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Abstract

Many deep learning-based solutions to blind image de-
blurring estimate the blur representation and reconstruct
the target image from its blurry observation. However,
these methods suffer from severe performance degradation
in real-world scenarios because they ignore important prior
information about motion blur (e.g., real-world motion blur
is diverse and spatially varying). Some methods have at-
tempted to explicitly estimate non-uniform blur kernels by
CNNs, but accurate estimation is still challenging due to
the lack of ground truth about spatially varying blur ker-
nels in real-world images. To address these issues, we pro-
pose to represent the field of motion blur kernels in a latent
space by normalizing flows, and design CNNs to predict the
latent codes instead of motion kernels. To further improve
the accuracy and robustness of non-uniform kernel estima-
tion, we introduce uncertainty learning into the process of
estimating latent codes and propose a multi-scale kernel at-
tention module to better integrate image features with es-
timated kernels. Extensive experimental results, especially
on real-world blur datasets, demonstrate that our method
achieves state-of-the-art results in terms of both subjec-
tive and objective quality as well as excellent generaliza-
tion performance for non-uniform image deblurring. The
code is available at https://see.xidian.edu.cn/
faculty/wsdong/Projects/UFPNet.htm.

1. Introduction
Blind single image deblurring is a classic low-level vi-

sion problem that aims to recover the unknown sharp im-
age from its observed blurry image without knowing the
blur kernel. The uniform degradation model assumes that
a blurry image is generated by a spatially invariant convo-
lution process, which can be mathematically formulated as

y = B(x,k) + n, (1)
*Corresponding author
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Figure 1. The non-uniform kernel estimation and deblurring re-
sults of the proposed UFPNet on the RealBlur-J dataset.

where x and y are sharp image and blurry image, respec-
tively, B(·,k) represents the blurring operator with the blur
kernel k and n denotes the additive Gaussian noise. The
simple case assumes the blur operation in Eq. (1) is uniform
and the corresponding blur kernel is shift-invariant [11,43].
Several methods have been proposed to estimate the blur
kernel and sharp image simultaneously [6,34,42]. However,
in the real world, there are several factors that can cause blur
degradation, such as camera shake and object movement.
Although camera shake usually causes uniform and global
background blurring, fast-moving objects often produce lo-
cal blurring in the situation of a stationary background [50].
Therefore, the uniform blur in Eq. (1) is inappropriate for
characterizing local blurring in the real world.
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Traditional approaches to blind image deblurring first
estimate the underlying blur kernels and then reconstruct
the sharp image by iterative optimization [12, 28, 40, 44].
To constrain the solution space, both the image- and blur-
related priors are exploited. In [29], the dark channel prior
is used to estimate the blur kernel and reconstruct the sharp
image. In [45], a novel extreme channel prior is proposed
to facilitate the process of simultaneous image and kernel
estimation. More recently, deep learning-based solutions
have been proposed for blind image deblurring. Existing
methods can be categorized into two classes. One class
is to explicitly estimate the non-uniform blur kernel using
convolutional neural networks (CNNs) [1, 2, 33, 37]. The
other class of approaches is to use CNNs to directly recon-
struct the original sharp image end-to-end without estimat-
ing the blur kernel [7, 19, 23, 26, 31, 46–48, 51]. DeepDe-
blur method [27] designs a multi-scale CNN to mimic con-
ventional coarse-to-fine optimization and directly restores
sharp images without assuming any restricted blur kernel
model. SRN [38] proposes a scale-recurrent network and an
encoder-decoder ResBlocks structure in each scale. Kupyn
et al. propose DeblurGAN [19] and DeblurGAN-v2 [20] to
reconstruct sharp images by adversarial training.

Unfortunately, both types of methods mentioned above
have their fundamental limitations. First, since the charac-
teristics of blur in real scenarios are complex, accurate es-
timation of non-uniform (i.e., spatially varying) blur kernel
is challenging. For example, there exists an inevitable un-
certainty in kernel estimation because a blurry image may
have multiple kernel candidates due to its ill-posed nature.
Therefore, incorrect blur kernels will lead to severe perfor-
mance degradation in real-world image deblurring. Second,
end-to-end methods ignore the information of motion prior,
because the formation of image blur is usually associated
with the motion trajectory of the camera and objects, which
can be exploited for image deblurring effectively. The
above observations inspire us to tackle the problem of blind
image deblurring from a different perspective. The motiva-
tion for our work is threefold. On the one hand, since there
is no ground truth of the blur kernel of real blur datasets, we
attempt to simulate the non-uniform motion kernels to facil-
itate the kernel estimation in a self-supervised manner. On
the other hand, we advocate a latent space approach to non-
uniform blur kernel estimation, which is inspired by recent
work on normalizing flows [13, 14,16,25]. Third, we intro-
duce uncertainty learning to the process of estimating latent
code, aiming to improve both the accuracy and robustness
of non-uniform kernel estimation.

In this paper, we propose to model spatially varying mo-
tion blur prior by introducing normalizing flow and uncer-
tainty learning in the latent space to kernel estimation. To
address the issue of non-uniform blur that varies from pixel
to pixel, we propose to represent the motion blur kernels

in a latent space by normalizing flow and designing CNNs
to predict spatially varying latent codes instead of motion
kernels. This latent space approach can be interpreted as
the generalization of the existing flow-based kernel prior
(FKP) [24] from uniform to non-uniform by incorporating
kernel generation from simulated random trajectories (e.g.,
DeblurGAN [19]). To further improve the accuracy and
robustness of kernel estimation, we introduce uncertainty
learning into the process of estimating latent codes and pro-
pose a multi-scale kernel attention module to better inte-
grate image features with estimated kernels. The technical
contributions of this paper are listed below.

• We propose to represent the non-uniform motion blur
kernels in a latent space by normalizing flow. Our la-
tent space approach allows CNNs to predict spatially
varying latent codes rather than motion kernels. For
the first time, we show how to estimate spatially vary-
ing motion blur on a pixel-by-pixel basis.

• To further improve performance and robustness, we in-
troduce uncertainty learning to the latent code estima-
tion process. The network learns the variance of the
latent code to quantify the corresponding uncertainty,
which leads to a more accurate prediction than the de-
terministic model.

• We propose a novel multi-scale kernel attention mod-
ule to integrate image features and kernel information,
which can be plugged into encoder-decoder architec-
tures to incorporate the estimated kernels with the de-
blurring network.

• In view of the lack of ground truth about the non-
uniform motion kernel in real-world images, we tackle
the training set generation in a self-supervised manner.
Extensive experimental results on benchmark datasets
show that the proposed method significantly outper-
forms existing state-of-the-art methods and demon-
strated excellent generalization performance from Go-
Pro to other real-world blur datasets.

2. Related Work
2.1. Kernel Estimation in Image Deblurring

For blind image deblurring, early works use hand-crafted
designed priors to constrain the solution space of blur, in-
cluding total variation [3], heavy-tailed gradient prior [34],
hyper-Laplacian prior [18] and l0-norm gradient prior [44].
In the past decade, numerous deep models have been pro-
posed and have achieved significant success. There are sev-
eral methods that try to estimate blur kernels explicitly. [37]
propose to predict the probabilistic distribution of the mo-
tion blur kernel at the patch level by CNNs. The authors
of [33] perform kernel estimation by division in a Fourier
space from the extracted deep features. In [10], the authors
train CNNs to estimate the spatially invariant blur kernel
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and embed it into an unfolding reconstruction network. [2]
predicts the complex Fourier coefficients of a deconvolution
filter to be applied to the input patch.

2.2. Blind Image Deblurring

Recently, the widely used approaches are to directly es-
timate the original sharp image from the given blurred im-
age without explicitly estimating non-uniform blur kernels
[7, 19, 23, 26, 27, 31, 38, 46–48, 51]. MIMO-UNet [7] re-
visits the coarse-to-fine scheme and presents a multi-input,
multi-output U-net. MPRNet [47] proposes a novel multi-
stage progressive architecture to generate contextually en-
riched and spatially accurate outputs. HINet [5] introduces
instance normalization into a residual block and designs
a half-instance normalization block to boost the perfor-
mance. DeepRFT [26] presents a residual fast Fourier trans-
form block to integrate low and high-frequency informa-
tion. MSDI-Net [22] proposes to learn the degradation rep-
resentations of blurry images and integrate them into neural
networks. Stripformer [39] develops a transformer-based
architecture that constructs horizontal and vertical tokens
to reweight image features. NAFNet [4] propose a simple
baseline network for image deblurring.

2.3. Normalizing Flow

Normalizing Flows [8, 9, 13, 14, 16, 17, 25, 30] are gen-
erative models which can deform the complex data distri-
bution pK to a simple distribution pZ (usually a Gaussian
distribution) by invertible neural networks. According to
the change of variable formula [8], the concise negative log-
likelihood loss function can be expressed as

L(k;θ) = − log pZ (fθ(k))− log

∣∣∣∣det(∂fθ (k)

∂k

)∣∣∣∣ , (2)

where ∂fθ(k)
∂k is the Jacobian matrix of the flow model fθ ,

and the parameter θ is optimized by estimating maximum
likelihood.

NICE [8] proposes a flow model by stacking nonlinear
additive coupling and other transformation layers. The au-
thors then upgrade the additive coupling to the affine cou-
pling in RealNVP [9], which achieves better performance
while retaining invertibility. Recently, normalizing flows
have also been successfully applied in image restoration
tasks such as super-resolution [24, 25]. Deflow [41] pro-
poses a novel method based on conditional normalization
of flow to learn degradations from unpaired data. FKP
[24] proposes a Gaussian kernel prior to obtain the uniform
blur kernel by optimizing the latent variable. Unlike FKP
searching for a latent code, we propose to directly predict
the latent code from the blurry image and use the estimated
code to obtain the non-uniform blur field.

Normalizing 

Flow

~ ( 0,I ) Z N K

(a) Some samples of the simulated motion blur kernels.

(b) The illustration of the flow-based motion prior model.

Figure 2. The illustration of some motion blur kernels simulated
from random trajectories and the normalizing flow learns a bijec-
tive mapping between the blur kernels and Gaussian distribution.

3. Proposed Method
3.1. Self-supervised Kernel Estimation in Latent

Space

There have been many approaches trying to estimate blur
kernel from blurry image by CNNs [1, 2, 33, 37], they as-
sume that the ground truth of the blur kernel is given or
acquired through traditional optimization methods [21, 40].
To constrain the solution space of non-uniform blur, it is
fundamental and important to exploit an effective prior
[3,18,34,44], and flow-based kernel prior [24] is a learning-
based kernel prior that is applicable for arbitrary blur kernel
modeling. However, due to the complexity of blur charac-
teristics and the lack of ground truth of the real blurry im-
age, these kernel estimation methods are not practical in real
scenarios. Therefore, we propose to represent the complex
motion blur kernel distribution into a simple Gaussian dis-
tribution by a normalizing flow and estimate the blur kernel
in the latent space.

Specifically, a bijective mapping can be established be-
tween the kernel instance k ∈ K and the corresponding
latent variable z ∈ Z by a normalizing flow: k ↔ z, which
can be mathematically expressed as

k = fθ(z), f−1
θ (k) = z, (3)

where fθ(·) denotes the flow model with parameter θ and
f−1
θ (·) represents the inverse process of the flow. Once

the motion blur kernel samples are given, we can train an
invertible flow model that can transform between the ker-
nel and the Gaussian distribution by Eq. (2). For motion
blur kernels, we adopt a kernel generation method proposed
by [19], which simulates realistic and complex blur kernels
from random trajectories. Some motion blur kernel samples
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(a) The architecture of flow-based uncertain kernel estimation network.

(b) The architecture of encoder-decoder deblurring network with KAM.
(c) The architecture of kernel attention module (KAM).
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Figure 3. Overview of the proposed UFPNet for blind image deblurring. The architecture of (a) the flow-based uncertain kernel estimation
network, (b) the encoder-decoder deblurring network with kernel attention module, (c) the kernel attention module (KAM).

are visualized in Fig. 2(a), and the illustration of the flow-
based motion prior is shown in Fig. 2(b), the architecture of
the flow model is illustrated in the supplementary materials.
With the trained normalizing flow model, we can predict
the relatively simple latent code instead of estimating the
complicated motion kernel in a spatially adaptive manner.

To overcome the problem of lacking ground truth of
blur kernel, we propose to estimate the blur kernel in a
self-supervised manner. We adopt the L1 loss between the
blurry image and the reblurred image by the estimated ker-
nels, aiming at making the estimated blur kernel closer to
the real situation, and the loss function of the kernel estima-
tion (KE) network can be expressed as

LKE =
1

N

N∑
n=1

∥xn ⊗ fθ[G(yn)]− yn∥1 , (4)

where xn and yn denotes the n-th sharp and blurry im-
age pair, N denotes the total number of training samples,
G(yn) denotes the latent codes estimated from yn by deep
network G, fθ[G(yn)] are the non-uniform blur kernels de-
coded by normalizing flow, ⊗ denotes the blur operation.

3.2. Uncertainty Learning in Kernel Estimation

In real scenarios, the characteristics of motion kernels
are complex and spatially varying, making accurate estima-

tion of blur kernels difficult. To improve the performance
and robustness of the prediction results, we introduce un-
certainty learning into the blur kernel estimation process.
As shown in Fig. 3 (a), the kernel estimation network first
takes blurry image y ∈ RC×H×W as input and predicts
the normalized latent code zi ∈ RL×1×1 for each pixel i,
where L = k2 denotes the size of the blur kernel and zi

is of standard normal distribution. Then the latent code of
the entire image is represented as ZK ∈ RL×H×W . Mean-
while, the standard deviation of the latent code is predicted
simultaneously, denoted as σi ∈ RL×1×1 of each pixel and
ΣK ∈ RL×H×W of the entire image. Then the uncertain
component ni of each latent code zi is obtained by Gaus-
sian resampling:

ni ∼ N (0,σ2
i ), (5)

where ni ∈ RL×1×1 has the same size as zi. Then we
transform the standard deviation of zi via z̄i =

√
1− σ2

izi

so that z̄i ∼ N (0, I−σ2
i ). With the assumption that z̄i and

ni are independent, the final latent code can be regarded as
the sum of them, and the result still satisfies the standard
normal distribution:

ẑi = z̄i + ni, ẑi ∼ N (0, I), (6)

where z̄i denotes the identity component of the latent code
and ni is the uncertain component. Since ẑi is corrupted by
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random noise ni during the training period, ẑi is no longer
a deterministic point embedding, thus the model becomes
more robust to the estimation error and can improve accu-
racy. Then the blur kernel of each pixel can be decoded by
the pre-trained normalizing flow model in Section 3.1 us-
ing ki = fθ(ẑi), where ki denotes the final estimated blur
kernel at pixel i, fθ(·) is the pre-trained flow model.

3.3. Uncertain Flow-based Prior Network

Multi-scale Kernel Attention Module. In order for the
deblurring network to utilize the information from the es-
timated blur kernel sufficiently, we propose a novel kernel
attention module (KAM). As illustrated in Fig. 3 (c), let
X ∈ RC×H×W be the input feature maps of the kernel
attention module, we first process the feature maps with a
convolution layer (Conv). Then the non-uniform kernel at
each pixel K ∈ RL×H×W is also input to a convolution
layer. And the kernel attention map is obtained by

F att = Conv3(concat[Conv1(X),Conv2(K)])), (7)

Then the output feature maps are expressed as f(X) =
F att⊙Conv1(X)+X , where ⊙ denotes element-wise mul-
tiplication. Since the image feature size of the encoder in
network is gradually decreasing, our kernel attention mod-
ule at different depths adopts different convolution strides to
adapt to the corresponding feature size. In this way, the in-
formation of the blur kernel can be integrated on the multi-
scale feature maps. With the help of the proposed kernel
attention module, image features will pay different atten-
tion to areas with different degrees of blurring, therefore
achieving better results on non-uniform deblurring.

Overall Framework. The overall framework of the pro-
posed uncertain flow-based prior network (UFPNet) is il-
lustrated in Fig. 3. The blurry image is first input to the
kernel estimation network and obtains the estimated blur
kernel of each pixel. Then the kernels are integrated into
the deblurring network using the kernel attention module.
As illustrated in Fig. 3 (b), the kernel attention module is
plugged into the front of each encoder. Without loss of gen-
erality, we apply our kernel estimation network and KAM
to the NAFNet method [4], which is a simple and effective
U-Net architecture for image restoration.

The training process of the entire network consists of
three stages: (I) Pre-train the normalizing flow model to
represent the motion blur kernel into a Gaussian distribution
by Eq. (2); (II) The self-supervise loss of Eq. (4) is adopted
to pre-train the kernel estimation network; (III) The PSNR
loss [4, 5] is used to train the deblurring network, mean-
while, we use the reblur loss which can be expressed as

Lreblur =
1

N

N∑
n=1

∥F(yn)⊗K(yn)− yn∥1 , (8)

where F(yn) is the reconstructed image and K(yn) denotes
the blur kernels obtained by the pre-trained kernel estima-
tion network. The total reconstruction loss is described as
Lrecon = LPSNR + λLreblur, where λ is set to 0.01.

4. Experiments
4.1. Datasets and Implementation Details

Following previous state-of-the-art blind image deblur-
ring methods [4, 22, 39], we train the proposed UFPNet on
the GoPro dataset [27], which consists of 2,103 pairs of
blurry and sharp images for training. For evaluation, we test
our UFPNet on GoPro [27], HIDE [35] and RealBlur [32]
testsets. The GoPro dataset includes 1,111 test images, the
HIDE dataset provides 2,025 images for testing. The Re-
alBlur dataset has 3,758 blurry and sharp pairs for training
and 980 images for testing. We also train and test on Real-
Blur datasets following [39].

We adopt the training settings used in NAFNet [4], our
model is trained with Adam optimizer [15] (β1 = 0.9 and
β2 = 0.9) for a total of 400K iterations with the initial
learning rate 0.001 with the cosine annealing schedule. The
training patch size is 256×256 and the batch size is 64. We
implement the proposed method by PyTorch.

4.2. Comparison with State-of-the-Art Methods

We have compared our method with several deblurring
methods, including [4, 5, 7, 19, 20, 22, 26, 27, 31, 36, 38, 39,
47–49]. Results are directly cited from the original papers
or generated by the official model released by the authors.

Quantitative comparison. The PSNR and SSIM re-
sults of the test methods for single image deblurring are
reported in Table 1, the proposed UFPNet outperforms all
comparison methods on each test set. Our method achieves
0.37dB improvement in terms of PSNR over the existing
best-performing method NAFNet [4] on GoPro dataset. We
also test UFPNet on the HIDE dataset, which is a human-
aware motion image dataset. To demonstrate the general-
ization property and effectiveness of the flow-based motion
prior, we further evaluated our method on the RealBlur-
R and RealBlur-J datasets. As shown in Table 1, the re-
sults of our method on real blur images are significantly im-
proved compared to other methods. Note that all the mod-
els mentioned above are trained on the GoPro training set,
demonstrating the excellent generalization performance of
our method from GoPro to other real-world blur datasets.
We also train and test on RealBlur datasets, the results are
shown in Table 3. The comparison on computational com-
plexity in terms of MACs (G) are reported in Table 2.

Visual comparison. We have compared the deblurring
visualization results produced by different methods in Fig.
1, 4, 5 and 6. From Fig. 4, we can see that the proposed
method can reconstruct more high-frequency textures and
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Method GoPro HIDE RealBlur-R RealBlur-J Params
(M)PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DeepDeblur [27] 29.23 0.916 N/A N/A 32.51 0.841 27.87 0.827 11.7
SRN [38] 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867 6.8
DeblurGAN [19] 28.70 0.858 24.51 0.871 33.79 0.903 27.97 0.834 N/A
DeblurGAN-v2 [20] 29.55 0.934 26.61 0.875 35.26 0.944 28.70 0.866 60.9
DBGAN [49] 31.10 0.942 28.94 0.915 N/A N/A N/A N/A 11.6
DMPHN [48] 31.20 0.945 29.09 0.924 35.70 0.948 28.42 0.860 21.7
MT-RNN [31] 31.15 0.945 29.15 0.918 N/A N/A N/A N/A 2.6
SAPHN [36] 31.85 0.948 29.98 0.930 N/A N/A N/A N/A 23.0
MIMO-UNet [7] 32.45 0.957 29.99 0.930 35.54 0.947 27.63 0.837 16.1
MPRNet [47] 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873 20.1
HINet [5] 32.71 0.959 30.32 0.932 35.75 0.949 28.17 0.849 88.7
DeepRFT [26] 33.23 0.963 31.42 0.944 35.86 0.950 28.97 0.884 23.0
Stripformer [39] 33.08 0.962 31.03 0.940 36.07 0.952 28.82 0.876 20.0
MSDI-Net [22] 33.28 0.964 31.02 0.940 35.88 0.952 28.59 0.869 135.4
NAFNet [4] 33.69 0.967 31.32 0.943 35.50 0.953 28.32 0.857 67.8
UFPNet (ours) 34.06 0.968 31.74 0.947 36.25 0.953 29.87 0.884 80.3

Table 1. The comparison results on the benchmark datasets, the models are trained only on the GoPro dataset.

Method MIMO-UNet [7] DeepRFT [26] MPRNet [47] NAFNet [4] MSDI-Net [22] UFPNet (ours)
MACs (G) 1235.3 187.0 778.2 65.0 336.4 243.3

Table 2. The comparison on computational complexity in terms of MACs (G), when the input size is 256× 256.

Method RealBlur-R RealBlur-J
PSNR SSIM PSNR SSIM

DeblurGAN-v2 [20] 36.44 0.935 29.69 0.870
SRN [38] 38.65 0.965 31.38 0.909
MIMO-UNet [7] N/A N/A 31.92 0.919
MPRNet [47] 39.31 0.972 31.76 0.922
DeepRFT [26] 39.84 0.972 32.19 0.931
Stripformer [39] 39.84 0.974 32.48 0.929
UFPNet (ours) 40.61 0.974 33.35 0.934

Table 3. The comparison results on RealBlur datasets. The models
are trained and tested on the corresponding datasets.

sharper edges than other methods on GoPro dataset. In Fig
5, it is obvious that our method can restore more natural
body characteristics on HIDE dataset. As can be seen in
Fig. 6, our method achieves good results in removing mo-
tion blur in real blur images.

4.3. Ablation Studies

We conduct sufficient ablation studies to analyze the pro-
posed method, including the effectiveness of flow-based
motion prior, the effectiveness of uncertainty learning and
the effectiveness of the proposed kernel estimation module.

Effectiveness of Flow-based Motion Prior. To demon-
strate the effectiveness of flow-based motion prior in kernel
estimation, we remove the normalizing flow model of the
kernel estimation network in Fig. 3 (a), this simplified net-
work directly estimates the blur kernel instead of estimating
the latent code. We also compare it with a traditional non-
uniform kernel estimation method proposed by Whyte et
al. [40]. To measure the accuracy of the estimated blur ker-
nel, we first compare the PSNR and SSIM results between
the original blurry image and the generated blurry image
using the predicted blur kernels by these kernel estimation
methods. As shown in Table 4, using the network to esti-
mate blur kernel (denoted as the baseline model) has higher
results than the traditional method, and adding normaliz-
ing flow to the network can further improve the accuracy
of estimation. Then we integrate the estimated blur kernels
by these blur kernel estimation methods into the deblurring
network as shown in Fig. 3, and compare the deblurring
results in Table 5, which indicates that the closer estimated
blur kernel is to the real situation, the better deblurring re-
sults we can get.

Effectiveness of Uncertainty Learning. To demon-
strate the effectiveness of uncertainty learning (UL), the
kernel estimation network is modified into a deterministic
model by removing the variance branch and the random
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Stripformer NAFNet UFPNet (ours)Blurry image from GoPro testset MSDI-Net

GT HINet

Figure 4. Visual comparisons on the GoPro dataset. From left to right: blurry image, ground-truth, results by HINet [5], DeepRFT [26],
Stripformer [39], MSDI-Net [22], NAFNet [4] and UFPNet (ours). The estimated kernel at the indicated pixel is illustrated on the left-top.

DeepRFTBlurry

Stripformer NAFNet UFPNet (ours)Blurry image from HIDE testset MSDI-Net

GT HINet

Figure 5. Visual comparisons on the HIDE dataset. From left to right: blurry image, ground-truth, results by HINet [5], DeepRFT [26],
Stripformer [39], MSDI-Net [22], NAFNet [4] and UFPNet (ours). The estimated kernel at the indicated pixel is illustrated on the left-top.

Whyte et al. [40] Proposed KE-Net PSNR SSIMBaseline Flow prior UL
✓ 41.63 0.989

✓ 43.90 0.993
✓ ✓ 44.56 0.994
✓ ✓ ✓ 45.92 0.996

Table 4. PSNR and SSIM results between the original blurry im-
age and the generated blurry image using the predicted blur ker-
nels, which are estimated by the method of [40] and the variants
of the proposed kernel estimation network (KE-Net) (w/ or w/o
flow prior and uncertainty learning) on GoPro dataset. The base-
line model denotes that the kernel estimation network directly es-
timates the blur kernel instead of the latent code.

noise component. Similarly, we compare the reblurring re-
sults in Table 4. When uncertainty learning is introduced,

the results of blur kernel estimation can be significantly im-
proved. For the deblurring results, as can be seen in Table
5 that without any kernel estimation method, our method
degrades into the original NAFNet method [4]. With the
help of the estimated kernel by Whyte et al. [40], the deblur
results slightly outperform the original method. And the in-
troduction of uncertainty learning can not only help improve
the accuracy of blur kernel estimation but also improve the
performance of image deblurring.

Effectiveness of the Kernel Estimation Module. Since
our flow-based blur kernel estimation network and the
multi-scale kernel attention module can be plugged into
encoder-decoder architectures easily, we have upgraded
some other image deblurring networks to show the effec-
tiveness of the proposed flow-based kernel estimation mod-
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DeepRFTBlurry

Stripformer NAFNet UFPNet (ours)Blurry image from RealBlur-J testset MSDI-Net

GT HINet

Figure 6. Visual comparisons on the RealBlur-J dataset. From left to right: blurry image, ground-truth, results by HINet [5], DeepRFT [26],
Stripformer [39], MSDI-Net [22], NAFNet [4] and UFPNet (ours). The estimated kernel at the indicated pixel is illustrated on the left-top.

Whyte et al. [40] Proposed KE-Net GoPro HIDE RealBlur-R RealBlur-J
Baseline Flow prior UL PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

33.69 0.967 31.32 0.943 35.50 0.951 28.32 0.857
✓ 33.74 0.967 31.38 0.944 35.61 0.951 28.79 0.863

✓ 33.78 0.967 31.45 0.945 35.78 0.952 29.13 0.869
✓ ✓ 33.83 0.967 31.53 0.946 35.91 0.952 29.32 0.872
✓ ✓ ✓ 34.06 0.968 31.74 0.947 36.25 0.953 29.87 0.884

Table 5. The ablation studies of image deblurring results using different kernel estimation methods on benchmark datasets. The first row
of the results denotes end-to-end training without estimating the blur kernel.

ule in improving image deblurring performance, including
MPRNet [47], MIMO-UNet [7] and NAFNet [4]. Similar to
the proposed UFPNet, the multi-scale kernel attention mod-
ule is embedded in the front of each encoder. For a fair com-
parison, we use the codes released by their authors to retrain
the modified models. As shown in Table 6, after using our
kernel estimation network to predict the non-uniform blur
kernels and embedding them into deep networks, the de-
blurring results are significantly improved.

Method KE GoPro HIDE
PSNR SSIM PSNR SSIM

MIMO-UNet [7] × 32.45 0.957 29.99 0.930
✓ 32.83 0.959 30.16 0.931

MPRNet [47] × 32.66 0.959 30.96 0.939
✓ 33.04 0.967 31.13 0.941

NAFNet [4] × 33.69 0.964 31.32 0.943
✓ 34.06 0.968 31.74 0.947

Table 6. The image deblurring results of several networks w/
or w/o our kernel estimation (KE) module, which includes the
blur kernel estimation network and the multi-scale kernel attention
module. And using our KE module can bring significant improve-
ment.

5. Conclusions
In this paper, we propose to represent the motion blur

kernels in a latent space by a normalizing flow and design-
ing CNNs to predict spatially varying latent codes instead
of motion kernels. To further improve the accuracy and
robustness of kernel estimation, we introduce uncertainty
learning into the process of estimating latent codes and pro-
pose a multi-scale kernel attention module to better inte-
grate image features with estimated kernels. To address the
issue of the lack of ground truth about the non-uniform mo-
tion kernel in real-world images, we tackle the training set
generation in a self-supervised manner. Extensive exper-
imental results on benchmark datasets show that the pro-
posed method significantly outperforms existing state-of-
the-art methods and demonstrated excellent generalization
performance from GoPro to other real-world blur datasets.
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