve the low-rank matrix
approximation. Compared with the state-of-the-art RPCA
approaches, the proposed efficient RPCA (eRPCA) algo-
rithm are fast with better accuracy guarantees. The main
contributions of this paper are as follows:

1) An efficient rank estimation method based on Ger-
schgorin disks with block Krylov iteration is proposed
to accelerate the rank estimate of low-rank matrices.

2) CUR decomposition is adopted to reduce the compu-
tation of SVD on a large-scale matrix in the update of
the low-rank matrix.

3) An efficient non-convex RPCA method with a non-
convex weighted regularizer is proposed to achieve
better recovery of the low-rank matrix and the sparse
matrix.

4) The proposed eRPCA algorithm has been applied to
various computer vision scenarios and outperforms the
state-of-the-art methods on large-scale data.

In the following section, the improved eRPCA method,
which consists of efficient rank estimation and new weight
is presented in Section 2. The experimental results are
demonstrated in Section 3, and the conclusions are drawn
in Section 4.
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2. Proposed Method
2.1. Efficient Rank Estimation via Block Krylov It-

eration

In [26], GDE was used to estimate the rank of a low-
rank matrix, which involves SVD and has the computational
complexity O((d− 1)

3
) for a matrix D ∈ Rn×d. Hence it

is time-consuming to estimate the rank of large-scale matrix
D. Recently it has been shown that block Krylov iteration
(BKI) method [27] gives nearly optimal approximation of
singular values and singular vectors with few interations. In
this subsection, an efficient rank estimation is proposed by
combining BKI and GDE, which is named as KGDE.

Now we give a brief review on the block Krylov iteration
method. For a matrix D ∈ Rn×d, the Krylov subspace is
obtained by

K := [v,Dv,D2v, · · · ,Dq−1v] (4)

where v is a vector of unit norm, ∥v∥ = 1, and q is a scalar.
In [28], the Krylov subspace was extended to randomized
block Krylov subspace:

K := [V ,DV ,D2V , · · · ,Dq−1V ] (5)

where V = [v1, · · · ,vb] ∈ Rd×b is a block of b random
vectors.

After constructing the block Krylov subspace, the Block
Krylov Iteration (BKI) [27] can be used to generate closely
approximate eigenpairs within fewer iterations by project-
ing the matrix onto the randomized block Krylov subspace.
Its idea is to take a randomized starting matrix V = DΩ
as the initial matrix, where Ω is a Gaussian random matrix.
BKI captures an accurate range space:

K := (DDT )
q
DΩ (6)

where q := Θ( log d√
ε
). Orthonormalize the columns of K

to obtain Q then compute M := QTDDTQ. Set Uk to
the top k singular vectors of M . At last, return the low-
dimension matrix Z:

Z = QUk (7)
The following theorem shows that the randomized BKI

can get strong relative-error bound.

Theorem 1 [27] Given data matrix D ∈ Rn×d, n < d
with eigenvalues λi, i = 1, 2, · · · , n. Let {θi,φi}ki=1 be the
k eigenpair computed using q steps of Block Krylov Itera-
tion (using the orthonormal basis of K for V ∈ Rd×b). If
q = log d√

ε
for some 0 < ε < 1, then have
|θi − λi| ≤ ελk+1, i = 1, · · · , k.

In the rest of this subsection, we present a fast rank esti-
mation of low-rank matrices based on the BKI and GDE.
Given a low-rank matrix D ∈ Rn×d, n < d with rank
r. The BKI algorithm outputs a low-dimension matrix

Z ∈ Rn×k, k < d, which aligns well with the top k sigular
vectors of D. If r ≤ k, the ranks of D and Z are equal.
Hence it reduces the computational complexity when GDE
can also be applied to Z to estimate the rank instead of the
large-scale matrix D.

The covariance matrix RZ ∈ Rk×k of the matrix Z with
a rank r can be defined as:

RZ = ZTZ (8)
Then the eigenvalue decomposition of RZ is given by

RZ = URZΣRZU
H
RZ

(9)
where URZ = [u1,u2, · · · ,uk] is the eigenvector matrix,
and ΣRZ = diag(σ1, σ2, · · · , σk) represents the eigen-
value matrix. According to the Gerschgorin disk theorem
[29], RZ can be transformed as follows:

RZ =


R11 R12 · · · R1k

R21 R22 · · · R2k

...
...

. . .
...

Rk1 Rk2 · · · Rkk

 =

[
RZ1 R
RH Rkk

]

(10)
where RZ1 ∈ R(k−1)×(k−1) is the square matrix by the
first (k − 1) rows and the first (k − 1) columns of RZ1,
and R = [R1k, R2k, · · · , R(k−1)k]

T . Then the eigenvalue
decomposition on RZ1 is obtained as:

RZ1 = UZ1Σ1U
H
Z1 (11)

where UZ1 = [q′
1, q

′
2, · · · , q′

k−1] is an (k − 1) × (k − 1)
unitary matrix composed of the eigenvectors of RZ1, and
Σ1 = diag(σ′

1, σ
′
2, · · · , σ′

k−1). Similar to Eq. (10), a uni-
tary transformed matrix U ∈ Rk×k(UUH = I) is defined
as:

U =

[
UZ1 0
0T 1

]
(12)

The transformed covariance matrix is obtained by:

RT = UHRZU =

[
UH

Z1RZ1UZ1 UH
Z1R

RHUZ1 Rkk

]

=



σ′
1 0 0 · · · 0 ρ1
0 σ′

2 0 · · · 0 ρ2
0 0 σ′

3 · · · 0 ρ3
...

...
...

. . .
...

...
0 0 0 · · · σ′

k−1 ρk−1

ρ∗1 ρ∗2 ρ∗3 · · · ρ∗k−1 Rkk


(13)

where ρi = q′
i
H
R. The eigenvalues of RT can be esti-

mated using the Gerschgorin disk theorem [29]. Then, the
radii of the first (k − 1) Gerschgorin’s disk can be written
as:

ri = |ρi| = |q′
i
H
R| (14)

where the radius ri of the ith Gerschgorin’s disk depends
on the size of q′

i
H
R.

To further improve the accuracy of the rank estimation,
the radii of the Gerschgorin’s disk are shrank in [26]. Then
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Algorithm 1 KGDE

Input: D ∈ Rn×d, error ε ∈ (0, 1), k = 2, the (1 + ε)
relative-error bound for BKI q = log d√

ε

Output: Estimated rank r
Set gde = zeros(d, 1)
for t = 1 to d do
Z ∈ Rn×k ← BKI(D ∈ Rn×d, ε, q)
Covariance matrix RZ = ZTZ
Obtain the transformed unitary matrix according to
Eqs. (10)-(12)
Calculate the radii ri of the Gerschgorin’s disk accord-
ing to Eqs. (14)-(15)
Calculate gde(t) according to Eqs. (16)-(17)
if (t > 1&&gde(t) < 0) then

break;
else
k = k + 1

end if
end for
r = t− 1
return r

a new diagonal matrix ΣT = diag(σ′
1, σ

′
2, · · · , σ′

k−1, σ
′
k)

is constructed, where σ′
k =

√∑k−1
i=1 σ′

i
2. Thus, the new

transformed matrix RTΣT is constructed as follows:

RTΣT = ΣTRTΣ
−1
T

=



σ′
1 0 · · · 0

σ′
1

σ′
k
ρ1

0 σ′
2 · · · 0

σ′
2

σ′
k
ρ2

...
...

. . .
...

...

0 0 · · · σ′
k−1

σ′
k−1

σ′
k
ρk−1

σ′
1

σ′
k
ρ∗1

σ′
2

σ′
k
ρ∗2 · · · σ′

k−1

σ′
k
ρ∗k−1 Rkk


(15)

RTΣT and RT are similar matrices and have the same
eigenvalues. In Eq. (15), the radii are compressed to vari-
ous degrees. Finally, the estimated rank is obtained by the
improved heuristic decision rule:

gde(t) =
1√∑k−1
i=1 σ′

i
2
[|σ′

t|rt−
H

(t)
D (M)

k − 1

k−1∑
i=1

|σ′
i|ri] (16)

where t = 1, 2, · · · , k − 2, and 0 < H
(t)
D (M) < 1 is the

adjustment factor:

H
(t)
D (M) =

2|σ′
t+1|√∑k−1
i=t σ′

i
2

(17)

As a result, the rank r = t − 1 if the first negative value
of (16) is reached at t.

When r ≤ k, D is transformed to Z by BKI, then the
rank of Z is estimated by GDE. It is noted that while r > k,

GDE can not estimate the true rank of D from Z. To adap-
tively determine an appropriate k, KGDE is proposed by
adopting iteration, and GDE is served as a stopping crite-
rion for such Krylov subspace approximation of Z. The
KGDE for rank estimation based on BKI and GDE is sum-
marized in Algorithm 1.

Remark 1: The computational cost of KGDE is related
to BKI. If the estimated r of the input matrix D ∈ Rn×d

is exact, the computational complexity will be O(ndrq +

n(rq)
2
), where n < d. For sparse matrix, the computa-

tional cost of KGDE will be O(nnz(D)rq+n(rq)
2
), where

nnz(D) is the number of nonzeros in D. Since r ≤ n and
q = log d√

ε
are small, the KGDE will be inexpensive, espe-

cially for sparse matrices.
Remark 2: The accuracy of the KGDE mainly depends

on the BKI. In light of Theorem 1, Z is obtained within
a high-quality principal components approximation of D,
both its eigenvalues and eigenvectors are highly close to the
actual ones of D.

2.2. Efficient RPCA based on KGDE and CUR De-
composition

In this subsection, an efficient RPCA based on the above
rank estimation and CUR decomposition is proposed for
solving the following optimization problem:

min
L,S
∥D −L− S∥2F + λ∥L∥γ s.t. ∥S∥0 ≤ s (18)

where

∥L∥γ =


∑
i=1

eγσi

γ + σi
, i ≤ r

0 , i > r

and σi, i = 1, 2, · · · , r, is the singular value,γ > 0, and
λ is the regularized parameter which provides a trade-off
between the recovery of low-rank matrix and sparse matrix.

The optimization model (18) adds a new non-convex
low-rank regularization term to Eq. (2), which adopts the
estimated rank to achieve better recovery accuracy of the
low-rank matrix than the weighted nuclear norm in (3).

In this work, the alternating projection method is used
to solve the following two sub-problems until convergence:

Lℓ+1 = argmin
L

∥D −L− Sℓ∥2F + λ∥L∥γ (19)

Sℓ+1 = argmin
S: ∥S∥0≤s

∥D −Lℓ+1 − S∥2F (20)

Update for L: The traditional solution of (19) often in-
volves SVD, which requires significant computational re-
source for a large-scale matrix. To efficiently solve the
model (19), we replace SVD with CUR decomposition [30],
which has been proven to be efficient and effective in solv-
ing classical RPCA problem [31]. Mathematically, the CUR
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(a) (b) (c) (d)

Figure 1. The numerical rank estimation of sparse data matrices.

decomposition of (19) can be rewritten as follows:

Cℓ+1 = argmin
L:,J

∥[D −L− Sℓ]:,J ∥2F + λ∥L:,J ∥γ (21)

Uℓ+1 = T S([D −L− Sℓ]I,J ) (22)

Rℓ+1 = argmin
LI,:

∥[D −L− Sℓ]I,:∥2F + λ∥LI,:∥γ (23)

where Cℓ+1 ∈ Rn×I is I columns of (19) via uniform sam-
pling, Rℓ+1 ∈ RJ×d is J rows of (19) in the same way,
Uℓ+1 ∈ RI×J is the overlap of the column and row indices
of Cℓ+1 and Rℓ+1. T S(·) denotes the truncated SVD.

In addition, the rank value r is needed for T S(·) and
CUR decomposition, which can be exactly estimated by our
proposed KGDE method.

As Eqs. (21) and (23) are the combination of concave
and convex functions, the Difference of Convex program-
ming [32] is used to solve these problems. Thus, Cℓ+1 can
be obtained as follows [33]:

Cℓ+1 = [adiag{σ∗}bT ]:,J (24)
where a and b are the left and right singular vectors of (D−
Sℓ+1), respectively, and σ∗ has a closed-form solution at
each iteration:

σi+1 = max((σD−Sℓ+1
− λωi

µℓ
), 0) (25)

where σD−Sℓ+1
is the singular value of (D−Sℓ+1), µ > 0,

and ωi =


γeγ

(γ + σi(γ))
2 , i ≤ r

0 , others

is the gradient of ∥L∥γ at

σi. Obviously, ωi is dependent on r, which can be estimated
by KGDE at each iteration.

Similarly,
Rℓ+1 = [adiag{σ∗}bT ]I,: (26)

Hence, the updated for L is:
Lℓ+1 = Cℓ+1U

†
ℓ+1Rℓ+1 (27)

where (·)† denotes the Moore-Penrose pseudoinverse.
Update for S: Similarly, the optimization of (20) can be

divided into as:
[Sℓ+1]:,J = argmin

S:,J : ∥S∥0≤s

∥[D −Lℓ − S]:,J ∥2F (28)

[Sℓ+1]I,: = argmin
SI,:: ∥S∥0≤s

∥[D −Lℓ − S]I,:∥2F (29)

Algorithm 2 eRPCA based on KGDE

Input: D ∈ Rn×d with estimated rank r; δ: error;
λ,µ: penalty parameter;ζ0: initial thresholding value;
|I| = O(r),|J | = O(r): sampling number of rows and
columns; γ: non-convex regularizer parameter.

Output: L,S
Uniformly sample row indices I and column indices J .
L0 = 0, S0 = 0, k = 0
while not converged do

Resample I and J
Update ζk+1 = ηζ0
Update Sℓ+1 according to Eqs. (28)-(29)
Estimate and update r by KGDE
Update Cℓ+1 according to (21)
Update Rℓ+1 according to (23)
Update Uℓ+1 according to (22)
Lℓ+1 = Cℓ+1U

†
ℓ+1Rℓ+1

ℓ = ℓ+ 1
end while

For S, the hard thresholding operatorHT is adopted as:

[HT (S)]i,j =

{
Si,j , if |Si,j | > ζ,

0 , otherwise.
(30)

where ζ is the thresholding value. The hard thresholding is
employed for projections on to (D −Lℓ).

The iteration is terminated when
∥[D −Lℓ − Sℓ]:,J ∥F + ∥[D −Lℓ − Sℓ]I,:∥F

∥D:,J ∥F + ∥DI,:∥F
< δ

(31)
The entire procedure to solve the problem (18) is sum-

marized in Algorithm 2.
Remark 3: The computational complexity of U in CUR

decomposition is O(r3). Since the sampling numbers of
rows and columns are |I| = O(r) and |J | = O(r),
respectively, updating L requires O(r2n) flops per iter-
ation. In contrast, computing the SVD usually requires
O(rnd). In addition, the runtime of updating S is actu-
ally a simple projection, whose computational complex-
ity is further less than that of L. Thus, the computa-
tional complexity of the alternating projection procedure is
O(d

2r
ϵ + d · poly(r, log(r/ϵ), 1/ϵ)), where 0 < ϵ < 1 is an
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(a) (b)

Figure 2. The numerical rank estimation of video data matrices.

accuracy parameter.

3. Experimental Results
This section reports the experimental results of our pro-

posed eRPCA and compares it with state-of-the-art algo-
rithms on synthetic datasets and two practical computer vi-
sion scenarios. The parameters in our method are listed
as follows: γ = 0.02, δ = 10−7, λ = 10−3, µ = 1

2 ,
ζ0 = max(|D|), and ε = 0.05. The parameters in other
methods use their default settings. All the experiments are
conducted on a laptop with MATLAB 2019 equipped with
Windows 10 based on AMD Ryzen 5 CPU with 32G RAM.

3.1. The Validation of Rank Estimation Method

3.1.1 Public real datasets

To validate the efficiency and accuracy of KGDE, the gen-
eral data matrices are tested to estimate the rank. SuiteS-
parse Database1 [34] provides general data matrices with
low numerical rank, whose Gaussian-type distribution as-
sumptions for the data and noise may not hold. In addi-
tion, the video datasets from Scene Background Initializa-
tion (SBI) dataset2 [35], which are converted to the full ma-
trix are also tested.

Fig.1 shows the numerical rank estimation for the SVD
curve of sparse data matrices. The singular values of
Fig.1(a) and Fig.1(b) have apparent distribution, and KGDE
and GDE obtain the exact rank estimation. The singular
values of Fig.1(c) and Fig.1(d) are very close, it is therefore
hard to bind the rank. The result of Fig.1(c) is the same, and
the one of Fig.1(d) is slightly different, while the gap can be
ignored in practice.

Fig.2 shows the rank estimation results of video data ma-
trices. The video datasets have a stable low-rank, and the
rank is usually equal to 1. Thus, the distribution of their
singular values has a noticeable gap.

The comparisons of runtime and estimated rank for dif-
ferent matrices are shown in Table 1. When the matrix scale
is small, the execution time is close, but KGDE is still faster
than GDE. When the matrix becomes more extensive, the
efficiency of KGDE performs better than GDE. Because the

1https://sparse.tamu.edu/
2https://sbmi2015.na.icar.cnr.it/SBIdataset.html

(a) (b) (c)

Figure 3. The comparison of the average runtime between differ-
ent algorithms.

Table 1. The results of runtime and estimated rank using GDE and
KGDE

Dataset GDE KGDE
Runtime(s) Rank Runtime(s) Rank

lp blend 0.156 3 0.094 3
lp pilot4 1.488 3 0.250 3

Ipi bgdbg1 0.274 6 0.266 6
Ipi ceria3d 91.180 5 0.234 3
IBMtest2 0.176 1 0.134 1
CAVIAR1 2.235 1 0.757 1

computational complexity of KGDE is not too much related
to the dimension of the matrix, KGDE can maintain a fast
result.

3.1.2 Synthetic Datasets

For synthetic datasets, our algorithm was compared with the
state-of-the-art RPCA-based approaches: RPCA [1], PSSV
[36], WNNM [37], and ARE-RPCA [26].

The recovery ability and execution time of the algo-
rithms are investigated. The input matrix D ∈ Rn×d is
corrupted by sparse noise with the corruption rate α =
{0.1, 0.3, 0.5, 0.7}. The parameters are set: d = 10000,
n = {20, 100, 500} and different ranks r = {1, 3, 5}.
The iteration stop criterion is 10−7. Let Lsol be the re-
construction of L and the reconstruction error is defined as
∥Lsol −L∥F /∥L∥F .

The comparisons of the average runtime with different
ranks r and dimensions d are shown in Fig.3. The eRPCA
is faster than others for the average runtime in Fig.3. When
the input matrix has a larger scale or rank, the time gap
between our method and others is more prominent.

The simulation results are shown in Fig.4. It can be seen
that eRPCA algorithm is stubborn when the corruption rate
is low and has similar results with other algorithms. When
the corruption rate rises, the reconstruction error of eRPCA
algorithm is larger. eRPCA performs worse when the cor-
ruption rate is 0.7 with a large rank.

Table 2 shows the desired rank of the low-rank matrix
decomposed by different algorithms under different corrup-
tion rates. It can be observed that the proposed eRPCA can
obtain correct ranks of low-rank matrices in all cases. Other
algorithms can get the desired rank correctly only if the cor-
ruption rate is low.

According to the above analysis, it is observed that eR-
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Figure 4. Comparison of various algorithms with different dimensions n, matrix ranks r, and corruption rates α.

Table 2. The desired rank of low-rank matrix decomposed by different algorithms in different corruption rates and dimensions with different
ranks

Algorithm Dimension r = 1 r = 3 r = 5
α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.1 α = 0.3 α = 0.5 α = 0.7

RPCA
n = 20 1 1 6 6 4 8 6 5 5 6 5 6
n = 100 1 1 1 2 3 3 3 55 5 5 5 52
n = 500 1 1 1 7 3 3 3 12 5 5 5 16

PSSV
n = 20 1 1 1 2 3 3 5 15 5 5 15 19
n = 100 1 1 1 1 3 3 3 3 5 5 5 8
n = 500 1 1 1 6 3 3 3 10 5 5 5 13

ARE-RPCA
n = 20 1 1 1 1 3 3 3 5 5 5 5 5
n = 100 1 1 1 1 3 3 3 3 5 5 5 5
n = 500 1 1 1 1 3 3 3 7 5 5 5 5

WNNM
n = 20 1 1 1 1 3 3 5 11 5 5 15 20
n = 100 1 1 1 1 3 3 3 100 5 5 5 100
n = 500 1 1 1 1 3 3 3 500 5 5 5 500

eRPCA
n = 20 1 1 1 1 3 3 3 3 5 5 5 5
n = 100 1 1 1 1 3 3 3 3 5 5 5 5
n = 500 1 1 1 1 3 3 3 3 5 5 5 5

PCA has excellent robustness and the fastest excutation
time.

3.2. Foreground-Background Separation

In this subsection, we evaluate the proposed eRPCA with
the following approaches: ARE-RPCA [26], IRCUR [25],
PETRELS [38], and ADW-RPCA [39].

Foreground-background separation is an important ap-
plication of RPCA. Scene Background Initialization (SBI)

dataset3 [35] is considered. The visual comparisons of the
sub-dataset CAVIAR1 are shown in Fig.5, containing 610
frames with size 384× 256. The dataset can be represented
by a matrix, where each column is a vectorized video frame.
Then each algorithm can be applied to decompose the ma-
trix into low-rank parts and sparse ones; that is, this scene
can be separated from the moving foreground object from
the static background.

There are five frames selected in Fig.5, and the upper and

3https://sbmi2015.na.icar.cnr.it/SBIdataset.html
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Figure 5. The comparison of visual results on CAVIAR1 between
different algorithms.

Table 3. Performance of one frame from CAVIAR1 dataset among
different algorithms

AGE pEPs% pCEPS% MSSSIM PSNR CQM TIME(s)

ARE-RPCA 5.2637 4.0741 3.4871 0.8564 25.4414 24.7876 10.78593
IRCUR 3.1489 0.2828 0.1821 0.9917 34.4689 33.2714 0.007564

PETRELS 4.9972 5.0161 4.0222 0.9329 29.8017 29.0773 1.14708
ADW-RPCA 2.64 0.3499 0.2482 0.9905 34.4853 33.3402 6.356669

eRPCA 2.6394 0.2686 0.1689 0.9917 34.8626 33.5725 0.034198

lower parts represent the background and foreground. It can
be shown that ARE-RPCA and PETRELS yield artifacts in
some backgrounds. IRCUR, ADW-RPCA, and eRPCA ob-
tain more distinctive visual results.

In addition, objective evaluations, i.e, AGE, pEP, pCEP,
PSNR, MS-SSIM, CQM, are performed on SBI database
where the smaller the first three values, the better the sepa-
ration results, and the last three ones and vice versa. Table 3
shows the performance evaluation of the above six metrics
and runtime. For the first six metrics, eRPCA algorithm ob-
tains better results. Due to the time of estimating the rank,
eRPCA algorithm is slower than IRCUR for each frame.
However, IRCUR needs to determine the rank in advance,
leading to its results being slightly inferior to ours. More-
over, only ARE-RPCA and eRPCA algorithm can obtain
the rank prior, but ours are better than ARE-RPCA in all
aspects.

3.3. Shadow Removal from Face Images

Face images taken under different lighting conditions
always introduce errors, for example, uneven lighting,

RPCA WNNMPSSV ARE-RPCAOriginal Image eRPCA

Figure 6. The comparison of different algorithms on two images.

Table 4. The comparison of runtime between different algorithms

RPCA PSSV WNNM ARE-RPCA eRPCA

yale05 3.535s 0.973s 1.113s 3.648s 0.071s
yaleB02 3.499s 0.962s 2.424s 3.650s 0.081s

shadow etc, which yields challenge for face recognition.
Fig.6 (first column) shows two typical examples with size
192 × 168 from the Extended Yale B database4 [40], a
benchmark database in face recognition. Each image is con-
verted to a column vector. The comparisons of these meth-
ods are given: RPCA [1], PSSV [36], WNNM [37], and
ARE-RPCA [26]. In addition, since the images are aligned,
the rank is set to 1, and ARE-RPCA and eRPCA can adap-
tively estimate the rank.

Fig.6 shows the shadow removal results of different algo-
rithms. In the visual aspect, the proposed eRPCA algorithm
removes the shadow well and does not need to determine
the rank. The runtime of different algorithms is shown in
Table 4 and ours is the fastest.

Due to the space limitation, more experimental results
are shown in the Supplementary Material.

4. Conclusion

In this paper, an efficient non-convex RPCA method is
proposed for recovering a low-rank matrix and a sparse
matrix, especially with large sizes. Specifically, a fast
rank estimation method KGDE has been proposed by using
Gerschgorin disk theorem with the block Krylov iteration.
Based on the estimated rank, a new non-convex regularizer
is proposed to achieve better recovery of the low-rank ma-
trices with less computation due to CUR decomposition in-
volved in the iterations. Experimental results demonstrate
that the proposed eRPCA algorithm outperforms state-of-
the-art algortihms in various vision applications.

In future, our algorithm will be extended in other appli-
cations, such as image recovery and video denoising. How-
ever, the accuracy of eRPCA for high corruption rate is still
a big challenge. Therefore, we will devote ourselves to im-
proving the robustness of the algorithm. Meanwhile, the
parameter adaptability is considered in our future work.

4http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html
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