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Abstract
Adversarial attacks can evaluate model robustness and

have been of great concern in recent years. Among various
attacks, targeted attacks aim at misleading victim models to
output adversary-desired predictions, which are more chal-
lenging and threatening than untargeted ones. Existing tar-
geted attacks can be roughly divided into instance-specific
and instance-agnostic attacks. Instance-specific attacks
craft adversarial examples via iterative gradient updating
on the specific instance. In contrast, instance-agnostic at-
tacks learn a universal perturbation or a generative model
on the global dataset to perform attacks. However, they rely
too much on the classification boundary of substitute mod-
els, ignoring the realistic distribution of the target class,
which may result in limited targeted attack performance.
And there is no attempt to simultaneously combine the in-
formation of the specific instance and the global dataset. To
deal with these limitations, we first conduct an analysis via
a causal graph and propose to craft transferable targeted
adversarial examples by injecting target patterns. Based on
this analysis, we introduce a generative attack model com-
posed of a cross-attention guided convolution module and
a pattern injection module. Concretely, the former adopts
a dynamic convolution kernel and a static convolution ker-
nel for the specific instance and the global dataset, respec-
tively, which can inherit the advantages of both instance-
specific and instance-agnostic attacks. And the pattern in-
jection module utilizes a pattern prototype to encode target
patterns, which can guide the generation of targeted adver-
sarial examples. Besides, we also provide rigorous theoret-
ical analysis to guarantee the effectiveness of our method.
Extensive experiments demonstrate that our method shows
superior performance than 10 existing adversarial attacks
against 13 models.

1. Introduction
With the encouraging progress of deep neural networks

(DNNs) in various fields [6, 19, 16, 44, 42], recent studies
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Figure 1. Visualization comparison between adversarial exam-
ples generated by our method (a) and the instance-specific method
MIM [9] (b). Our perturbations (a) not only show an underlying
dependency with the input instance, but also have strong semantic
patterns or styles of the target class (“Hippopotamus”). In contrast,
the perturbations generated by MIM perform like random noises.
The adversarial examples are generated against ResNet-152, and
labels are predicted by another unknown model (VGG-16).

[36, 29, 28, 38] have corroborated that adversarial examples
generated with small-magnitude perturbations can mislead
the DNNs to make incorrect predictions. Due to the vulner-
ability of DNNs, adversarial attacks expose a security threat
to real application systems based on deep neural networks,
especially in some sensitive fields such as autonomous driv-
ing [27], face verification and financial systems [43], to
name a few. Therefore, adversarial attacks have become
a research hotspot over the past decade [2, 48, 35, 3, 33],
which are significant in demonstrating the adversarial ro-
bustness and stability of deep learning models.

To further understand adversarial examples, there are
tremendous works [1, 48, 33, 4, 36, 38] focusing on ad-
versarial attacks. Recently, it has been found that adver-
sarial examples possess an intriguing property of transfer-
ability, which indicates that adversarial examples generated
for a white-box model can also mislead another black-box
model. Due to this inherent property, black-box attacks be-
come workable in real-world scenarios where attackers can-
not access the attacked model. Extensive methods, such as
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MIM [9], DIM [53] and CD-AP [40], have made an impres-
sive performance of boosting the transferability for untar-
geted attacks, which mislead the model to make an incor-
rect classification without specifying a target class. How-
ever, targeted attacks are more challenging compared with
untargeted attacks, making the model output the adversary-
desired target class. It is claimed in recent works [14, 55]
that transferable targeted attacks are more worthy of study
because attackers can directly control the unknown model to
output the desired prediction, which can expose huge threats
to data privacy and security. Therefore, it is of great signif-
icance to develop transferable targeted attacks.

Existing methods of transferable targeted attacks can
be roughly categorized into instance-specific [9, 14, 13,
54, 50, 34, 31] and instance-agnostic [52, 35, 27, 40, 39]
attacks. Specifically, almost all instance-specific attacks
craft adversarial examples via iterative gradient updating,
where attackers can only take advantage of the specific in-
put instance, the white-box model and the target class la-
bel. Instance-specific attacks rely on optimizing the classi-
fication score of the adversary-desired class label to perturb
the specific instance, which ignore the global data distri-
bution. As a result, they inevitably lead to adversarial ex-
amples over-fitting the white-box model and result in mod-
est transferability of targeted attacks. On the other hand,
via learning a universal perturbation [37] or a generative at-
tack model [52, 55], instance-agnostic attacks optimize ad-
versarial perturbations on the global data distribution rather
than the specific instance. To a certain extent, they can al-
leviate the problem of data-specific over-fitting and lead to
more transferable targeted adversarial examples. However,
taking the generative attack methods as an example, they
suffer from two limitations. (1) Most generative attacks
[52, 40, 35] still rely on the target label and the classification
boundary information of white-box models rather than the
realistic data distribution of the target class. Consequently,
it is claimed that most generative attacks still have the pos-
sibility of over-fitting the white-box model, which may re-
sult in limited performance of transferable targeted attacks.
(2) Another limitation is that existing generative attacks
[39, 55, 27] apply the same network weights to every input
instance in the test dataset. Nevertheless, it is considered
that the shared network weights cannot stimulate the best
attack performance of generative models [39, 55, 55]. Thus
these aforementioned limitations have become the bottle-
neck of developing transferable targeted attacks, to a certain
extent.

To address the aforementioned limitations, in this pa-
per we construct a causal graph to formulate the prediction
process of classifiers, and analyze the origin of adversar-
ial examples. Based on this analysis, we propose to gener-
ate targeted adversarial examples via injecting the specific
pattern or style of the target class. To this end, we intro-

duce a generative attack model, which can not only inject
pattern or style information of the target class to improve
transferable targeted attacks, but also learn specialized con-
volutional kernels for each input instance. Specifically, we
designed a cross-attention guided convolution module and
a pattern injection module in the proposed generative attack
model. (1) The cross-attention guided convolution mod-
ule consists of a static convolutional kernel and a dynamic
convolutional kernel that is computed according to the in-
put instance. Consequently, this static and dynamic mixup
module can not only encode the global information of the
dataset, but also learn specialized convolutional kernels for
each input instance. This paradigm makes our generative
model inherit the advantages of both instance-specific and
instance-agnostic attacks. (2) The pattern injection module
is designed to model the pattern or style information of the
target class and guide the generation of targeted adversar-
ial examples. Concretely, we propose a pattern prototype to
learn a global pattern representation over images from the
target class, and use the prototype to guide the generation of
more transferable targeted adversarial examples. And the
generated adversarial images of our method are presented
in Figure 1. It is observed that our generated perturbations
(as shown in Figure 1(a)) pose strong semantic patterns or
styles of the target class and show an underlying depen-
dency on the input instance. In contrast, the perturbations
(as presented in Figure 1(b)) generated by MIM [9] per-
form like random noises. Finally, to further understand our
method, we provide rigorous theoretical analysis to guaran-
tee the effectiveness of our method, as shown in Section 3.4,
where we derive a concise conclusion based on the problem
of Gaussian binary classification.

In summary, the main contributions of this paper are
three-fold: (1) We propose a dynamic generative model to
craft transferable targeted adversarial examples, which can
not only inject pattern or style information of the target class
to improve transferable targeted attacks, but also learn spe-
cialized convolutional kernels for each input instance. Be-
sides, our method inherits the advantages of both instance-
specific and instance-agnostic attacks, and to the best of our
knowledge, we are the first to bridge them. (2) We state
that injecting the specific pattern or style of the target class
can improve the transferability of targeted adversarial ex-
amples, and we provide a comprehensive theoretical analy-
sis to verify the rationality of this statement. (3) Extensive
experimental results demonstrate that our method signifi-
cantly boosts the transferability of targeted adversarial ex-
amples over 10 existing methods against 13 models.

2. Related Work
Instance-specific Attacks. As the pioneering work [48]
exposes the vulnerability of neural networks, many recent
methods [54, 17, 3, 11, 29] utilize gradient-based optimiza-
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tion to generate input-dependent adversarial examples. To
further boost the transferability of the adversarial example,
several works have been proposed by various strategies to
optimize the gradient update process. MIM [9] introduces
a momentum term during the iterative gradient updating.
DIM [53] improves the transferability via integrating di-
verse input patterns for optimizing, and TIM [10] performs
a convolution operation on the gradient that is applicable to
any gradient-based attack methods. Besides, some recent
works [5, 18, 20] propose to ensemble multiple pre-trained
substitute models to craft more transferable adversarial ex-
amples. However, these methods pose modest transferabil-
ity under the targeted attacks setting, because they rely too
much on the target label and the classification boundary in-
formation of white-box models. Meanwhile, among these
methods, they all face the problem of data-specific over-
fitting, because of ignoring the global data distribution. To
overcome these limitations, in this paper, we propose a dy-
namic generative model to craft more transferable targeted
adversarial examples, which can not only encode the global
dataset, but also adapt to the specific instance.
Instance-agnostic Attacks. Distinguished from instance-
specific attacks, instance-agnostic attacks learn a universal
perturbation [37] or a generative function [35, 27, 51, 41,
55, 40, 39] to craft adversarial examples. Compared with
the universal perturbation, the latter is more flexible and has
drawn more attention in recent years. Xiao et al. [52] first
explore generating adversarial examples with GANs [16],
which can consider the whole dataset instead of the specific
input instance. CD-AP [40] and TTP [39] exploit gener-
ative models to craft more transferable adversarial exam-
ples. Recently, Yang et al. [55] boost the transferability of
targeted adversarial examples with hierarchical generative
networks. To a certain extent, these methods lead to more
general and transferable adversarial examples because of al-
leviating the data-specific over-fitting problem. However,
they also suffer from some limitations. First, existing gen-
erative attack methods [52, 57, 55, 40, 39] apply the same
network weights to each input instance, which may limit the
transferability of adversarial examples. And the second is
that most of them also rely too much on the target label and
the classification boundary of white-box models, ignoring
the realistic data distribution of the target class. Motivated
by these, in this paper, we propose a dynamic generative at-
tack model, which can not only inject pattern or style infor-
mation of the target class to improve transferable targeted
attacks, but also learn specialized convolutional kernels for
each input instance.

3. Method
In this section, we present the overall scheme of our pro-

posed method, including some preliminaries, motivations,
network architectures and theoretical analyses.

𝐶: 𝐶𝑜𝑛𝑡𝑒𝑛𝑡
S: 𝑆𝑡𝑦𝑙𝑒
X:𝑁𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑎𝑔𝑒

X!: 𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑖𝑚𝑎𝑔𝑒
𝑃: 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛
𝑌"#$: 𝑂𝑟𝑖𝑔𝑖𝑛 𝑙𝑎𝑏𝑒𝑙

𝑌: 𝑇𝑎𝑟𝑔𝑒𝑡 𝑙𝑎𝑏𝑒𝑙

𝐶 𝑆

𝑋 𝜃

𝑌

𝐶 ⊥ 𝑆𝐶 → 𝑋 ← 𝑆,

1. Motivation Figure 2. The casual graph of
model inference. Each node
is a random variable, where
C, S,x,y and θ represent con-
tent, style or pattern, the input
image, the prediction label, and
model parameters, respectively.
In order to achieve good perfor-
mance, the model will learn the
statistical correlation between the
style S and the label y.

3.1. Preliminaries and Motivation

We denote the clean image as x ∈ X , and the attacked
model parameterized by θ is denoted as f : X → Y .
The goal of target attacks is to generate an adversarial per-
turbation δ that can make the model misclassify the input
xadv = x+ δ to the predefined class yt, which can be for-
mulated as f(xadv) = yt ̸= f(x). To gain insights into
the origin of targeted adversarial examples, we construct a
casual graph G to formulate the inference of deep learning
models, as shown in Figure 2. For the input images x, we
propose to group the whole causes of x into two categories,
content-related cause C and content-independent cause S
that can be dubbed as style or pattern cause. This indicates
that C → x ← S, and C ⊥ S. According to human visual
intuition, only the content variable C is relevant to the pre-
diction class y. Consequently, we can use the Law of total
probability to expand the prediction Pθ(y | x) as:

Pθ(y | x) =
∑
s∈S

Pθ(s | x)Pθ(y | x, s). (1)

But several recent works [56] and Equation (1) imply that
deep learning models can learn not only the dependencies
between the content C and the label y, but also the statis-
tical correlation between the style S and the label y (i.e.,
Pθ(y | x, s) ). This phenomenon indicates that deep learn-
ing models can capture some detailed texture patterns and
style features to achieve good performance, and the output
prediction Pθ(y | x) will change with the statistical correla-
tion between y and S (i.e., Pθ(y | x, s)). And this property
certainly offers attackers an opportunity to generate adver-
sarial examples for misleading the model. Therefore, the in-
ference of targeted adversarial examples can be formulated
as:

Pθ(yt | xadv) =
∑
s∈S

Pθ(s | xadv)Pθ(yt | xadv, s). (2)

Inspired by Figure 2 and the aforementioned Equation (2),
we first propose to exploit the statistical correlation between
yt and S (i.e., Pθ(yt | xadv, s)) 1, via injecting the specific

1The statistical correlation between yt and S (i.e., Pθ(yt | xadv , s)
reflects that the model learns some non-robust features. According to the
analysis of [24] and [55], the transferability of adversarial examples may
arise from non-robust features, such as texture patterns or styles.
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Figure 3. The architecture of our dynamic generative attack model, which is composed of a cross-attention guided convolution module
(denoted as “Dy Conv”) and a pattern injection module. The cross-attention guided convolution module consists of a static convolutional
kernel and a dynamic convolutional kernel that is computed according to the input instance. For the pattern injection, the pattern prototype
pt = {γt,βt} encodes the patterns or styles of the target class, and the “AdaCN” layer performs an affine operation to inject pt into the
generation of adversarial examples. Similar to [25], we introduce prunning

t via the EMA updating based on pt.

style or pattern of images from the given target class yt to
generate targeted transferable adversarial examples.

To this end, we propose a generative model to craft
targeted adversarial examples by injecting the pattern of
the target class. Besides, we design a cross-attention
guided dynamic convolution module in the generator, which
makes our generative model inherit the advantages of both
instance-specific and instance-agnostic attacks. Therefore,
the formulation of our method can be denoted as

xadv = clip
{
Proj

(
W ∗Gθ(x)(x, pt),−ε, ε

)
+ x

}
, (3)

where ε is the perturbation budget,W is a smoothing opera-
tor with fixed weights, pt represents the semantic pattern or
style of the target class, and Proj is a projection operation.

3.2. Network Architecture

Specifically, our generative model is illustrated in Fig-
ure 3, which is composed of two modules: ① a cross
attention-guided dynamic convolution module (correspond-
ing to “Dy Conv” in the ResBlock of Figure 3), ② a pattern
injection module. And the detailed pipeline of our approach
is presented in Algorithm 1. In the next section, we mainly
describe the two designed modules in detail.
Cross-attention guided dynamic convolution module.
Considering that not only the global dataset needs to be
modeled, but also specialized convolution kernels need
to be learned for each input, we design a cross-attention
guided convolution module. To achieve this goal, as shown
in Figure 4, we propose a static and a dynamic convolution
kernel parameterized with W and ∆W , respectively2. Thus

2Note that we ignore bias terms for the sake of brevity

Algorithm 1: Dynamic Generative Targeted Attack
Input : A white-box model f , training data X , target

samples Xt , perturbation budget ϵ, training epoch T .
Output: Generative attack model Gθ .

1 for t← 0 to T do
2 Sample mini-batches x ∼ X and xt ∼ Xt.
3 Get the augmented mini-batches x′ from x.
4 Feed x, x′ and xt into the generator to get adversarial

examples xadv and x′
adv , where xt is used for

extracting and injecting target patterns pt.
5 Update prunningt based on pt via EMA updating.
6 Forward pass xadv , x′

adv and xt through f .
7 Compute losses Lattack, and backward for updating Gθ .

8 return Converged generator Gθ .

the designed module is formulated as:

Xl = conv(Xl−1;W +∆W ), (4)

where Xl is the output of layer l. To get dynamic con-
volution kernels, we design a series of learnable kernels
(N×Cin×Cout×k2) 3 and attention queries q ∈ RN×Cin ,
which indicate the attention weight of each kernel. For
the layer l, we compute attention weights via performing
cross-attention between attention queries q and the input
Xl−1 ∈ RCin×H×W , which can be indicated as:

att = softmax
(

QK⊤
√
dk

)
V, (5)

3N indicates the number of learnable kernels, k represents the kernel
size, Cin and Cout are the number of input and output channels.
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Figure 4. The illustration of the proposed cross-attention guided
dynamic convolution module, which is composed of a static con-
volution kernel W and a dynamic convolution kernel ∆W .

where att ∈ RN×Cin , Q = qW q , K = X⊤
l−1W

k and
V = X⊤

l−1W
v . Then we can get the attention weight

α = [α1, α2, · · · , αN ] ∈ R1×N by conducting the aver-
age pooling on att, and each element in α indicates the
weight of corresponding kernels. Therefore, the dynamic
convolution kernels are implemented as ∆W = α1 ∗W1 +
α2 ∗ W2 + · · · + αN ∗ WN

4. Benefiting from this dy-
namic and static mixup convolution operation, our proposed
generative attack model can inherit the advantages of both
instance-specific and instance-agnostic attacks.
Pattern injection module. First, to encode target patterns
and styles during the generation of adversarial examples, we
design a pattern prototype pt = {γt,βt}, which is extracted
from the features of target samples, as shown in Figure 3.
Following [25], we introduce prunning

t to model patterns of
the global samples for the target class. Note that we up-
date prunning

t during each training iteration, which can be
indicated as prunning

t = λpt + (1 − λ)prunning
t . Then we

propose an adaptive class normalization (corresponding to
“AdaCN” in Figure 3) to inject pt into the generation of tar-
get adversarial examples. Similar to [23], the AdaCN mod-
ule exploits the learned pt = {γt,βt} to perform an affine
operation for injecting target patterns or styles:

AdaCN(X) = γt

(
X − µ(X)

σ(X)

)
+ βt, (6)

where pt = {γt,βt} is the target pattern prototype. Note
that Equation (6) represents pattern injection during train-
ing, and it is necessary to replace pt = {γt,βt} with
prunning
t = {γrunning

t ,βrunning
t } during inference.

3.3. Objective Function

To lead the victim model to misclassify adversarial ex-
amples as the target class, it is necessary to make the output
distribution of adversarial examples f(xadv),f(x′

adv) and
target samples f(xt) consistent. Thus we define the loss

4W1,W2 · · ·WN are the learnable kernels.

function as follows:

L = DKL

(
f(xadv)∥f(xt)

)
+ DKL

(
f(xt)∥f(xadv)

)
Laug = DKL

(
f(x′

adv)∥f(xt)
)
+ DKL

(
f(xt)∥f(x′

adv)
) (7)

Besides, similar to [39], we also introduce a local
similarity loss. For a batch of generated adversar-
ial examples {xi

adv}ni=1, {x′,i
adv}ni=1 and target samples

{xi
t}ni=1, the similarity matrix can be computed as Si,j =
f(xi

adv)·f(x
′,j
adv)

∥f(xi
adv)∥∥f(x′,j

adv)∥
and Sti,j =

f(xi
t)·f(x

j
t)

∥f(xi
t)∥∥f(xj

t)∥
. Hence,

we can get the local similarity loss as:

Lsim =
∑
i,j

Sti,j log
Sti,j
Si,j

+
∑
i,j

Si,j log
Si,j
Sti,j

, (8)

where Si,j =
exp(Si,j)∑
k exp(Si,k)

and Sti,j =
exp(St

i,j)∑
k exp(St

i,k)
. Fi-

nally, the total objective function can be formulated as:

Lattack = L+ Laug + Lsim. (9)

3.4. Theoretical Analyses

In order to further explain the insights of our method, we
consider a concrete setting that allows us to theoretically
investigate why our method is effective for boosting target
attacks. Please refer to the Supplementary Material for
comprehensive proofs of the following theorem.

Setup. We consider a simple problem of maximum like-
lihood classification, similar to that of [24], between two
Gaussian distributions.

Xs ∼ N (µs,Σs) , Xt ∼ N (µt,Σt) , (10)

where Σs,Σt = diag
{
σ2
s1 , · · ·σ

2
sn

}
,diag

{
σ2
t1 , · · ·σ

2
tn

}
,

respectively. To simplify the following derivation, we intro-
duce a mapping and a translation operation to transform the
model into a standard Gaussian binary classification model,
which can be denoted as:

Fs = AXs − Aµs+µt

2 ∼ N (−µ,Σ) ,

Ft = EXt − Aµs+µt

2 ∼ N (µ,Σ) ,
(11)

where the mapping matrix A = diag
{

σt1

σs1
,
σt2

σs2
· · · , σtn

σsn

}
,

E is the identity matrix and µ = −Aµs+µt

2 ,Σ = Σt. To
perform targeted attacks against this model with a given
sample xs ∈ Xs and the target label t, where Axs −
Aµs+µt

2 = fs ∈ Fs and fs + δ⋆ = A(xs + δ)− Aµs+µt

2 ,
we aim to solve the following optimization problem:

δ = A−1δ⋆, δ⋆ = argmax
∥δ′∥22⩽ε2

(fs + δ′)⊤ Σ−1µ. (12)
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Table 1. The attack success rates against normally trained models on ImageNet NeurIPS validation set, and the perturbation budget
ℓ∞ ≤ 16/255. Note that the results are averaged on 8 different target classes.

Substite Model Method Inc-v3 Inc-v4 Inc-Res-v2 Res152 Densenet-121 GoogleNet Vgg-16
MIM 99.90 0.80 1.00 0.40 0.20 0.20 0.30

TI-MIM 98.50 0.50 0.50 0.30 0.20 0.40 0.40
SI-MIM 99.80 1.50 2.00 0.80 0.70 0.70 0.50

DIM 95.60 2.70 0.50 0.80 1.10 0.40 0.80
TI-DIM 96.00 1.10 1.20 0.50 0.50 0.50 0.80
SI-DIM 90.20 3.80 4.40 2.00 2.20 1.70 1.40
CD-AP 94.20 57.60 60.10 37.10 41.60 32.30 41.70

TTP 91.37 46.04 39.37 16.40 33.47 25.80 25.73
C-GSP 93.40 66.90 66.60 41.60 46.40 40.00 45.00
GAP 86.90 45.06 34.48 34.48 41.74 26.89 34.34

Inc-v3

Ours 94.63 67.95 55.03 50.50 47.38 47.67 48.11
MIM 0.50 0.40 0.60 99.70 0.30 0.30 0.20

TI-MIM 0.30 0.30 0.30 96.50 0.30 0.40 0.30
SI-MIM 1.30 1.20 1.60 99.50 1.00 1.40 0.70

DIM 2.30 2.20 3.00 92.30 0.20 0.80 0.70
TI-DIM 0.80 0.70 1.00 90.60 0.60 0.80 0.50
SI-DIM 4.20 4.80 5.40 90.50 4.20 3.60 2.00
CD-AP 33.30 43.70 42.70 96.60 53.80 36.60 34.10

TTP 62.03 49.20 38.70 95.12 82.96 65.09 62.82
C-GSP 37.70 47.60 45.10 93.20 64.20 41.70 45.90
GAP 30.99 31.43 20.48 84.86 58.35 29.89 39.70

Res152

Ours 66.83 53.62 47.61 96.48 86.61 68.29 69.58
MIM 0.26 0.47 0.20 0.35 0.40 0.34 90.24

TI-MIM 0.43 0.63 0.34 0.55 1.45 0.64 89.13
SI-MIM 0.35 0.57 0.42 0.31 0.56 0.52 90.89

DIM 0.75 1.30 0.55 1.00 1.88 1.03 97.70
TI-DIM 0.23 0.38 0.17 0.29 0.48 0.35 93.71
SI-DIM 0.87 1.12 0.70 0.95 1.89 1.55 91.42
CD-AP 5.32 8.94 4.87 9.33 14.02 3.19 96.82

TTP 22.51 17.14 9.68 22.68 40.87 22.41 97.59
C-GSP 9.42 9.60 3.01 11.76 32.28 13.33 96.81
GAP 3.11 5.26 1.50 5.08 11.23 2.70 93.00

Vgg-16

Ours 28.18 21.78 9.56 25.27 46.55 23.70 93.00

Taking advantage of the method of Lagrange multipliers,
we can easily get the optimal solution as follows:

δ⋆ = 1
λΣ

−1µ,

δ = Σ−1

2λ

[
A−1

(
A (xs − µs) + µt

)
− xs

]
.

(13)

Going a step further, we rewrite the solution of δ into a
more concise formula as:

δ = C1

[


σt1
σs1

. . .
σtn
σsn

 (xs − µs) + µt

]
− C2xs, (14)

where C1 = Σ−1A−1

2λ and C2 = Σ−1

2λ . In fact, note that
the item of represents target pattern or style injection,
which is consistent with the previous works [23, 26]. There-
fore, the formulation of Equation (14) shows a close under-
lying correlation between the optimal targeted adversarial
perturbation and the embedding of target pattern or style,
which also theoretically guarantees the effectiveness of our
proposed generative model for targeted attacks.

4. Experiments

In this section, we conduct extensive experiments to
demonstrate the effectiveness of our method for targeted at-
tacks under various settings. Please feel free to get more
experimental results in our Supplementary Material.

4.1. Experimental Setup

Dataset. Following [55], we perform training on ImageNet
[7] training set, and evaluate on ImageNet-NeurIPS (1k)
proposed by NeurIPS 2017 adversarial competition [30].
Victim Models. We consider 13 attacked models in our ex-
periments. The normally trained models includes Inception-
v3 (Inc-v3) [47], Inception-v4 (Inc-v4) [45], DenseNet-
121 [22], GoogleNet [46], ResNet-152 (Res-152) [19],
and VGG16 (Vgg-16) [44] and Inception-ResNet (Inc-
Res-v2) [45]. Besides, we also consider several models
with robust training mechanisms, including adv-Inception-
v3 (Adv-Inc-v3) [17], ens-adv-Inception-ResNet-v2 (Ens-
Adv-IncRes-v2) [18] and ResNet-50 trained with various
robust training tricks [21, 15].
Baseline Attacks. To illustrate the effectiveness of our
method, we compare it with instance-specific attacks and
instance-agnostic attacks. Instance-specific attacks mainly
include MIM [9], DIM [53], SIM [32] and TIM [10], while
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Table 2. The attack success rates against robust models on ImageNet NeurIPS validation set. The perturbation budget ℓ∞ ≤ 16/255.
Adv-Inc-v3 [29] and Ens-Adv-IncRes-v2 [49] are trained with the adversarial training mechanism. Res50 SIN (stylized ImageNet),
Res50 SIN IN (mixture of stylized ImageNet and Nature ImageNet) and Res50 SIN fine IN (mixture of stylized ImageNet and Nature
ImageNet with finetuning tricks) are trained with auxiliary dataset [15], and Res50 Augmix [21] is trained with the state-of-the-art data
augmentation approach. Note that the results are averaged on 8 different target classes.

Substite Model Method Adv-Inc-v3 Ens-IncRes-v2 Res50 SIN Res50 SIN IN Res50 SIN fine IN Res50 AugMix
MIM 0.19 0.15 0.28 1.58 2.75 0.78

TI-MIM 0.61 0.73 0.50 2.51 4.75 1.76
SI-MIM 0.24 0.24 0.39 0.66 0.84 0.36

DIM 0.63 0.37 0.94 8.50 14.22 3.77
TI-DIM 0.23 0.30 0.28 0.76 1.49 0.49
SI-DIM 0.71 0.71 0.75 2.73 3.89 1.37
CD-AP 3.77 6.48 7.09 63.72 76.79 49.67

TTP 27.99 26.08 24.61 72.47 74.51 70.96
GAP 5.72 4.51 7.33 71.04 83.64 52.07

Res152

Ours 31.10 30.07 27.70 77.13 80.55 76.78
MIM 0.14 0.15 0.16 0.40 0.34 0.19

TI-MIM 0.26 0.24 0.20 0.45 0.57 0.28
SI-MIM 0.28 0.20 0.21 0.49 0.25 0.14

DIM 0.22 0.16 0.27 0.93 0.99 0.49
TI-DIM 0.14 0.19 0.21 0.35 0.34 0.21
SI-DIM 0.50 0.36 0.33 0.80 0.69 0.26
CD-AP 0.36 0.34 0.35 4.63 10.20 3.60

TTP 3.75 3.20 2.66 27.80 32.70 16.57
GAP 0.30 0.52 0.42 4.52 8.92 3.35

VGG16

Ours 4.14 3.22 2.66 30.16 38.10 17.95

A
tta

ck
 S

uc
ce

ss
 R

at
e 

(in
 %

)

20

30

40

50

60

Gaussian Medium Average

C-GSP TTP Ours

 Smoothing methods

A
tta

ck
 S

uc
ce

ss
 R

at
e 

(in
 %

)

40

45

50

55

60

65

70

JPEG quality

70 75 80 85 90

C-GSP TTP Ours

(a) (b)

Figure 5. Attack success rates of targeted adversarial examples
generated by various generative attack methods against differ-
ent input process defense methods. Figure (a) displays the re-
sults against various input smooth methods (including gaussian,
medium and average smoothing). Figure (b) shows the results
against JPEG compression (the JPEG quality factor varies from
70 to 90). Here, the substitute model is Res-152 and the target
model is Vgg-16.

instance-agnostic attacks include CD-AP [40], TTP [39],
GAP [41] and C-GSP [55]. In our experiments, the per-
turbation size ε = 16/255, the decay factor µ0 is 1 in MIM,
the transform probability is 0.7 in DIM, and the kernel size
is 15 in TIM. And other hyper-parameters follow the default
settings provided in their original works.

4.2. Comparison with State-of-the-art Methods

Attack Normally Trained Models. To evaluate the per-
formance of our method, we first perform targeted adver-
sarial attacks to compare the transferability across normally
trained models of adversarial examples generated by vari-
ous methods, including 6 iterative instance-specific attack
methods and 5 instance-agnostic attack methods. As shown

in Table 1, our dynamic generative attack method reaches
the best transferability on 16 out of 18 various black-box
cases. Furthermore, the attack success rate of our method
against normally trained models is 65.42% on average with
the substitute model as Res-152, which outperforms the
best of baselines [39] by 5.28% on average. Another in-
teresting discovery is that iterative instance-specific attack
methods can reach better performance under the setting of
white-box attacks, while generative attack methods show
more transferability when adapting the adversarial exam-
ples to a black-box model. Among these generative meth-
ods, our method can still generate targeted adversarial ex-
amples with higher transferability than others.

Attack Models with Robust Training Mechanisms. To
comprehensively verify the effectiveness of our method, we
compare the transferability of our approach with baselines
against several robust models, which are trained with var-
ious robust training strategies. As presented in Table 2,
although the attack success rate against these robust mod-
els is relatively low, our method is still able to outperform
baseline methods. Our generative attack method achieves
the best performance of targeted transferable adversarial at-
tacks on 11 over 12 cases. And regarding Res-152 as the
substitute model, our method outperforms the best of base-
lines [39] by 4.45% on average. Compared with normally
trained models, models with adversarial or robust training
strategies are difficult to attack successfully, which indicates
they are more robust than normal models.

Attack Models with Input Process Defense. Another
widely used and simple defense method is Input Process,
which leverages image processing techniques to remove
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Figure 6. Visualization results of adversarial examples generated by our proposed method. The 1st, 2nd and 3rd rows show clean images,
adversarial perturbations and adversarial examples, respectively. And (a), (b) and (c) display the results of different target classes (French
bulldog, Fire engine and Street sign), which indicate that different target classes lead to different patterns or texture styles of the generated
perturbations and adversarial images. Please refer to our Supplementary Material for more qualitative examples.
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Figure 7. Ablation studies. (a) Effect of the number of target sam-
ples. (b) Effect of the number of learnable convolution kernels.
Note that the substitute model is Res-152, while victim models
include Vgg-16, GoogleNet and Inc-v3.

the adversary perturbation before feeding into target mod-
els. To further understand our method, we also evaluate
the targeted adversarial examples crafted by various gener-
ative attacks against several image processing based defense
methods, namely, JPEG compression [12] and Smooth [8].
As presented in Figure 5, our method consistently outper-
forms the two existing generative attacks against both JPEG
compression and various smoothing defense methods. For
example, our method achieves an attack success rate of
54.77%, when the JPEG quality is 70, while TTP [39] and
C-GSP [55] just reach 54.06% and 40.04%, respectively.

4.3. Visualization and Ablation Studies

Visualization. To vividly demonstrate the working mech-
anism of our method, we visualize several adversarial ex-
amples and perturbations with different target classes. As
shown in Figure 6, there is an underlying dependency
between the generated perturbations and input instances,
where the perturbations are mainly concentrated on the se-
mantical part of the input images. Besides, for different tar-
get classes, our method tends to generate perturbations with
different texture patterns, which also verifies the effective-
ness of our designed pattern injection module.

Ablation Studies. To look deeper into our proposed
method, in this section, we present a series of ablation stud-
ies. As shown in Figure 7, we vary the number of target
samples and convolution kernels to verify the effectiveness
of our method. As presented in Figure 7(a), the performance
of our method continues to grow until the number of tar-
get samples reaches 1000. Besides, in Figure 7(b), when
the number of kernels is greater than 4, our performance
reaches a plateau, which means that it is sufficient to reach
an impressive attack success rate by learning 4 kernels in
each designed dynamic convolution module.

5. Conclusion

In this paper, we first construct a causal graph to ex-
pose the origin of targeted adversarial examples, which mo-
tivates us to inject target patterns or styles for generating
transferable target adversarial examples. Then we introduce
a dynamic generative attack model composed of a cross-
attention guided convolution module and a pattern injec-
tion module. Our generative attack model can not only in-
ject pattern or style information of the target class to im-
prove transferable targeted attacks, but also learn special-
ized convolutional kernels for each input instance, which in-
herits the advantages of both instance-specific and instance-
agnostic attacks. Moreover, we also provide rigorous theo-
retical analysis to guarantee the effectiveness of our method,
and extensive experiments demonstrate that our method per-
forms better than state-of-the-art targeted attack methods.
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