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一艘青花瓷质感的战舰
精致面容的古风少女，
头戴百鸟鲜花头冠

一只仙鹤站在平静的湖面上，
后面有一轮云雾缭绕的明月

穿西装的孙悟空的特写镜头

A warship with blue and white
porcelain texture

An ancient style girl with delicate face,
wearing a crown of birds and flowers

A crane is standing on the calm lake,
with a bright moon surrounded by

clouds in the background

The close up of Sun Wukong
in a suit

狮子王身穿紫色皇家大衣，身披红
色皇家斗篷，正在发表史诗级的演说

雪地里的熊猫宝宝戴着红帽子、
黄手套，穿着绿毛衣和蓝裤子

一只欢快的柯基行走在夕阳里，
光从右边打来铺成一地金黄

泰迪熊穿着戏服，站在太和殿前唱京剧

The Lion King, wearing a purple
royal coat and a red royal cloak,

is delivering an epic speech

A baby panda in the snow,
wearing red hat, yellow gloves,
green sweater and blue pants

A cheerful Koji is walking in the sunset,
the golden light comes from the right side

and spreads all over the ground

A teddy bear, wearing a costume, is
standing in front of the Hall of Supreme

Harmony and singing Beijing opera

Figure 1. Selected 1024×1024 samples with various text inputs, which shows that ERNIE-ViLG 2.0 has powerful capabilities of fine-grained
semantic control and high-resolution image synthesis, as well as to produce high-quality creative images of different styles.

Abstract

Recent progress in diffusion models has revolutionized the
popular technology of text-to-image generation. While exist-

* denotes equal contribution. Work done during Feng’s internship at Baidu.

ing approaches could produce photorealistic high-resolution
images with text conditions, there are still several open prob-
lems to be solved, which limits the further improvement of
image fidelity and text relevancy. In this paper, we pro-
pose ERNIE-ViLG 2.0, a large-scale Chinese text-to-image
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diffusion model, to progressively upgrade the quality of gen-
erated images by: (1) incorporating fine-grained textual and
visual knowledge of key elements in the scene, and (2) utiliz-
ing different denoising experts at different denoising stages.
With the proposed mechanisms, ERNIE-ViLG 2.01 not only
achieves a new state-of-the-art on MS-COCO with zero-shot
FID-30k score of 6.75, but also significantly outperforms
recent models in terms of image fidelity and image-text align-
ment, with side-by-side human evaluation on the bilingual
prompt set ViLG-300.

1. Introduction

Recent years have witnessed incredible progress in text-to-
image generation. With large-scale training data and model
parameters, kinds of text-to-image generation models are
now able to vividly depict the visual scene described by a
text prompt, and enable anyone to create exquisite images
without sophisticated drawing skills. Among all types of
image generation approaches, diffusion models [9] are at-
tracting increasing attention due to their ability to produce
highly photorealistic images conditioned on text prompts.
Given a text prompt, the models transform a Gaussian noise
into an image that conforms to the prompt through iterative
denoising steps. In the past years, text-to-image diffusion
models such as LDM [25], GLIDE [18], DALL-E 2 [22], and
Imagen [26] have achieved impressive performance in both
text relevancy and image fidelity. Despite these advances,
the exploration of diffusion models by existing methods is
still at the initial stage. When we go deep into the princi-
ple and implementation of text-to-image diffusion models,
there are still many opportunities to improve the quality of
generated images further.

First, during the learning process of each denoising step,
all text tokens interact with image regions and all the image
regions contribute equally to the final loss function. How-
ever, a visual scene of text and image contains many ele-
ments (i.e., textual words and visual objects), and different
elements usually hold different importance for the expres-
sion of the scene semantics [42]. The indiscriminate learning
process may cause the model to miss some key elements and
interactions in the scene, thus facing the risk of text-image
misalignment, such as the attribute confusion problem, es-
pecially for text prompts containing multiple objects with
specific attributes [22]. Second, when opening the horizon
from individual step to the whole denoising process, we can
found that the requirements of different denoising stages
are also not identical. In the early stages, the input images
are highly noised, and the model is required to outline the
semantic layout and skeleton out of almost pure noise. By
contrast, in the later steps close to the image output, denois-

1https://wenxin.baidu.com/ernie-vilg

ing mainly means improving the details based on an almost
completed image [25]. In practice, existing models usually
use one U-Net for all steps, which means that the same set
of parameters has to learn different denoising capabilities.

In this paper, we propose ERNIE-ViLG 2.0, an improved
text-to-image diffusion model with knowledge-enhanced
mixture-of-denoising-experts, to incorporate extra knowl-
edge about the visual scene and decouple the denoising ca-
pabilities in different steps. Specifically, we employ a text
parser and an object detector to extract key elements of the
scene in the input text-image pair, and then guide the model
to pay more attention to their alignment in the learning pro-
cess, so as to hope the model could handle the relationships
among various objects and attributes. Moreover, we divide
the denoising steps into several stages and employ specific
denoising “experts” for each stage. With the mixture of
multiple experts, the model can involve more parameters
and learn the data distribution of each denoising stage better,
without increasing the inference time, as only one expert is
activated in each denoising step.

With the extra knowledge from the visual scene and the
mixture-of-denoising-experts mechanism, we train ERNIE-
ViLG 2.0 and scale up the model size to 24B parameters.
Experiments on MS-COCO show that our model exceeds
previous text-to-image models by setting a new state-of-the-
art of 6.75 zeros-shot FID-30k score, and detailed ablation
studies confirm the contributions of each proposed strategy.
Apart from automatic metrics, we also collect 300 bilingual
text prompts that could assess the quality of generated im-
ages from different aspects and enable a fair comparison
between English and Chinese text-to-image models. The hu-
man evaluation results again indicate that ERNIE-ViLG 2.0
outperforms other recent methods, including DALL-E 2 [22]
and Stable Diffusion [25], by a significant margin both in
terms of image-text alignment and image fidelity.

To sum up, the main contributions of this work are: (1)
We incorporate textual and visual knowledge into the text-
to-image diffusion model, which effectively improves the
ability of fine-grained semantic control and alleviates the
problem of object-attribute mismatching in generated images.
(2) We propose the mixture-of-denoising-experts mechanism
to refine the denoising process, which can adapt to the char-
acteristics of different denoising steps and scale up the model
to 24B parameters, making it the largest text-to-image model
at present. (3) ERNIE-ViLG 2.0 achieves the state-of-the-art
zero-shot FID-30k score of 6.75 on MS-COCO, surpasses
DALL-E 2 and Stable Diffusion in human evaluation on the
Chinese-English bilingual prompt set ViLG-300.

2. Method
During the training process, the text-to-image diffusion

model receives paired inputs (x, y) consisting of an image x
with its text description y, and the ultimate goal is to gener-
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Figure 2. The architecture of ERNIE-ViLG 2.0, which incorporates fine-grained textual and visual knowledge of key elements in the scene
and utilizes different denoising experts at different denoising stages.

ate x based on y. To achieve this, a text encoder fθ(·) first
encodes y as fθ(y), then a denoising network ϵθ(·) condi-
tioned on fθ(y) learns to generate x from a Gaussian noise.
To help the model generate high-quality images that accu-
rately match the text description (i.e., text prompt), ERNIE-
ViLG 2.0 enhances text encoder fθ(·) and denoising network
ϵθ(·) with textual and visual knowledge of key elements in
the scene. Furthermore, ERNIE-ViLG 2.0 employs mixture-
of-denoising-experts to refine the image generation process,
where different experts are responsible for different genera-
tion steps in the denoising process. The overall architecture
of ERNIE-ViLG 2.0 is shown in Figure 2 and the details are
described in the following subsections.

2.1. Preliminary

Denoising diffusion probabilistic models (DDPM) are a
class of score-based generative models that have recently
shown delightful talents in the field of text-to-image genera-
tion [9]. The diffusion process of DDPM aims to iteratively
add diagonal Gaussian noise to the initial data sample x and
turn it into an isotropic Gaussian distribution after T steps:

xt =
√
αtxt−1 +

√
1− αtϵt, t ∈ {1, . . . , T} (1)

where the sequence {xt} starts with x0 = x and ends with
xT ∼ N (0, I), the added noise at each step is ϵt ∼ N (0, I),
and {αt}1...T is a pre-defined schedule [30, 32]. The denois-
ing process is the reverse of diffusion, which converts the
Gaussian noise xT ∼ N (0, I) back into the data distribution
x0 through iterative denoising steps t = T, . . . , 1. During
training, for a given image x, the model calculates xt by
sampling a Gaussian noise ϵ ∼ N (0, I):

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where ᾱt =
∏t

s=1 αs. Given xt, the target of the denoising
network ϵθ(·) is to restore x0 by predicting the noise ϵ. It is
learned via the loss function

L = Ex,ϵ∼N (0,I),t

[
||ϵ− ϵθ(xt, t)||22

]
. (3)

With the predicted ϵθ(xt, t), we can have the prediction
of x0 at step t by converting Equation (2):

x̂0,t =
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t)). (4)

In Figure 2, we visualize the sampled xt and the predicted
x̂0,t for several timesteps during training. In the inference
process of DDPM, x0 is unknown, so the model iteratively
generates xt−1 based on xt and x̂0,t:

xt−1 =
1− ᾱt−1

1− ᾱt

√
αtxt +

1− αt

1− ᾱt

√
ᾱt−1x̂0,t

+

√
(1− ᾱt−1)(1− αt)

1− ᾱt
ϵ′t, t ∈ {T, . . . , 1},

(5)

where ϵ′t ∼ N (0, I) is a sampled Gaussian noise.
The denoising network ϵθ(·) is typically implemented by

U-Net [9]. To allow ϵθ(·) to condition on text prompts,
a text encoder fθ(·) first extracts the text representation
fθ(y) ∈ Rny×dy , which is then fed into ϵθ(·) via a cross-
modal attention layer [18]. Formally, the U-Net represen-
tation φi(xt) ∈ Rnx×d is concatenated with the text repre-
sentation fθ(y) after projection, and then goes through an
attention layer to achieve cross-modal interaction,

Q = φi(xt)W
(i)
Q ,

K = [φi(xt)W
(i)
Kx

; fθ(y)W
(i)
Ky

],

V = [φi(xt)W
(i)
Vx

; fθ(y)W
(i)
Vy

],

(6)

Attention(Q,K, V ) = softmax

(
QK⊤
√
d

)
V, (7)

where i is the index for U-Net layers, [; ] is the concatena-
tion operator, W (i)

Q ,W
(i)
Kx

,W
(i)
Vx

∈ Rd×d and W
(i)
Ky

,W
(i)
Vy

∈
Rdy×d are learnable projection layers, nx and ny are the
length of encoded image and text, respectively.

During inference, given a text prompt y, the denoising
U-Net ϵθ(·) predicts the image sample x conditioned on
the text y with classfier-free guidance [10] and Denoising
Diffusion Implicit Models (DDIM) sampling [31].
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2.2. Knowledge-Enhanced Diffusion Model

The text-to-image model receives a text prompt that de-
scribes the scene of an image, then depicts it with crucial
objects and corresponding attribute details. In other words,
both text and image are intended to express a visual scene,
in which key elements have different expressions, such as
keywords in text or salient regions in image. However, naive
diffusion model does not distinguish the importance of el-
ements and indiscriminately iterates the denoising process.
ERNIE-ViLG 2.0 incorporates extra text and visual knowl-
edge into the learning stage, hoping to enhance the fine-
grained semantic perception of diffusion model.
Textual Knowledge. An ideal text-to-image model is ex-
pected to focus on all the critical semantics mentioned in
the text prompt. To distinguish function words and words
describing key semantics, we adopt an off-the-shelf part-
of-speech toolkit to extract lexical knowledge of the input
prompt, and then improve the learning process by (1) insert-
ing special tokens into the input sequence and (2) increasing
the weight of tokens with specific part-of-speech tags in the
attention layer. Specifically, we selected 50% of samples
and inserted special tokens at the beginning of each word, in
which each part-of-speech tag corresponds to a special token.
For the selected samples, we also strengthen the attention
weight of keywords based on the lexical analysis results. In
this way, Equation (7) is modified to,

Attention(Q,K, V )′ = softmax

(
Wa · (QK⊤)√

d

)
V, (8)

where Wa ∈ Rnx×(nx+ny) is an auxiliary weight matrix that
used to scale the vanilla attention, and

W ij
a =

{
1 + wa toki ∈ {x}, tokj ∈ {x, ykey}

1 otherwise.
(9)

Here wij
a is the scaling factor of the attention weight between

token toki and tokj , wa is a hyper-parameter, x refers to all
the image tokens, and ykey denotes the keywords in text2.
Figure 2 gives an example, where special tokens “[a]” and
“[n]” are inserted for adjectives and nouns, respectively.
Visual Knowledge. Similar to notional words in the text
prompt, there are also salient regions in an image, such as
people, trees, buildings, and objects mentioned in the in-
put. To extract such visual knowledge, we apply an object
detector [1] to 50% of training samples, and then select eye-
catching objects from the results with heuristic strategies.
Since the loss function of the diffusion model directly acts
on the image space, we can assign higher weights to corre-
sponding regions by modifying Equation (3), thus promoting
the model to focus on the generation of these objects:

L′ = Ez,ϵ∼N (0,I),t

[
Wl · ||ϵ− ϵθ(zt, t)||22

]
, (10)

2The keywords is defined as notional words in modern Chinese (i.e.,
nouns, verbs, adjectives, numerals, quantifiers, and pronouns).

W ij
l =

{
1 + wl losij ∈ {xkey}

1 otherwise.
(11)

Here Wl ∈ Rnh×nw is the weight matrix, nh and nw are the
height and weight of image space, wl is a hyper-parameter,
losij is the loss item in i-th row and j-th column of image
space, xkey is the regions that corresponding to key objects.
As Figure 2 illustrates, the regions of “dog” and “cat” are
assigned with larger weights in the calculation of L′.

Now a new problem arises: as a kind of fine-grained
knowledge, the selected objects may not appear in the text
prompt, thus perplexing the model in learning the alignment
between words and objects. An intuitive idea is first to obtain
the object and attribute category of each region, then com-
bine corresponding class labels with the original text prompt
to achieve fine-grained description, thus ensuring the input
contains both coarse and fine granularity information. For
instance, as shown in Figure 2, the detected object “bowl”
is not included in the caption, so we append it to the original
description. Besides, we also employ an image captioning
model [38] to generate text for images, and randomly re-
place the original prompt with generated captions, because
the generated captions of many images are more concise and
reveal more accurate semantics than original prompts.

Most notably, the above strategies are only limited to the
training stage. By randomly selecting a part of samples to
equip these additional enhancement strategies, the model
is supposed to sense the hints of knowledge from various
perspectives, and generate higher quality images for the
given text in the inference stage, even without special tokens,
attention strengthening, or text refinement.

2.3. Mixture-of-Denoising-Experts

Recall that the diffusion process is to iteratively corrupt
the image with Gaussian noises by a series of diffusion steps
t = 1, . . . , T , and DDPM [9] are trained to revert the diffu-
sion process by denoising steps t = T, . . . , 1. During the
denoising process, all steps aim to denoise a noised input,
and they together convert a completely random noise into
a meaningful image gradually. Although sharing the same
goal, the difficulty of these denoising steps varies according
to the noise ratio of input. Figure 2 illustrates such differ-
ence by presenting some examples of xt and the denoising
prediction x̂0,t during training. For timesteps t near T , such
as t = T, tk, tj in the figure, the input of the denoising net-
work xt is highly noised, and the network of these steps
mainly tackles a generation task, i.e., generating an image
from a noise. On the contrary, for timesteps t near 1, such as
t = ti, 1, the input xt is close to the original image, and the
network of these steps needs to refine the image details.

DDPM makes no specific assumption on the implementa-
tion of denoising network, that is, the denoising process does
not require the same denoising network for all steps in theory.
However, most of the previous text-to-image diffusion ap-
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proaches [18,22,25,26] follow the vanilla implementation to
adopt a denoising network for the whole denoising process.
Considering that tasks of different timesteps are different,
we conjecture that using the same set of parameters to learn
different tasks might lead to suboptimal performance.

In view of this, we further propose Mixture-of-Denoising-
Experts (MoDE), where the primary motivation is to employ
multiple specialized expert networks to fit different tasks at
different timesteps. Since the inputs of adjacent timesteps
are similar and so are the denoising tasks, we divide all
the timesteps uniformly into n blocks (S1, · · · , Si, · · · , Sn),
in which each block consists of consecutive timesteps and
is assigned to one denoising expert. In other words, the
timesteps in the same block are denoised by the same group
of network parameters. In practice, we share the same text
encoder for all denoising experts, and utilize different U-Net
experts for different timestep blocks:

ϵθ(xt, t) = {ϵθ,i(xt, t)}, t ∈ Si, (12)

where ϵθ,i(xt, t) is the i-th expert network. Herein, MoDE
improves the model performance by adopting expert net-
works to specially deal with different denoising stages.

Intuitively, when using more experts, each block contains
fewer timesteps, so each expert could better focus on learning
the characteristics of specific denoising steps assigned to it.
Meanwhile, as only one expert network is activated at each
step, increasing the number of experts does not affect the
computation overhead during inference. Therefore, ERNIE-
ViLG 2.0 can flexibly scale up the parameters of diffusion
model, allowing the experts to fit the data distribution better
without increasing inference time.

3. Experiments
In this section, we first introduce the implementation

details of ERNIE-ViLG 2.0. Then we present the comparison
of models with automatic metrics and human evaluation.
Last, we further analyze the results with quantitative ablation
studies and qualitative showcases.

3.1. Implementation Details

To reduce learning complexity, we use diffusion models
to generate the representations of images in latent space of an
image auto-encoder following Latent Diffusion Models [25].
We first pre-train an image encoder to transform an image
x ∈ Rnh×nw×3 from pixel space into latent space x̂ ∈
Rnl

h×nl
w×4 and an image decoder to convert it back. Here

nh/nl
h and nw/nl

w denote the image’s original/latent height
and width, and we collectively refer to pixel space and hidden
space as image space in this paper. Then we fix the auto-
encoder and train the diffusion model to generate x̂ from text
prompt y. During inference, we adopt the pre-trained image
decoder to turn x̂ into pixel-level image output.

Table 1. Comparison of ERNIE-ViLG 2.0 and representative text-to-
image generation models on MS-COCO 256× 256 with zero-shot
FID-30k. We use classifier-free guidance scale 2.1 for our diffusion
model and achieve the best performance.

Model Zero-Shot FID-30k ↓

DALL-E [23] 27.50
CogView [2] 27.10
LAFITE [46] 26.94
LDM [25] 12.61
ERNIE-ViLG [45] 14.70
GLIDE [18] 12.24
Make-A-Scene [6] 11.84
DALL-E 2 [22] 10.39
CogView2 [3] 24.00
Imagen [26] 7.27
Parti [43] 7.23

ERNIE-ViLG 2.0 6.75

ERNIE-ViLG 2.0 contains a transformer-based text en-
coder with 1.3B parameters and 10 denoising U-Net experts
with 2.2B parameters each, which totally add up to about
24B parameters. For hyper-parameters to incorporate knowl-
edge, the attention weight scale wa is set to 0.01 and the loss
weight scale wl is set to 0.1 (both chosen from [0.01, 0.1,
0.5, 1]). For the MoDE strategy, all timesteps are divided
into 10 blocks. The model is optimized by AdamW [15],
with a fixed learning rate 0.9× 10−4, β1 = 0.9, β2 = 0.999,
and weight decay of 0.01. We train ERNIE-ViLG 2.0 on 320
Tesla A100 GPUs for 18 days.

The training data consists of 170M image-text pairs, in-
cluding publicly available English datasets like LAION [28]
and a series of internal Chinese datasets. The image auto-
encoder is trained on the same set. For images with English
captions, we translate them with Baidu Translate API3 to get
the Chinese version.

3.2. Results

Automatic Evaluation on MS-COCO. Following previous
work [22, 25, 26], we evaluate ERNIE-ViLG 2.0 on MS-
COCO 256 × 256 with zero-shot FID-30k, where 30,000
images from the validation set are randomly selected and the
English captions are automatically translated to Chinese.

Table 1 shows that ERNIE-ViLG 2.0 achieves new state-
of-the-art performance of text-to-image generation, with
6.75 zero-shot FID-30k on MS-COCO. Inspired by DALL-
E [23] and Parti [43], we rerank the batch-sampled images
(with only 4 images per text prompt, comparing with 512 im-
ages used in DALL-E and 16 images used in Parti) based on
the image-text alignment score, calculated by a pre-trained
CLIP model [21], in which the text is the initial English

3https://fanyi.baidu.com
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Figure 3. Comparison of ERNIE-ViLG 2.0 and DALL-E 2/Stable
Diffusion on ViLG-300 with human evaluation. We report the user
preference rates with 95% confidence intervals.
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(3) Zongzi and corn boiled in the pot

(2) A wine glass on top of a dog
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Figure 4. Qualitative Comparison of ERNIE-ViLG 2.0 and DALL-
E 2/Stable Diffusion on ViLG-300.

caption in MS-COCO and the image is generated from the
auto-translated Chinese caption. Besides, even without the
reranking strategy, we find that ERNIE-ViLG 2.0 can also
beat the latest diffusion-based models like DALL-E 2 [22]
and Imagen [26], with the zero-shot FID-30k of 7.23.
Human Evaluation on ViLG-300. ERNIE-ViLG 2.0 takes
Chinese prompts as input and generates high-resolution im-
ages, unlike recent English-oriented text-to-image models.
Herein, we introduce ViLG-3004, a bilingual prompt set
that supports the systematic evaluation and comparison of
Chinese and English text-to-image models. ViLG-300 con-
tains 300 prompts from 16 categories, composed of Draw-
Bench [26] (in English) and the prompt set used in ERNIE-
ViLG [45] (in Chinese).

With ViLG-300, we can make convincing comparisons
between ERNIE-ViLG 2.0 and DALL-E 25, Stable Diffu-
sion67. For evaluation, five raters are presented with two sets

4https://github.com/PaddlePaddle/ERNIE/tree/
ernie-kit-open-v1.0/Research/ERNIE-ViLG2/data/
ViLG-300.csv

5https://openai.com/dall-e-2/
6https://beta.dreamstudio.ai/dream
7We use DALL-E 2 and Stable Diffusion interfaces to generate images

on October 25, 2022, before the CVPR 2023 submission deadline.
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Figure 5. Performance with various strategies in ERNIE-ViLG 2.0.
Here we draw pareto curves with guidance scale [2,3,4,5,6,7,8,9].
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Figure 6. Samples from ViLG-300 with different knowledge en-
hancement strategies (left) and different number of experts (right).

of images generated by ERNIE-ViLG 2.0 and the compared
model. Next, they are asked to compare these images from
two dimensions of image-text alignment and image fidelity,
and then select the model they prefer, or respond that there is
no measurable difference between two models. Throughout
the process, raters are unaware of which model the image
is generated from, and we do not apply any filtering strat-
egy to the rating results. Figure 3 shows that human raters
prefer ERNIE-ViLG 2.0 over all other models in both image-
text alignment (56.5%±3.8% and 68.2%±3.8% when com-
pared to DALL-E 2 and Stable Diffusion, respectively) and
image fidelity (58.8%±3.6% to DALL-E 2, 66.5%±3.5%
to Stable Diffusion, respectively), which again proves that
ERNIE-ViLG 2.0 can generate high-quality images that con-
form to the text, with the help of knowledge enhancement
and mixture-of-denoising-experts strategies. Beyond text
relevancy and image fidelity, we also observe that ERNIE-
ViLG 2.0 can generate images with better sharpness and
textures than baseline models.

3.3. Analysis

To examine the effectiveness of our design philosophy,
we conduct two groups of ablation studies. Similar to the
main experiment, we also provide both automatic metrics
and intuitive showcases to demonstrate the advantages of
each strategy in ERNIE-ViLG 2.0 here.
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Figure 7. The visualization of cross-attention maps in different
denoising timesteps, where each value in the image space is the
average of attention from this image token to all text tokens.

Knowledge Enhancement Strategies. In this part, we
focus on the impact of various knowledge enhancement
strategies by training a series of lightweight models, with
500M text encoders, 870M U-Nets, and 500M training sam-
ples. The pareto curves in Figure 5a demonstrate that in-
corporating knowledge in the learning process brings sig-
nificant performance gains in image fidelity and image-text
alignment. Specifically, (1) the benefits of textual knowl-
edge are mainly reflected in precise fine-grained semantic
control (w/ textual), (2) only utilizing object knowl-
edge may not be able to steadily promote the performance
(w/ object), while taking synthetic descriptions into con-
sideration is an effective solution to make full use of vi-
sual knowledge (w/ visual). Figure 6 provides more
visual comparisons to intuitively demonstrate the changes
brought by each strategy. When handling complex prompts,
baselinemodel faces problems such as the absence of key
objects or incorrect assignment of attributes. At this point,
textual knowledge helps the model accurately understand
the attributes of each object, but the generated images some-
times fall into a new problem of distortion. Complementarily,
visual knowledge promotes the generation of high-fidelity
images, but it cannot well understand specific entities in text.
Eventually, the combination of two kinds of knowledge har-
moniously promotes the model from single- and multi-modal
views, which ensures high fidelity and boost the image-text
alignment in fine-grained visual scene.

Mixture-of-Denoising-Experts Strategies. Based on the
above lightweight settings, we further train the baseline
model with 500M samples, and then train 200M samples
for each denoising expert. Figure 5b shows that with the
increasing number of denoising experts, the overall perfor-
mance is gradually improved, proving that scaling the size
of U-Net is also an effective solution to achieve better image
quality. More showcases are provided in Figure 6. When the
number of experts increases from 1 to 10, the model can not
only better handle the coupling between different elements
but also generate images with more natural textures. For
instance, the numbers on clocks become clearer, the propor-
tion of wolf and suit becomes more harmonious, and the
model can generate more photorealistic pictures instead of
cartoon drawings. We also tried to analyze the impact of the
amount of denoising experts and training samples, and found
that using more expert networks has better performance than

using a network to train more samples.
Figure 7 further visualizes the cross-attention maps from

image features to text representations in denoising experts
during 1,000-step denoising process, where these steps
shown are denoised by different experts. As shown in the
illustration, attentions of different denoising timesteps vary.
Specifically, the attention maps of timesteps t near 1,000 are
almost evenly distributed over the whole image, which is be-
cause the input of these steps is close to Gaussian noise and
the image layout is unclear, so all the image tokens have to
attend to the text prompt to generate image skeleton. When
the timesteps are close to 1, attention maps concentrate more
on foreground objects. For these timesteps, the input to de-
noising network is close to the final image and the layout
is clear, and only a few parts of the image need to focus on
the text to fill in the details of object. These observations
again illustrate the difference among denoising timesteps
and demonstrate the need to disentangle different timesteps
with multiple experts.

4. Related Work
Text-to-Image Generation. Text-to-image generation is the
task of synthesizing images according to natural language
descriptions. Early works adopted generative adversarial
networks [7] to produce images based on text [36,41,44,47].
Inspired by the success of transformers in various generation
tasks [37], models such as ERNIE-ViLG [45], DALL-E [23],
Cogview [2], Make-A-Scene [6], and Parti [43] have also ex-
plored text-to-image generation as a sequence-to-sequence
problem, with auto-regressive transformers as generators
and text/image tokens as input/output sequences. Recently,
another line of works have applied diffusion models [30],
shaping it as an iterative denoising task [9, 27, 31]. By
adding text condition in the denoising steps, practices such as
LDM [25], DALL-E 2 [22], and Imagen [26] constantly set
new records in text-to-image generation. Based on diffusion
models as the backbone, ERNIE-ViLG 2.0 proposes incorpo-
rating knowledge of scene and mixture-of-denoising-experts
mechanism into the denoising process.
Knowledge-Enhanced Pre-trained Models. While trans-
formers benefit from pre-training on large-scale data, many
attempts have been adding knowledge to guide them to focus
on key elements during learning. For language-based tasks,
knowledge-enhanced models used knowledge masking strat-
egy [11, 34] or knowledge-aware pre-training tasks [33, 35]
to understand the language data distribution. As for vision-
language multi-modal discrimination models, OSCAR [14],
ERNIE-ViL [42] and ERNIE-Layout [19] leveraged object
tags, scene graphs, and document layouts as extra knowl-
edge to help the models better align language and vision
modalities. Among multi-modal generation models, Make-
A-Scene [6] emphasized the importance of object and face re-
gions by integrating domain-specific perceptual knowledge.
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While current text-to-image diffusion models suffer from at-
tribute misalignment problems [22], they have not employed
any specific knowledge of objects. Herein, ERNIE-ViLG 2.0
utilizes the knowledge of key elements in images and text
to enhance diffusion models, leading to better fine-grained
image-text alignment in generated pictures.
Mixture-of-Expert. Mixture-of-Experts (MoE) in neural
networks means dividing specific parts of the parameters into
subsets, each of which is called an expert [4, 29]. During
the forward pass, a router assigns experts to different input,
and each input only interacts with the experts assigned to.
The router is a critical part of MoE. In language tasks, the
most common strategy is a matching algorithm that assigns
each text token to several experts in the linear feed-forward
layer [5, 8, 12, 24]. While most practices formulate multi-
ple experts in only the linear layers, some works also use
an entire language model as an expert [13]. Beyond the
natural language processing tasks, the idea of MoE have
also been applied to vision models [20] and Mixture-of-
Modality-Expert in multi-modal transformers [17, 39, 40].
In ERNIE-ViLG 2.0, the MoDE mechanism takes multiple
denoising U-Nets as experts. It uses the denoising step index
as the fixed router to determine which expert to use.

5. Risks, Limitations, and Future Work
Model Usage and Data Bias. Text-to-image generation
models trained by large-scale image-text data have all faced
similar risks regarding to inappropriate usage of generation
and data bias [22, 25, 26]. Considering that text-to-image
models help people realize their imagination with less effort,
the malicious use of models may result in unexpected de-
ceptive or harmful outcomes. Moreover, since the models
are trained on datasets consisting of images and their alt-text
crawled from websites, the generated images may exhibit
social and cultural bias in the datasets and websites.
Character Rendering. Figure 8 shows two successful char-
acter rendering cases (a, b) and one failure case (c). Charac-
ter rendering is a challenging task for ERNIE-ViLG 2.0 for
two reasons. First, the training data contains both Chinese
text-image pairs and English text-image pairs translated into
Chinese. When a text prompt mentions characters, the char-
acters in the image could be in Chinese or English, and it is
hard for the model to learn corresponding characters in both
languages simultaneously. In the cases of successful charac-
ter rendering that we observed, the characters could be words
that are common in Chinese and do not have an exact match
in English, such as “福” (“blessing, happiness, good luck”
in English) in Figure 8a, or numbers which are the same
in English and Chinese images, such as “20” in Figure 8b.
The second reason that makes character rendering difficult is
probably that Chinese characters are complex combinations
of strokes without basic components like English letters. In
Figure 8c, the model does learn that it should write some

(a)国风福字挂饰 (b)生日蛋糕上有蜡烛“20” (c)国画葡萄
A hanging ornament with
“福” in Chinese fashion

A birthday cake with
candles of “20” on it Chinese painting of grapes

Figure 8. Examples of character rendering. The model successfully
renders simple characters specified in the prompt, while for more
difficult cases, the model only learns the position for now.

Chinese characters in the top right corner, but it only paints
meaningless strokes there.
Variation of Mixture-of-Denoising-Experts. Section 3.3
shows that using more denoising experts leads to better
model performance. It indicates that using parallel U-Net
experts is an effective way to augment the denoising network.
Due to the computation limitation, we only try using up to
10 experts in this work, while we believe that exploring more
denoising experts and multiple text encoders as experts is a
meaningful future direction. Herein, we can further scale up
the model and allow it to learn data distribution better with
similar inference time.

6. Conclusions
We present ERNIE-ViLG 2.0, the first Chinese large-scale

text-to-image generation model based on diffusion models.
To improve the fine-grained control of scene semantics, we
incorporate visual and textual knowledge of the scene into
diffusion models. To disentangle the model parameters for
different denoising timesteps, we introduce MoDE and scale
up the model parameters to 24B with a relatively short infer-
ence time. Experiments show that ERNIE-ViLG 2.0 achieves
state-of-the-art on MS-COCO and each proposed mechanism
contributes to the final results. To allow fair comparisons be-
tween Chinese and English text-to-image models, we collect
a bilingual prompt set ViLG-300, and human evaluation indi-
cates that ERNIE-ViLG 2.0 is preferred over strong baselines
in both text relevancy and image fidelity. Further analysis
suggests that different knowledge sources improve the gen-
eration in different aspects, and using more experts results
in better image quality. In the future, we intend to enrich
external image-text alignment knowledge and expand the
usage of multiple experts to advance the generation. See also
Appendix for more details on training and evaluation.
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