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3Sorbonne Université, CNRS, France 4IRT Saint-Exupery, France
5Innovation & Research Division, SNCF 6Thales Alenia Space, France

7Airbus AI Research

Abstract

A plethora of attribution methods have recently been de-

veloped to explain deep neural networks. These methods

use different classes of perturbations (e.g, occlusion, blur-

ring, masking, etc) to estimate the importance of individ-

ual image pixels to drive a model’s decision. Neverthe-

less, the space of possible perturbations is vast and cur-

rent attribution methods typically require significant com-

putation time to accurately sample the space in order to

achieve high-quality explanations. In this work, we intro-

duce EVA (Explaining using Verified Perturbation Analysis)

– the first explainability method which comes with guaran-

tees that an entire set of possible perturbations has been

exhaustively searched. We leverage recent progress in ver-

ified perturbation analysis methods to directly propagate

bounds through a neural network to exhaustively probe a

– potentially infinite-size – set of perturbations in a single

forward pass. Our approach takes advantage of the bene-

ficial properties of verified perturbation analysis, i.e., time

efficiency and guaranteed complete – sampling agnostic –

coverage of the perturbation space – to identify image pixels

that drive a model’s decision. We evaluate EVA systemat-

ically and demonstrate state-of-the-art results on multiple

benchmarks. Our code is freely available: github.com/

deel-ai/formal-explainability

1. Introduction

Deep neural networks are now being widely deployed in

many applications from medicine, transportation, and secu-

rity to finance, with broad societal implications [40]. They

are routinely used to making safety-critical decisions – of-

ten without an explanation as their decisions are notoriously

Figure 1. Manifold exploration of current attribution meth-

ods. Current methods assign an importance score to individ-

ual pixels using perturbations around a given input image x.

Saliency [56] uses infinitesimal perturbations around x, Occlu-

sion [71] switches individual pixel intensities on/off. More recent

approaches [17,43,46,48,49] use (Quasi-) random sampling meth-

ods in specific perturbation spaces (occlusion of segments of pix-

els, blurring, ...). However, the choice of the perturbation space un-

doubtedly biases the results – potentially even introducing serious

artifacts [26, 29, 38, 64]. We propose to use verified perturbation

analysis to efficiently perform a complete coverage of a perturba-

tion space around x to produce reliable and faithful explanations.

hard to interpret.

Many explainability methods have been proposed to gain

insight into how network models arrive at a particular deci-

sion [17,24,43,46,48,49,53,55,61,65,71]. The applications

of these methods are multiple – from helping to improve

or debug their decisions to helping instill confidence in the

reliability of their decisions [14]. Unfortunately, a severe

limitation of these approaches is that they are subject to a

confirmation bias: while they appear to offer useful expla-
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nations to a human experimenter, they may produce incor-

rect explanations [2, 23, 59]. In other words, just because

the explanations make sense to humans does not mean that

they actually convey what is actually happening within the

model. Therefore, the community is actively seeking for

better benchmarks involving humans [12, 29, 37, 45].

In the meantime, it has been shown that some of our

current and commonly used benchmarks are biased and

that explainability methods reflect these biases – ultimately

providing the wrong explanation for the behavior of the

model [25, 29, 64]. For example, some of the current fi-

delity metrics [7, 18, 27, 34, 48] mask one or a few of the

input variables (with a fixed value such as a gray mask) in

order to assess how much they contribute to the output of

the system. Trivially, if these variables are already set to

the mask value in a given image (e.g., gray), masking these

variables will not yield any effect on the model’s output and

the importance of these variables is poised to be underesti-

mated. Finally, these methods rely on sampling a space of

perturbations that is far too vast to be fully explored – e.g.,

LIME on a image divided in 64 segments image would need

more than 1019 samples to test all possible perturbations.

As a result, current attribution methods may be subject to

bias and are potentially not entirely reliable.

To address the baseline issue, a growing body of work is

starting to leverage adversarial methods [8,29,31,42,50] to

derive explanations that reflect the robustness of the model

to local adversarial perturbations. Specifically, a pixel or

an image region is considered important if it allows the

easy generation of an adversarial example. That is if a

small perturbation of that pixel or image region yields a

large change in the model’s output. This idea has led to

the design of several novel robustness metrics to evaluate

the quality of explanations, such as Robustness-Sr [29]. For

a better ranking on those robustness metrics, several meth-

ods have been proposed that make intensive use of adversar-

ial attacks [29, 70], such as Greedy-AS for Robustness-Sr.

However, these methods are computationally very costly –

in some cases, requiring over 50 000 adversarial attacks per

explanation – severely limiting the widespread adoption of

these methods in real-world scenarios.

In this work, we propose to address this limitation by

introducing EVA (Explaining using Verified perturbation

Analysis), a new explainability method based on robustness

analysis. Verified perturbation analysis is a rapidly growing

toolkit of methods to derive bounds on the outputs of neural

networks in the presence of input perturbations. In contrast

to current attributions methods based on gradient estimation

or sampling, verified perturbation analysis allows the full

exploration of the perturbation space, see Fig. 1. We use a

tractable certified upper bound of robustness confidence to

derive a new estimator to help quantify the importance of

input variables (i.e., those that matter the most). That is, the

variables most likely to change the predictor’s decision.

We can summarize our main contributions as follows:

• We introduce EVA, the first explainability method guar-

anteed to explore its entire set of perturbations using Ver-

ified Perturbation Analysis.

• We propose a method to scale EVA to large vision models

and show that the exhaustive exploration of all possible

perturbations can be done efficiently.

• We systematically evaluate our approach using several

image datasets and show that it yields convincing results

on a large range of explainability metrics

• Finally, we demonstrate that we can use the proposed

method to generate class-specific explanations, and we

study the effects of several verified perturbation analysis

methods as a hyperparameter of the generated explana-

tions.

2. Related Work

Attribution Methods. Our approach builds on prior attri-

bution methods in order to explain the prediction of a deep

neural network via the identification of input variables that

support the prediction (typically pixels or image regions for

images – which lead to importance maps shown in Fig. 1).

“Saliency” was first introduced in [4] and consists in using

the gradient of a classification score. It was later refined

in [57, 61, 63, 65, 72] in the context of deep convolutional

networks for classification. However, the image gradient

only reflects the model’s operation within an infinitesimal

neighborhood around an input.Hence, it can yield mislead-

ing importance estimates [22] since gradients of the current

large vision models are noisy [61]. Other methods rely on

different image perturbations applied to images to produce

importance maps that reflect the corresponding change in

classification score resulting from the perturbation. Meth-

ods such as “Occlusion” [72], “LIME” [49], “RISE” [48],

“Sobol” [17] or “HSIC” [46] leverage different sampling

strategies to explore the space of perturbations around the

image. For instance, Occlusion uses binary masks to oc-

clude individual image regions, one at a time. RISE and

HSIC combines these discrete masks to perturb multiple re-

gions simultaneously. Sobol uses continuous masks for a

finer exploration of the perturbation space.

Nevertheless, none of these methods are able to system-

atically cover the full space of perturbations. As a result,

the corresponding explanations may not reliably reflect the

true importance of pixels. In contrast, our approach comes

with strong guarantees that can be derived from the verified

perturbation analysis framework as it provides bounds on

the perturbation space.

Robustness-based Explanation. To try to address the

aforementioned limitations, several groups [8,19,29,32,33,
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42, 60] have focused on the development of a new set of

robustness-based evaluation metrics for trustworthy expla-

nations. These new metrics are in contrast with the previ-

ous ones, which consisted in removing the pixels consid-

ered important in an explanation by substituting them with

a fixed baseline – which inevitably introduces bias and ar-

tifacts [25, 26, 29, 38, 64]. Key to these new metrics is the

assumption that when the important pixels are in their nom-

inal (fixed) state, then perturbations applied to the comple-

mentary pixels – deemed unimportant – should not affect

the model’s decision to any great extent. The corollary

that follows is that perturbations limited to the pixels con-

sidered important should easily influence the model’s deci-

sion [29,42]. Going further along the path of robustness, ab-

ductive reasoning was used in [32] to compute optimal sub-

sets with guarantees. The challenge consists in looking for

the subset with the smallest possible cardinality – to guar-

antee the decision of the model. This work constituted one

of the early successes of formal methods for explainability,

but the approach was limited to low-dimensional problems

and shallow neural networks. It was later extended to relax

the subset minimum explanation by either providing mul-

tiple explanations, aggregating pixels in bundles [6] or by

using local surrogates [9].

Some heuristics-oriented works also propose to optimize

these new robustness based criteria and design new methods

using a generative model [47] or adversarial attacks [29].

The latter approach requires searching for the existence or

lack of an adversarial example for a multitude of ℓp balls

around the input of interest. As a result, the induced com-

putational cost is quite high as the authors used more than

50000 computations of adversarial examples to generate a

single explanation.

More importantly, a failure to find an adversarial pertur-

bation for a given radius does not guarantee that none exists.

In fact, it is not uncommon for adversarial attacks to fail to

converge – or fail to find an adversarial example – which

will result in a failure to output an importance score. Our

method addresses these issues while drastically reducing

the computation cost. An added benefit of our approach is

that verified perturbation analysis provides additional guar-

antees and hence opens the doors of certification which is a

necessity for safety-critical applications.

Verified Perturbation Analysis. This growing field of re-

search focuses on the development of methods that outer-

approximate neural network outputs given some input per-

turbations. Simply put, for a given input x and a bounded

perturbation δ, verification methods yield minimum f(x)

and maximum f(x) bounds on the output of a model. For-

mally ∀ δ s.t ||δ||p f ε:

f(x) f f(x+ δ) f f(x).

This allows us to explore the whole perturbation space with-

out having to explicitly sample points in that space.

Early works focused on computing reachable lower

and upper bounds based on satisfiability modulo theo-

ries [16, 36], and mixed-integer linear programming prob-

lems [66]. While these early results were encouraging,

the proposed methods struggled even for small networks

and image datasets. More recent work has led to the in-

dependent development of methods for computing looser

certified lower and upper bounds more efficiently thanks

to convex linear relaxations either in the primal or dual

space [51]. While looser, those bounds remain tight enough

to yield non-ubiquitous robustness properties on medium

size neural networks. CROWN (hereafter called Back-

ward) uses Linear Relaxation-based Perturbation Analysis

(LiRPA) and achieves the tightest bound for efficient single

neuron linear relaxation [58, 67, 73]. In addition, linear re-

laxation methods offer a wide range of possibilities with a

vast trade-off between “tigthness” of the bounds and effi-

ciency. These methods form two broad classes: ‘forward’

methods which propagate constant bounds (more generally

affine relaxations from the input to the output of the net-

work) also called Interval Bound Propagation (IBP, For-

ward, IBP+Forward) vs. ‘backward’ methods which bound

the output of the network by affine relaxations given the

internal layers of the network, starting from the output to

the input. Note that these methods can be combined, e.g.

(CROWN + IBP + Forward). For a thorough description of

the LiRPA framework and theoretical analysis of the worst-

case complexities of each variant, see [68]. In this work,

we remain purposefully agnostic to the verification method

used and opt for the most accurate LiRPA method applica-

ble to the predictor. Our approach is based on the formal

verification framework DecoMon, based on Keras [15].

3. Explainability with Verified Perturbation

Analysis

Notation. We consider a standard supervised machine-

learning classification setting with input space X ¦ R
d, an

output space Y ¦ R
c, and a predictor function f : X → Y

that maps an input vector x = (x1, . . . , xd) to an output

f(x) = (f1(x), . . . , fc(x)). We denote B = {δ ∈
R

d : ||δ||p f ε} the perturbation ball with radius ε > 0,

with p ∈ {1, 2,∞}. For any subset of indices u ¦
{1, . . . , d}, we denote Bu the ball without perturbation on

the variables in u: Bu = {δ : δ ∈ B, δu = 0} and B(x)
the perturbation ball centered on x. We denote the lower

(resp. upper) bounds obtained with verification perturbation

analysis as f(x,B) =
(

f
1
(x,B), . . . , f

c
(x,B)

)

, and

f(x,B) =
(

f
1
(x,B), . . . , f c(x,B)

)

. Intuitively, these

bounds delimit the output prediction for any perturbed sam-

ple in B(x).
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3.1. The importance of setting the importance right

Different attribution methods implicitly assume different

definitions of the notion of importance for input variables

based either on game theory [43], the notion of conditional

expectation of the score logits [48], their variance [17] or on

some measure of statistical dependency between different

areas of an input image and the output of the model [46].

In this work, we build on robustness-based explainability

methods [29] which assume that a variable is important if

small perturbations of this variable lead to large changes

in the model decision. Conversely, a variable is said to

be unimportant if changes to this variable only yield small

changes in the model decision. From this intuitive assertion,

we construct an estimator that we call Adversarial overlap.

3.2. Adversarial overlap

We go one step beyond previous work and propose to

compute importance by taking into account not only the

ability of individual variables to change the network’s de-

cision but also its confidence in the prediction. Adversarial

overlap measures the extent to which a modification on a

group of pixels can generate overlap between classes, i.e.

generate a point close to x such that the attainable maxi-

mum of an unfavorable class c′ can match the minimum of

the initially predicted class c.

Indeed, if a modification of a pixel – or group of pixels –

allows generating a new image that changes the decision of

f , this variable must be considered important. Conversely,

if the decision does not change regardless of the value of

the pixel, then the pixel can be left at its nominal value and

should be considered unimportant.

Among the set of possible variable perturbations δ

around a point x, we, therefore, look for points that can

modify the decision with the most confidence. Hence our

scoring criterion can be formulated as follows:

AOc(x,B) = max
δ∈B
c′ ̸=c

fc′(x+ δ)− fc(x+ δ). (1)

Intuitively, this score represents the confidence of the

“best” adversarial perturbation that can be found in the per-

turbation ball B around x. Throughout the article, when c

is not specified, it is assumed that c = argmaxf(x).
In order to estimate this criterion, a naive strategy could

be to use adversarial attacks to search within B. However,

when they converge - which is not ensured, such methods

only explore certain points of the considered space, thus

giving no guarantee regarding the optimality of the solution.

Moreover, adversarial methods have no guarantee of suc-

cess and therefore cannot ensure a valid score under every

circumstance. Finally, the large dimensions of the current

datasets make exhaustive searches impossible.

To overcome these issues, we take advantage of one of

the main results from verified perturbation analysis to de-

rive a guaranteed upper bound on the criterion introduced

in Eq. 1. We can upper bound the adversarial overlap cri-

terion as follows:

AO(x,B) f AO(x,B) = max
c′ ̸=c

f c′(x,B)− f
c
(x,B).

The computation of this upper bound becomes tractable us-

ing any verified perturbation analysis method.

For example, AO(x,B) f 0 guarantees that no adver-

sarial perturbation is possible in the perturbation space.1

Our upper bound AO(x,B) corresponds to the difference

between the verified lower bound of the class of interest c

and the maximum over the verified upper bounds among

the other classes. Thus, when important variables are mod-

ified (e.g the head of the dog in Fig. 2, using B), the lower

bound for the class of interest will get smaller than the up-

per bound of the adversary class. On the other hand, this

overlap is not possible when important variables are fixed

(e.g in Fig. 2 when the head of the dog is fixed, using Bu).

We now demonstrate how to leverage this score to derive an

efficient estimator of variable importance.

3.3. EVA

We are willing to assign a higher importance score for a

variable allowing (1) a change in a decision, (2) a greater

adversarial – thus a solid change of decision. Modifying all

variables gives us an idea of the robustness of the model.

In the same way, the modification of all variables without

the subset u allows quantifying the change of the strongest

adversarial perturbation and thus quantifies the importance

of the variables u. Intuitively, if an important variable u is

discarded, then it will be more difficult, if not impossible,

to succeed in finding any adversarial perturbation. Specif-

ically, removing the possibility to modify xu allows us to

reveal its importance by taking into account its possible in-

teractions.

The complexity of current models means that the vari-

ables are not only treated individually in neural network

models but collectively. In order to capture these higher-

order interactions, our method consists in measuring the

adversarial overlap allowed by all the variables together

AO(x,B) – thus taking into account their interactions – and

then forbidding to play on a group of variables AO(x,Bu)
to estimate the importance of u. Making the interactions

of u disappear reveals their importance. Note that sev-

eral works have mentioned the importance of taking into

account the interactions of the variables when calculating

the importance [17, 20, 30, 48]. Formally, we introduce

EVA (Explainability using Verified perturbation Analysis)

that measure the drop in adversarial overlap when we fixed

the variables u:

EVA(x,u,B) ≡ AO(x,B)− AO(x,Bu). (2)

1Note that with adversarial attacks, failure to find an adversarial exam-

ple does not guarantee that it does not exist.
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x + ·x

B
u
(x)

B(x)

(1) B(x) are the points around x in a ball of radius [. B
u
(x) is a 

subset of B(x) where the variables u (the dog head) are left

untouched

(2) Without perturbating u , we can9t reach
any adversarial input, thus u is important

f(x + ·) 

&

c’ (e.g., 8Cat9)

f(x + · 9) 

&

c

c'

All outputs produced 
by points within B(x)

{

AO = Adversarial overlap

c (e.g., 8Dog9)

(3) Attribution after computing
importance of each variables

u

Perturbations affecting all 
the variables except u

Perturbations affecting 
all the variables

[

[x + · 9

EVA(x, u) = AO(x, B) – AO(x, B
u
)

Figure 2. EVA attribution method. In order to compute the importance for a group of variables u – for instance the dog’s head – the

first step (1) consists in designing the perturbation ball Bu(x). This ball is centered in x and contain all the possible images perturbed by

δ s.t ||δ||p ≤ ε, ||δu||p = 0 which do not perturb the variables u. Using verified perturbation analysis, we then compute the adversarial

overlap AO(x,Bu) which corresponds to the overlapping between the class c – here dog – and c′, the maximum among the other classes.

Finally, the importance score for the variable u corresponds to the drop in adversarial overlap when u cannot be perturbed, thus the

difference between AO(x,B) and AO(x,Bu). Specifically, this measures how important the variables u are for changing the model’s

decision.

As explained in Fig. 2, the estimator requires two passes

of the perturbation analysis method; one for AO(B), and

the other for AO(Bu): the first term consists in measuring

the adversarial overlap by modifying all the variables, the

second term measures the adversarial surface when fixing

the variables of interest u. In other words, EVA measures

the adversarial overlap that would be left if the variables u

were to be fixed.

From a theoretical point of view, we notice that EVA -

under reasonable assumptions - yield the optimal subset of

variables to minimize the theoretical Robustness-Sr metric

(see Theorem C.6). From a computational point of view,

we can note that the first term of the adversarial over-

lap AO(x,B) – as it does not depend on u – can be cal-

culated once and re-used to evaluate the importance of any

other variables considered. Moreover, contrary to an it-

erative process method [21, 29, 32], each importance can

be evaluated independently and thus benefit from the par-

allelization of modern neural networks. Finally, the ex-

periments in Section 4 show that even with two calls to

AO per variables, our method remains much faster than

the one based on sampling or on adversarial attacks (such

as Greedy-AS or Greedy-AO, see appendix B).

In this work, the verified perturbation-based analysis

considered is not always adapted to high dimensional mod-

els, especially those running on ImageNet [13]. We are con-

fident that the verification methods will progress towards

more scalability in the near future, enabling the original ver-

sion of EVA on deeper models.

In the meantime, we introduce an empirical method that

allows to scale EVA to high dimensional models. This

method sacrifices theoretical guarantees, but the results sec-

tion reveals that it may be a good compromise.

3.4. Scaling to larger models

We propose a second version of EVA, which is a com-

bination of sampling and verification perturbation analysis.

The aim of this hybrid method is twofold: (i) take advantage

of sampling to approach the bounds of an intermediate layer

in a potentially very large model, (ii) then complete only

the rest of the propagations with verified perturbation anal-

ysis and thus move towards the native EVA method which

benefits from theoretical guarantees. Note that, combining

verification methods with empirical methods (a.k.a adver-

sarial training) has notably been proposed in [5] for robust

training.

Specifically, our technique consists of splitting the model

into two parts, and (i) estimating the bounds of an interme-

diate layer using sampling, (ii) propagating these empirical

intermediate bounds onto the second part of the model with

verified perturbation analysis methods.

For the first step (i) we consider the original predictor f
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(1) Sampling N random
perturbations

h(·) g(·)

&

c'

c
[

Set of all possible activations :
H = [min h(x + ·), max h(x + ·)], ||· || < [

B(x)

(3) Continue to propagate the bounds
using verified perturbation analysis

(2) Computing intermediate activations 
for the perturbated inputs x + ·

i

Empirical estimation of H :

P = [min h(x + ·
i
), max h(x + ·

i
)], i * {1,…,N}B

x

B

x

f (·) = g ï h(·)

x + ·
i

Figure 3. Scaling strategy. In order to scale to very large models, we propose to estimate the bounds of an intermediate layer’s activations

empirically by (1) Sampling N input perturbations and (2) calculating empirical bounds on the resulting activations for the layer h(·). We

can then form the set Px

B which is a subset of the true bounds Hx

B since the sampling is never exhaustive. We can then plug this set into a

verified perturbation analysis method (3) and continue the forward propagation of the inputs through the rest of the network.

as a composition of functions f(x) = g ◦ h(x). For deep

neural networks, h(·) is a function that maps input to an

intermediate feature space and g(·) is a function that maps

this same feature space to the classification.
We propose to empirically estimate bounds (hx

B,h
x

B) for

the intermediate activations h(·) ∈ R
d′

using Monte-Carlo

sampling on the perturbation δ ∈ B. Formally:

∀j ∈ [0, . . . , d′], hx

B[j] = min
δ1,...δi,...δn

iid
∼U(B)

h(x+ δi)[j]

h
x

B[j] = max
δ1,...δi,...δn

iid
∼U(B)

h(x+ δi)[j].

Obviously, since the sampling is never exhaustive, the

bounds obtained underestimate the true maximum h
x

B f
maxh(x + δ) and overestimates the true minimum hx

B g
minh(x + δ) as illustrated in the Fig. 3. In a similar way,

we define hx

Bu

and h
x

Bu

when δ ∈ Bu. Once the empirical

bounds are estimated, we may proceed to the second step

and use the obtained bounds to form the new perturbation

set
Px

B = [hx

B − h(x),h
x

B − h(x)].

Intuitively, this set bounds the intermediate activations ob-

tained empirically and can then be fed to a verified pertur-

bation verification method.

We then carry out the end of the bounds propagation in

the usual way, using verified perturbation analysis. This

amounts to computing bounds for the outputs of the net-

work for all possible activations contained in our empirical

bounds. The only change is that we no longer operate in

the pixel space x with the ball B, but in the activation space

h(·) with the perturbations set Px
B

. The importance score

of a set of variables u is then :

EVAhybrid(x,u,B) ≡ EVA(h(x),u,Px

B ).

This hybrid approach allows us to use EVA on state-of-

the-art models and thus to benefit from our method while re-

maining tractable. We believe this extension to be a promis-

ing step towards robust explanations on deeper networks.

4. Experiments

To evaluate the benefits and reliability of our explainabil-

ity method, we performed several experiments on a stan-

dard dataset, using a set of common explainability met-

rics against EVA. In order to test the fidelity of the ex-

planations produced by our method, we compare them to

that of 10 other explainability methods using the (1) Dele-

tion, (2) Insertion, and (3) MuFidelity metrics. As it has

been shown that these metrics can exhibit biases, we com-

pleted the benchmark by adding the (4) Robustness-Sr met-

ric. Each score is averaged over 500 samples.

We evaluated these 4 metrics on 3 image classification

datasets, namely MNIST [41], CIFAR-10 [39] and Ima-

geNet [13]. Through these experiments, the explanations

were generated using EVA estimator introduced in Equa-

tion 2. The importance scores were not evaluated pixel-

wise but on each cell of the image after having cut it into

a grid of 12 sides (see Fig. 2). For MNIST and Cifar-10,

we used ε = 0.5, whereas for ImageNet ε = 5. Con-

cerning the verified perturbation analysis method, we used

(IBP+Forward+Backward) for MNIST, and (IBP+Forward)

on Cifar-10 and p = ∞. For computational purposes, we

used the hybrid approach introduce in Section 3.4 for Im-

ageNet using the penultimate layer (FC-4096) as the inter-

mediate layer h(·). We give in Appendix the complete set

of hyperparameters used for the other explainability meth-

ods, metrics considered as well as the architecture of the

models used on MNIST and Cifar-10.
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MNIST Cifar-10 ImageNet

Del.³ Ins.↑ Fid.↑ Rob.³ Time Del.³ Ins.↑ Fid.↑ Rob.³ Time Del.³ Ins.↑ Fid.↑ Rob.³ Time

Saliency [56] .193 .633 .378 .071 0.04 .171 .172 -.021 .026 0.16 .057 .126 .035 .769 0.36

GradInput [3] .222 .611 .107 .074 0.04 .200 .143 -.018 .095 0.17 .057 .050 .023 .814 0.36

SmoothGrad [61] .185 .621 .331 .070 1.91 .174 .181 .092 .048 9.07 .051 .069 .019 .809 9.63

VarGrad [54] .207 .555 .216 .077 1.76 .183 .211 -.012 .193 9.07 .098 .201 .021 .787 9.62

InteGrad [65] .209 .615 .108 .074 1.77 .194 .171 -.016 .154 7.19 .058 .052 .023 .813 8.39

Occlusion [3] .247 .545 .137 .082 0.04 .217 .290 .105 .232 1.13 .100 .266 .026 .821 4.97

GradCAM [53] n/a n/a n/a n/a n/a .297 .282 .056 .195 0.39 .073 .232 .036 .817 0.18

GradCAM++ [10] n/a n/a n/a n/a n/a .270 .326 .102 .094 0.39 .074 .285 .054 .800 0.19

RISE [48] .248 .558 .133 .093 2.26 .196 .273 .157 .385 20.5 .074 .276 .154 .818 1215

Greedy-AS [29] .260 .497 .110 .061 335 .205 .264 -.003 .013 4618 .088 .047 .023 .612 180056

EVA (ours) .089 .736 .428 .069 1.29 .164 .290 .352 .025 12.7 .070 .289 .048 .758 6454

Table 1. Results on Deletion (Del.), Insertion (Ins.), µFidelity (Fid.) and Robustness-Sr (Rob.) metrics. Time in seconds corresponds to

the generation of 500 (MNIST/CIFAR-10) and 100 (ImageNet) explanations on an Nvidia P100. Note that EVA is the only method with

guarantees that the entire set of possible perturbations has been exhaustively searched. Verified perturbation analysis with IBP + Forward

+ Backward is used for MNIST, with Forward only for CIFAR-10 and with our hybrid strategy described in Section.3.4 for ImageNet.

Grad-CAM and Grad-CAM++ are not calculated on the MNIST dataset since the network only has dense layers. The first and second best

results are in bold and underlined, respectively.

4.1. Comparison with the state of the art

There is a general consensus that fidelity is a crucial cri-

terion for an explanation method. That is, if an explanation

is used to make a critical decision, then users are expect-

ing it to reflect the true decision-making process underlying

the model and not just a consensus with humans. Failure to

do so could have disastrous consequences. Pragmatically,

these metrics assume that the more faithful an explanation

is, the faster the prediction score should drop when pixels

considered important are changed. In Table 1, we present

the results of the Deletion [48] (or 1 − AOPC [52]) met-

ric for the MNIST and Cifar-10 datasets on 500 images

sampled from the test set. TensorFlow [1] and the Keras

API [11] were used to run the models and Xplique [18] for

the explainability methods. In order to evaluate the meth-

ods, the metrics require a baseline and several were pro-

posed [29,64], but we chose to keep the choice of [29] using

their random baseline.

We observe that EVA is the explainability method get-

ting the best Deletion, Insertion, and µFidelity scores on

MNIST, and is just behind Greedy-AS on Robustness-Sr.

This can be explained by the fact that the Robustness met-

ric uses the adversarial attack PGD [44], which is the same

one used to generate Greedy-AS, thus biasing the adver-

sarial search. Indeed, if PGD does not find an adversarial

perturbation using a subset u does not give a guarantee of

the robustness of the model, just that the adversarial pertur-

bation could be difficult to reach with PGD.

For Cifar-10, EVA remains overall the most faithful

method according to Deletion and µFidelity, and obtains

the second score in Insertion behind Grad-Cam++ [10]. Fi-

nally, we notice that if Greedy-AS [29] allows us to ob-

tain a good Robustness-Sr score, but this comes with a con-

siderable computation time, which is not the case of EVA

which is much more efficient. Eventually, EVA is a very

good compromise for its relevance to commonly accepted

explainability metrics and more recent robustness metrics.

ImageNet After having demonstrated the potential of the

method on vision datasets of limited size, we consider the

case of ImageNet which has a significantly higher level of

dimension. The use of verified perturbation analysis meth-

ods other than IBP is not easily scalable on these datasets.

We, therefore, used the hybrid method introduced in Sec-

tion 3.4 in order to estimate the bounds in a latent space

and then plug those bounds into the perturbation analysis to

get the final adversarial overlap score.

Table 1 shows the results obtained with the empirical

method proposed in Section 3.4. We observe that even with

this relaxed estimation, EVA is able to score high on all the

metrics. Indeed, EVA obtains the best score on the Insertion

metric and ranks second on µFidelity and Robustness-Sr.

Greedy-AS ranks first on Robustness-Sr at the expense of

the other scores where it performs poorly. Finally, both

RISE and SmoothGrad perform well on all the fidelity met-

rics but collapse on the robustness metric. Extending results

with ablations of EVA, including Greedy-AO, are available

in Table 3.

Qualitatively, Fig. 5 shows examples of explanations

produced on the ImageNet VGG-16 model. The explana-

tions produced by EVA are more localized than Grad-CAM

or RISE, while being less noisy than the gradient-based or

Greedy-AS methods.

In addition, as the literature on verified perturbation anal-

ysis is evolving rapidly we can conjecture that the advances
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will benefit the proposed explainability method. Indeed,

EVA proved to be the most effective on the benchmark

when an accurate formal method was used. After demon-

strating the performance of the proposed method, we study

its ability to generate class explanations specific.

4.2. Tighter bounds lead to improved explanations

Tightness³ Del.³ Ins.↑ Fid.↑ Rob.³

IBP 4.58 .148 .588 .222 .077

Forward 2.66 .150 .580 .209 .078

Backward 2.36 .115 .607 .274 .074

IBP + Fo. + Ba. 1.55 .089 .736 .428 .069

Table 2. Impact of the verified perturbation analysis method

on EVA. Results of EVAon Tightness, Deletion (Del.), Insertion

(Ins.), Fidelity (Fid.) and Robustness-Sr (Rob.) metrics obtained

on MNIST. The Tightness score corresponds to the average adver-

sarial surface. A lower Tightness score indicates that the method

is more precise: it reaches tighter bound, resulting in better ex-

planations and superior scores on the other metrics. The first and

second best results are respectively in bold and underlined.

The choice of the verified perturbation analysis method

is a hyperparameter of EVA. Hence, it is interesting to see

the effect of the choice of this hyperparameter on the pre-

vious benchmark. We recall that only the MNIST dataset

could benefit from the (IBP+Forward+Backward) combo.

Table 2 reports the results of the fidelity metrics using other

verified perturbation analysis methods. We also report a

tightness score which corresponds to the average of the ad-

versarial overlap : Ex∼X (AO(x,B)). Specifically, a low

score indicates that the verification method is precise, mean-

ing that the over-approximation is closer to the actual value.

It should be noted that the true value is intractable, but re-

mains the same across all three tested cases. We observe

that the tighter the bounds, the higher the scores. This

allows us to conjecture that the more scalable the formal

methods will become, the better the quality of the gener-

ated explanations will be. We perform additional experi-

ments to ensure that the certified component of EVA score

is significant by comparing EVA to a sampling-based ver-

sion of EVA. The details of these experiments are available

in Appendix B.

4.3. Targeted Explanations

In some cases, it is instructive to look at the expla-

nations for unpredicted classes in order to get informa-

tion about the internal mechanisms of the models stud-

ied. Such explanations allow us to highlight contrastive

features: elements that should be changed or whose ab-

sence is critical. Our method allows us to obtain such

explanations: for a given input, we are then exclusively

interested in the class we are trying to explain, without

looking at the other decisions. Formally, for a given tar-

Figure 4. Targeted explanations. Generated explanations for a

decision other than the one predicted by the model. The class ex-

plained is indicated at the bottom of each sample, e.g., the first

sample is a ‘4’ and the explanation is for the class ‘9’. As indi-

cated in section 4.3, the red areas indicate that a black line should

be added and the blue areas that it should be removed. More ex-

amples are available in the Appendix.

geted class c′ the adversarial overlap (Equation 1) become

AO(x,B) = maxδ∈B fc′(x + δ) − fc(x + δ). More-

over, by splitting the perturbation ball into a positive one

B(+) =
{

δ ∈ B : δi g 0, ∀i ∈ {1, ..., d}
}

and a negative

one B(−) =
{

δ ∈ B : δi f 0, ∀i ∈ {1, ..., d}
}

, one can

deduce which direction – adding or removing the black line

in the case of gray-scaled images – will impact the most the

model decision.

We generate targeted explanations on the MNIST dataset

using (IBP+Forward+Backward). For several inputs, we

generate the explanation for the 10 classes. Fig. 7 shows

4 examples of targeted explanations, the target class c′ is

indicated at the bottom. The red areas indicate that adding

a black line increases the adversarial overlap with the tar-

get class. Conversely, the blue areas indicate where the in-

crease of the score requires removing black lines. All other

results can be found in the Appendix. In addition to fa-

vorable results on the fidelity metrics and guarantees pro-

vided by the verification methods, EVA can provide tar-

geted explanations that are easily understandable by hu-

mans, which are two qualities that make them a candidate

of choice to meet the recent General Data Protection Regu-

lation (GDPR) adopted in Europe [35]. More examples are

available in the Appendix H.

5. Conclusion

In this work, we presented the first explainability method

that uses verification perturbation analysis that exhaustively

explores the perturbation space to generate explanations.

We presented an efficient estimator that yields explanations

that are state-of-the-art on current metrics. We also de-

scribed a simple strategy to scale up perturbation verifica-

tion methods to complex models. Finally, we showed that

this estimator can be used to form easily interpretable tar-

geted explanations.

We hope that this work will for searching for safer and

more efficient explanation methods for neural networks –

and that it will inspire further synergies with the field of

formal verification.

16160



References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
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rina M-C Höhne. Quantus: an explainable ai toolkit for re-

sponsible evaluation of neural network explanations. The

Journal of Machine Learning Research (JMLR), 2022. 2

[28] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and

Been Kim. A benchmark for interpretability methods in

deep neural networks. In Advances in Neural Information

Processing Systems (NeurIPS), 2019. 15

[29] Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep

Ravikumar, Seungyeon Kim, Sanjiv Kumar, and Cho-Jui

Hsieh. Evaluations and methods for explanation through

robustness analysis. In Proceedings of the International

Conference on Learning Representations (ICLR), 2021. 1,

2, 3, 4, 5, 7, 12, 13, 15, 16

[30] Marouane Il Idrissi, Nicolas Bousquet, Fabrice Gamboa,

Bertrand Iooss, and Jean-Michel Loubes. On the coalitional

decomposition of parameters of interest, 2023. 4

[31] Marouane Il Idrissi, Vincent Chabridon, and Bertrand

Iooss. Developments and applications of shapley effects

to reliability-oriented sensitivity analysis with correlated in-

puts. Environmental Modelling & Software, 2021. 2

[32] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva.

Abduction-based explanations for machine learning mod-

els. In Advances in Neural Information Processing Systems

(NeurIPS), 2019. 2, 3, 5, 13

[33] Alexey Ignatiev, Nina Narodytska, and Joao Marques-

Silva. On relating explanations and adversarial exam-

ples. In Advances in Neural Information Processing Systems

(NeurIPS), 2019. 2, 13

[34] Alon Jacovi and Yoav Goldberg. Towards faithfully in-

terpretable nlp systems: How should we define and eval-

uate faithfulness? Proceedings of the Annual Meeting of

the Association for Computational Linguistics (ACL Short

Papers), 2020. 2

[35] Margot E Kaminski. The right to explanation, explained. In

Research Handbook on Information Law and Governance.

Edward Elgar Publishing, 2021. 8

[36] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and

Mykel J Kochenderfer. Reluplex: An efficient smt solver for

verifying deep neural networks. In International Conference

on Computer Aided Verification, pages 97–117. Springer,

2017. 3

[37] Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy,

Ruth Fong, and Olga Russakovsky. HIVE: Evaluating the

human interpretability of visual explanations. In Proceedings

of the IEEE European Conference on Computer Vision

(ECCV), 2022. 2

[38] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Max-

imilian Alber, Kristof T Schütt, Sven Dähne, Dumitru Er-
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Vechev. An abstract domain for certifying neural networks.

Proceedings of the ACM on Programming Languages, 2019.

3

[59] Dylan Slack, Anna Hilgard, Himabindu Lakkaraju, and

Sameer Singh. Counterfactual explanations can be manip-

ulated. Advances in Neural Information Processing Systems

(NeurIPS), 2021. 2

[60] Dylan Slack, Anna Hilgard, Sameer Singh, and Himabindu

Lakkaraju. Reliable post hoc explanations: Modeling un-

certainty in explainability. Advances in Neural Information

Processing Systems (NeurIPS), 34, 2021. 2

[61] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas,

and Martin Wattenberg. Smoothgrad: removing noise by

adding noise. In Workshop on Visualization for Deep

Learning, Proceedings of the International Conference on

Machine Learning (ICML), 2017. 1, 2, 7, 15

[62] Matthew Sotoudeh and Aditya V. Thakur. Computing lin-

ear restrictions of neural networks. In Advances in Neural

Information Processing Systems (NeurIPS), 2019. 15

[63] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas

Brox, and Martin Riedmiller. Striving for simplicity:

The all convolutional net. In Workshop Proceedings of

the International Conference on Learning Representations

(ICLR), 2014. 2

[64] Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualiz-

ing the impact of feature attribution baselines. Distill, 2020.

1, 2, 3, 7

[65] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Ax-

iomatic attribution for deep networks. In Proceedings of

the International Conference on Machine Learning (ICML),

2017. 1, 2, 7, 15

[66] Vincent Tjeng and Russ Tedrake. Verifying neural net-

works with mixed integer programming. Proceedings of
the International Conference on Learning Representations

(ICLR), 15, 2019. 3

[67] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana,

Cho-Jui Hsieh, and J Zico Kolter. Beta-crown: Efficient

bound propagation with per-neuron split constraints for neu-

ral network robustness verification. Advances in Neural

Information Processing Systems (NeurIPS), 2021. 3

[68] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei

Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin, and Cho-

Jui Hsieh. Automatic perturbation analysis for scalable certi-

fied robustness and beyond. Advances in Neural Information

Processing Systems (NeurIPS), 2020. 3

[69] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala,

David I. Inouye, and Pradeep Ravikumar. On the (in)fidelity

and sensitivity for explanations. In Advances in Neural

Information Processing Systems (NeurIPS), 2019. 14

[70] Fan Yin, Zhouxing Shi, Cho-Jui Hsieh, and Kai-Wei Chang.

On the sensitivity and stability of model interpretations in

nlp. In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long

Papers), pages 2631–2647, 2022. 2

[71] Matthew D Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. In Proceedings of the IEEE

European Conference on Computer Vision (ECCV), 2014. 1,

15

[72] Matthew D Zeiler and Rob Fergus. Visualizing and under-

standing convolutional networks. In Proceedings of the IEEE

European Conference on Computer Vision (ECCV), 2014. 2

[73] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh,

and Luca Daniel. Efficient neural network robustness certifi-

cation with general activation functions. Advances in Neural

Information Processing Systems (NeurIPS), 2018. 3

16163


