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Abstract

Existing Masked Image Modeling methods apply fixed
mask patterns to guide the self-supervised training. As
those patterns resort to different criteria to mask local re-
gions, sticking to a fixed pattern leads to limited vision cues
modeling capability. This paper proposes an evolved part-
based masking to pursue more general visual cues model-
ing in self-supervised learning. Our method is based on
an adaptive part partition module, which leverages the vi-
sion model being trained to construct a part graph, and
partitions parts with graph cut. The accuracy of parti-
tioned parts is on par with the capability of the pre-trained
model, leading to evolved mask patterns at different training
stages. It generates simple patterns at the initial training
stage to learn low-level visual cues, which hence evolves
to eliminate accurate object parts to reinforce the learn-
ing of object semantics and contexts. Our method does
not require extra pre-trained models or annotations, and
effectively ensures the training efficiency by evolving the
training difficulty. Experiment results show that it substan-
tially boosts the performance on various tasks including im-
age classification, object detection, and semantic segmenta-
tion. For example, it outperforms the recent MAE by 0.69%
on imageNet-1K classification and 1.61% on ADE20K seg-
mentation with the same training epochs.

1. Introduction
Recent years have witnessed a boom in continuously

growing representation learning capability and data de-
mands of deep neural networks like CNN [21, 37] and
vision transformers [14, 27, 33]. To tackle the increas-
ing demand for labelled data, Masked Language Model-
ing (MLM) [3, 13] has been adopted to train natural lan-
guage processing models through self-supervised learning
on large-scale data. Inspired by the success of MLM, many
works propose Masked Image Modeling (MIM) to pre-train
vision models on unlabeled images for a series of down-
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Figure 1. (a), (b), and (c) are three basic mask patterns adopted in
existing MIM methods. (d) illustrates the proposed evolved part
masking, where the generated mask patterns evolve with the capa-
bility of vision model being trained.

stream tasks [2,18,38]. MLM masks several words in the in-
put sentences and supervises the network to recover masked
words according to semantics provided by remaining words.
MIM follows a similar idea of MLM to mask a portion of
regions in input images, then trains the vision model to re-
cover masked contents from visible regions. As images are
not structured representations like sentences, different MIM
works have to resort to different criteria to generate mask
patterns.

Mask patterns in existing works can be divided into three
categories according to their masked image cues. Some
works like MAE [18] and SimMIM [38] do not differentiate
visual cues in images, and randomly mask local regions or
patches. Another line of the works, such as MST [24], pro-
pose to preserve crucial cues in the image to enhance the
learning of local context. The third line of works such as
AttnMask [22] and SemMAE [23] propose to completely
mask cues like object region in images to pose a more chal-
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Figure 2. Illustration of effects of different mask patterns to down-
stream tasks in (a), and learned parameters in (b). In (a), random
pattern and block pattern perform best in image classification and
semantic segmentation, respectively. (b) shows the mean attention
distance across images at different layers of the pre-trained model.
Results indicate different mask pattern are suited to different tasks.

lenging pretext task. A more detailed review to existing
works will be presented in Sec. 2.

Mask patterns in those works lead to different visual cues
modeling tasks and varied difficulties. To study the impact
of mask patterns on self-supervised pre-training, we adopt
three basic masking methods in Fig. 1(a)-(c) to different
vision tasks. Fig. 2(a) explores their effects to two vision
tasks. It can be observed that, random pattern and block
pattern perform best in image classification and semantic
segmentation, respectively. It is also clear that, more train-
ing epochs do not boost the performance of grid pattern and
random pattern in segmentation. Fig. 1(b) further visualizes
the average attention length of neurons at each layer of the
pre-trained model. It indicates that, neurons trained by grid
mask mostly focus on nearby regions with shorter attention
distances. As longer attention distance benefits the learning
of contextual cues, block pattern is more preferred by dense
prediction tasks like semantic segmentation.

Fig. 2 indicates that, the criteria for generating mask pat-
terns largely determines visual cues that the network could
learn in the pre-training phase. For instance, masking the
complete object regions is more beneficial for learning se-
mantics and contexts than grid mask. Masking grid pattern
makes the network neuron pay more attention to nearby re-
gions, and favors the initial training stage in classification,
by posting an easier learning task. Therefore, different mask
patterns are suited to different down-stream tasks. This find-
ing leads to one fundamental challenge to self-supervised
learning: the pre-training procedure have no clue which task
it will be applied to.

Instead of sticking to a fixed mask pattern, we propose
the evolved part masking to pursue more general visual
cues modeling capability in self-supervised learning. The
evolved part masking is expected to model visual cues at
different scales, accelerate the training convergence. To this
end, we generate masks by partitioning object parts in train-

ing images. An adaptive part partition module is adopted
to leverage the vision model being trained to construct a
part graph, and partition parts with graph cut. The accuracy
of partitioned parts is on par with the capability of vision
model, leading to evolved mask patterns at different train-
ing stages, as illustrated in Fig. 1(d). In other words, the
initial training stage generates simple patterns to learn low-
level visual cues, which hence evolves to mask different ob-
ject parts to reinforce the learning of object semantics and
contexts.

The adaptive part partition module generates parts ac-
cording to the relationship among image patches inferred
by the vision model. The relevance among patches learned
by the vision transformers are encoded in the attention map.
Our method hence constructs a patch association graph
based on attention maps, and tackle the unlabeled part parti-
tion as a classic graph cut problem. It implements the graph
cut with an efficient Expectation-Maximization (EM) algo-
rithm [1, 6, 30]. The generated masks embed extra contex-
tual cues among image patches to supervise the training of
vision model. The updated model in-turn boosts the accu-
racy of part partition. Iteratively conducting mask genera-
tion and model training results in a loop that trains vision
models on the unlabeled dataset. The mask patterns thus
could evolve to present different visual cues learning tasks.

We test the effectiveness of the proposed method on
three popular MIM architectures, i.e., MAE [18], BEiT [2]
and SimMIM [38]. Our method brings significant perfor-
mance enhances for those three architectures, especially
on the semantic segmentation task, e.g., boosts the mIoU
by 2%. When compared with recent self-supervised learn-
ing methods, our method achieves comparable performance
with fewer pre-training epochs, and superior performance
with similar training epochs. To the best of our knowl-
edge, this is an original effort on evolved part masking for
self-supervised learning. Our method does not require extra
pre-trained models or annotations. It effectively ensures the
training efficiency, and enhances the generalization ability
of trained model by evolving the mask patterns, thus shows
potentials to boost the performance of pre-trained vision
models.

2. Related work
This section briefly reviews recent works on self-

supervised learning and masked image modeling, which are
closely related to this work.

Self-supervised Learning. The past few years have wit-
nessed the boom of Self-Supervised Learning (SSL) in vi-
sual representation learning. Generally, the SSL works de-
sign an annotation-free pretext task to learn representations.
Contrastive learning has dominated the learning algorithms
in those works for the past few years. It works by pulling
positive samples together and pushing negative samples
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apart. Related works includes SimCLR [8], MoCo [19],
Swav [4], and BYOL [17], etc..

Another category of SSL research predicts the original
image based on the partially observed data. For example,
RotNet [16] predicts the 2D rotation applied to the input
image. The CFN [28] randomly shuffles the image patches
and takes Jigsaw puzzles as the pretext task. Autoencoder is
a commonly used generative SSL models, which is trained
by minimizing the reconstruction error. It has an encoder
that maps the input data to a latent space and a decoder to
reconstruct the image from the latent representation. De-
noising autoencoders (DAE) [34] corrupts an input signal
and learns to reconstruct the original signal. A series of
methods can be viewed as generalized DAE with different
ways of generating corrupted images, including degrading
the resolution [7], masking regions [29], or removing cer-
tain color channels [39], etc.. MIM also can be regarded as
one of DAE variants.

Masked Image Modeling (MIM). Inspired by the suc-
cess of MLM [3, 13] in NLP, MIM has been proposed to
tackle the data-hungry issue of vision transformers [14,33].
Generally, MIM methods make use of a vision transformer
as the backbone and learn representations from images cor-
rupted by masking. As one of the core designs of MIM,
the mask methods largely determine the knowledge that the
network could learn in the pre-training phase.

According to the masking criteria, existing methods can
be divided into three categories: (a) Random masking is
the most common and straightforward method. MAE [18]
is one of the representative works that utilise an asym-
metric autoencoder to recover a randomly masked input.
SimMIM [38] randomly masks larger square patches and
minimizes the ℓ1 loss between raw pixel values and pre-
dicted results. (b) The second category reserves crucial cues
for MIM. For example, MST [24] masks only nonessential
patches and preserve key patterns in images. MFM [36]
uses low-pass/high-pass filters to perform masking, and
most object regions with clear semantics are preserved. (c)
The third category proposes to mask clues like object re-
gions completely. BEiT [2] employs a block-wise mask-
ing method to mask some image objects as a whole. At-
tnMask [22] proposes to mask patches belonging the most
attended objects. SemMAE [23] leverages the iBOT [41]
for semantic segmentation and produces the mask accord-
ing to the segmentation result. Besides, ADIOS [32] uti-
lizes a learned adversarial masking subnet to pose a more
challenging MIM task.

Difference with previous works. Instead of follow-
ing fixed criteria to generate mask patterns, we generate
evolved masks for different training stages. Compared to
SemMAE [23] and ADIOS [32], our method does not intro-
duce extra networks or training cost. It leverages the model
being trained to determine the cues that should be masked.

Evolved masks make training difficulty on par with the ca-
pability of network being trained, hence ensures a more ef-
fective and fast self-supervised learning.

3. Method
3.1. Overview

Our goal is to train a vision transformer on an unla-
beled dataset D. For an input image x ∈ RHW×3, where
H,W are the spatial size. We generate a binary mask
M ∈ {0, 1}HW on x, and applyM to self-supervised learn-
ing. Specifically, we adopt an encoder-decoder structure to
recover x from a masked input. For the t-th training epoch,
the training objective can be denoted as,

argmin
θ,θ′

E
x∼D

H(G
(t)
θ′ (F

(t)
θ (x⊙M)), x⊙ (1−M)), (1)

where ⊙ is the element-wise product, x ⊙M denotes the
masked input. F

(t)
θ and G(t)

θ′ are encoder and decoder in
t-th training epoch, respectively. H(·, ·) is the similarity
measurement, e.g., l2-distance [18] or cross-entropy [2].

In Eq (1), the mask M largely determines encoded cues
in the optimized parameters θ and θ′. Sticking to a fixed
mask pattern optimizes the model towards specific tasks. To
enhance the generalization capability to different tasks, we
aim to evolve the mask patterns at different training stages,
e.g., simple masks to learn low-level visual cues at initial
training stage, and more complicated masks to learn object
semantics at later training stage.

Since the masks are binary values, making them gradu-
ally evolve is not trivial. We introduce masking probability
values P (t) ∈ RHW for each patch to determine M (t), and
the ones with high probability values will be masked out.
Let N = H ×W denote number of patches. Given a mask
ratio r in t-th pre-training epoch, the m = ⌊N × r⌋ patches
with high probability values P (t)

i will be masked out. For-
mally, let

I(t) = argsort(P
(t)
i ) (2)

be the indices sorted by the scores P (t)
i , and the patch will

be masked as its indices lie in I(t)
1:m, which can be formal-

ized as

M
(t)
i =

{
0, if i ∈ I(t)

1:m

1, otherwise.
(3)

In the early stages of pre-training, as the network ac-
quired less cues modeling capacity, the generated masks
consist of more grid-wise patterns that are independent of
network capacity. As training progresses, the generated
mask gradually evolves to mask several parts inferred by
the network being trained to guide it to learn more chal-
lenging cues modeling. We use an increasing α to control
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Figure 3. The pipeline of proposed evolved part masking using
MAE [18] as an example. Input image is fed into the encoder ex-
tracting the attention map A to establish the patches association
graph. The part partition module produces the parts annotation
S by partitioning the graph. Based on S, we generate masks su-
perimposing the effect of grid-wise and part-wise weighted by a
dynamic parameter α.

the proportion of two mask patterns in the generative masks
in t-th training epoch, that

α(t) = (
t

total epoches
)γ , (4)

where γ is a hyperparameter that controls the radian of the
α curve following [23]. More discussion about γ can be
seen in Sec. 4.2. So the evolving process can be achieved
by weighted summation of corresponding masking proba-
bilities P grid and P part, which can be written as

P
(t)
i = (1− α(t))× P gridi + α(t) × (P parti )(t). (5)

where the generation of P gridi is static, while the genera-
tion of P parti evolves along the network’s modeling capac-
ity. Further, We provide a pseudo-code implementation of
the masking strategy in the appendix.

The pipeline of the proposed method can be seen in
Fig. 3 and we provide a pseudocode implementation in Ap-
pendix.1. Let δ ∈ RN denote a series of random numbers
sampled from a uniform distribution that will be used below
to assign values to P . We then elaborate on the masking
probabilities generation in the following subsections.

3.2. Adaptive parts generation

For part-based masking, we produce the t-th epoch part
annotation S(t) ∈ NN with an adaptive part partition mod-
ule. Patches belonging to the same part are labelled with the

identical natural number in S(t). Then the part-wise masks
can be generated by assigning the same masking probability
to the patches with the same S(t) value, that

(P parti )(t) = δ
S

(t)
i
. (6)

The definition of parts is ambiguous in SSL due to the
lack of manually annotated “ground truth” like segmenta-
tion tasks. In this work, a semantic part is defined as a group
of patches with stronger relationships among its members
than between its members and the remainder of the image.

A series of works [2, 5] have demonstrated that trans-
former attention map can reflect the semantic relationship
between tokens and a higher attention value represents a
stronger patch relationship. Here we take the attention map
from the model being trained for parts partition without in-
troducing additional networks, thus the generated parts are
on par with the modeling capacity of the trained model.

Specifically, the attention map produced by the current
encoder F (t)

θ is denoted as A(t) ∈ RN×N . Part partition
module builds a graph G = (V,E) where nodes V are im-
age patches; E is the edge set; and edge weight wi,j be-
tween nodes i and j is the positive attention value among
patches, that

w
(t)
i,j =

{
A

(t)
i,j , if A(t)

i,j > 0

0, otherwise.
(7)

Thus the semantic parts partition is reformulated to a
classic graph partition problem. For simplification, we omit
the superscript (t) representing the current training epoch
below. According to the our definition of part, the objective
of graph partition can be written as,

argmin
S

∑
i,j

sign(Si − Sj)× wi,j , (8)

where sign(·) is used to distinguish the patches belonging
to identical parts or not, that

sign(x) =

{
1, if x ̸= 0

−1, if x = 0.
(9)

Here we use a simple Expectation-Maximization (EM)
algorithm to solve the partition problem following [1, 6,
30]. Since edge weights are calculated pairwise between
patches, nodes embedding ϕi can be taken as wi to preserve
its second-order proximity. Suppose there are K partitions
on the graph and the nodes vi belonging to partition k fol-
lows multivariate gaussian distribution

vi ∼ N (ψk, Ck), k ∼ πk, (10)

where ψk is a mean vector; Ck is a covariance matrix and
πk is the probability distribution of partition k. The density
function for node vi can be written as
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pk(vi | ωk) =
1√

(2π)N |Ck|
e−

1
2 (ϕi−ψ)T C−1

k (ϕi−ψk), (11)

where ωk = (ψk, Ck, πk) denotes the distribution param-
eters; |Ck| is the determinant of Ck. The algorithm solves
the problem with iterative E-steps and M-steps. In each E-
step, given estimated distribution parameters, we calculate
the expectation of the node vi as

Ei,k =
πkpk (vi | ωk)∑K
k=1 πkpk (vi | ωk)

. (12)

In each M-step, the expectation is used to update the
mean vectors and covariance matrix, as

π̂k =

∑N
i=1Ei,k∑K

j=1

∑N
i=1Ei,j

, (13)

ψ̂k =

∑N
i=1Ei,kϕi∑N
i=1Ei,k

, (14)

Ĉk =

∑N
i=1Ei,k

(
ϕi − ψ̂k

)(
ϕi − ψ̂k

)T
∑N
i=1Ei,k

. (15)

After the iteration, the converged parts partition results
are noted as

Si = argmax
k

Ei,k. (16)

The generated part annotations are then fed into Eq. (6)
to generate a part-wise mask. During the pre-training pro-
cess, we can adjust the partition number K to control the
granularity of the divided parts, and further improve the
model’s learning of parts associations with different gran-
ularities. More discussion can be seen in Sec. 4.2.

3.3. Grid generation

For grid-wise masking, we assign the identical score for
patches in the same relative location in the mesh, which can
be calculated by the patch index as

r(i) = (⌊ i
W

⌋ mod 2)× 2 + (i mod 2), (17)

where the result r(i) ∈ {0, 1, 2, 3} is the relative location
in the mesh. Thus the grid-wise masking generation can be
implemented by assign probability that

P gridi = δr(i). (18)

3.4. Analysis

Space and Time consumption. To verify the efficiency
of the proposed method, we measure the space and time
consumption of the proposed masking strategy during pre-
training. The result show that mask generation occupies
only 1.7% of the total memory space and 12% of the pre-
training time1. Compared to the saved training epochs, in-
creased consumption is minor.

Mask visualization. In Fig. 4, we visualize the part an-
notations S and masksM generated at different α. It can be
seen that the generated S annotates the relative patches with
the same labels, and the S produced in different pre-training
stages reflects the cues modeling capacity of the model at
that time. As the α value increases, the generated mask
changes from grid-wise masking to retaining more patches
for some parts and less for others, finally removing several
parts completely.

4. Experiments

4.1. Experimental setup

Datasets. Self-supervised pre-training is performed on
1.28M images from the imageNet-1K [12] training set.
Then we do supervised training to evaluate their perfor-
mance on classification, segmentation and detection tasks.
Classification performances are validated on imageNet-1K
with end-to-end fine-tuning or linear probing following the
common evaluation protocol [18, 23, 38]. For dense pre-
diction tasks, we report the mean intersection-over-Union
(mIoU) on ADE20K [40] and bounding box average pre-
cision (AP-box) on COCO [26] for semantic segmentation
and object detection repectively.

Implementation details. Different capacity Vision
transformers are utilized as the backbones in our study,
i.e., ViT-S and ViT-B [14]. We apply the proposed mask-
ing method to three popular MIM models, i.e., MAE [18],
BEiT [2] and SimMIM [38] with masking probabilities con-
sistent with those reported in the papers. Models structure
and optimization settings follow that in the corresponding
works. By default, the mask ratio r is set to 0.75 follow-
ing the original model [18], K is linearly reduced from 40
to 10 and γ is set to 2, which are ablated in Sec. 4.2. The
implementation of block-wise masking follows the masking
way in BEiT [2]. For semantic segmentation, we take Uper-
Net [35] as the framework and use the pre-trained encoder
parameter to initialize the model backbone. The segmenta-
tion models are then fine-tuned on ADE20K for 80K with
the default setting. For object detection, we adapt the ViT
to take the place of the vanilla FPN backbone [25] in Mask
R-CNN [20] following [18] and fine-tune the model for 15
epochs.

1The time consumption are measured using torch.profiler.
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Input

Figure 4. Visualization of the part annotations S and masks M generated in different pre-training phases. The subscript t of St denotes
current training epoch. The generated mask tends to remove the complete part information as the α increases.

Classification Segmentation Detection
Epochs

grid random block ours grid random block ours grid random block ours
Random ini. 71.53 71.53 71.53 71.53 21.17 21.17 21.17 21.17 19.31 19.31 19.31 19.31

100 78.28 78.11 77.85 78.34 36.65 37.60 36.02 37.85 36.11 32.70 31.78 34.94
200 78.63 79.20 78.55 79.89 36.67 38.81 36.65 40.42 36.21 34.42 33.15 36.23
400 79.11 79.42 79.29 80.36 36.78 39.43 40.67 41.22 35.19 35.21 35.08 37.17
800 79.34 79.77 79.69 80.67 36.54 39.31 41.81 41.97 34.62 38.73 38.91 39.02

Table 1. Downstream tasks performance after fine-tuning. Models are pretrained on imageNet-1K [12] with different masking methods.
We report imageNet-1K Top-1 accuracy, ADE20K mIoU [40], and COCO AP-box [26] for classification, semantic segmentation and object
detection, respectively. The first line is the performance with random initialization in fine-tuning.

α γ top-1. acc mIoU

0 - 78.63 36.67
0.5 - 79.02 38.13
1 - 75.71 35.82

Dynamic

0.2 78.13 38.75
0.5 79.30 39.61
1 79.42 39.94
2 79.89 40.42
5 79.51 39.06

Table 2. Impact of different α on imageNet-1K classification [12]
and ADE20K segmentation [40]. Dynamic α outperforms static
one.

4.2. Ablation Study

Models in ablation experiments are built upon the ViT-
S backbone [14] and asymmetric MAE architecture [18].
More ablation studies refers to Appendix.

Comparison with static masking. We first investi-
gate the performance of static masking methods and the
proposed evolved method on various downstream tasks
in Tab. 1. It can be seen that different static masking

methods exhibit distinct advantages. For example, grid-
wise masking gives the network better performance with
fewer pre-training epochs. And compared with classifica-
tion tasks, block-wise masking brings more performance
improvements on dense prediction tasks under sufficient
pre-training. The properties exhibited by random mask-
ing lie in between, including strengths and weaknesses of
the two. Meanwhile, our method combines the advantages
and overcomes the disadvantages by varying masking crite-
ria along the pre-training process, which outperforms these
static methods in both performance and efficiency.

Mask weights. The weight α controls the proportion of
grid-wise and part-wise masks which changes dynamically
along the training, and its value is determined by γ accord-
ing to Eq. (4). In Tab. 2, we compare the impact of dif-
ferent α on imageNet-1K classification [12] and ADE20K
segmentation [40] pre-trained for 200 epochs. Fixing the α
value to 0 or 1 is equivalent to grid-wise or part-wise mask-
ing, which brings about poor semantic knowledge learning
or slow convergence. A dynamic α solves these problems
by combining the advantages of different mask methods.
When the γ value is set to 2, the network can achieve the
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Fiexd K top-1. acc

5 78.22
10 78.94
30 79.25
40 79.12

Dynamic K top-1. acc

30 → 5 79.43
40 → 5 79.80

30 → 10 79.72
40 → 10 79.89

Table 3. Comparison of imageNet-1K [12] classification perfor-
mance under different K. Dynamic K is more robust and perform
better.

Method
Classification Segmentation

top-1. acc top-5. acc mIoU mAcc
MAE [18] 79.20 94.61 38.81 79.61

+ours 79.89 94.78 40.42 79.95
BEiT [2] 79.05 94.57 38.39 79.31

+ours 79.61 94.74 39.63 79.84
SimMIM [38] 78.51 94.18 38.13 79.15

+ours 79.08 94.55 39.57 79.80

Table 4. ImageNet-1K accuracy and ADE20K performance of
three popular MIM models before and after applying the proposed
masking with fine-tuning.

best performance on both tasks. This means that properly
extending the pre-training epochs of grid-wise masking in
the early stage will help learn of parts relationships later.

Partition number. During the pre-training process, the
partition number K linearly decreases, guiding the network
to learn connections between components to between ob-
jects. It can be seen from Tab. 3 that a smaller fixed K, will
harm the model performance, since it is too challenging to
make the network predict an entire object in the early train-
ing stage. While a gradually decreasing K, which brings
about a progressive learning process, is robust to the setting
of maximum and minimum values.

4.3. Benchmark performance

We validate the effect of the proposed method on three
popular MIM models, i.e., MAE [18], BEiT [2] and Sim-
MIM [38] and evaluate performance on imageNet-1K clas-
sification [12] and ADE20K segmentation [40]. The mod-
els are pre-trained using the official code for 200 epochs and
fine-tuned on downstream tasks with consistent experimen-
tal settings. Results are shown in Tab. 4. Our method brings
performance improvement for all three methods, especially
on the segmentation task (38.81% v.s. 40.42%). For the
works originally with random masking, e.g., MAE [18] and
SimMIM [38], our method can efficiently boost the perfor-
mance by explicitly learning better parts relationships. And
it can also improve BEiT [2] that originally uses block-wise
masks with better training efficiency.

Comparison with recent SSL methods on common
imageNet-1K classification setting are shown in Tab. 5.
All these methods share the same backbone for fair com-
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Figure 5. Fine-tuning gradient value against network depth on
imageNet-1K classification [12]. The data are fitted using expo-
nential moving averages for better visualisation. The gray line rep-
resents the model with random initialization of parameters, with-
out pre-training.

parison, i.e., ViT-B [14]. DINO [5], MoCo v3 [11] and
AttnMask [22] use an extra momentum encoder as the
teacher. MST [24] introduces an MLP head to align the
features of the teacher and student. SemMAE [23] uses
a pre-trained iBOT to extract token features. Related
work ADIOS [32] is not included as it evaluates on other
benchmarks. Our method gets comparable performance
with fewer pre-training epochs, e.g., 200 v.s. 300 in fine-
tuning accuracy with state-of-art works. With the same
pre-training setting, the proposed method can outperform
the SOTA by 0.5%. While our method performs modestly
on linear probing, this metrics cannot measure the ability
of non-linear representation—which is indeed a strength of
deep learning, as domenstrated in [10, 18].

4.4. Analysis

This section studies the properties of masking methods
and analyses the causes of their performance gap.

The lottery ticket hypothesis [15] demonstrates winning
ticket weights tend to change by a larger amount than
weights in the rest of the network, which is accompanied by
larger gradients. Fig. 5 shows the fine-tuning gradients for
different initialized models. It can be seen that grid-wise
masks better helps model convergence in shallow layers.
And block-wise masking is more helpful for training deep
layers, promoting the model learning high-level semantic
relationships. The proposed evolved masking method facil-
itates both deep and shallow network layers.

In Fig. 2 (b), we show the size of the attended area, where
these methods exhibit distinct sizes. To further explore the
reasons, we visualize the attention maps of some patches
in Fig. 6. It can be seen that grid-wise masking makes the
pre-trained model focus on adjacent texture-similar features
rather than semantically-similar ones. For example, the to-
ken on clothes only focuses on the clothes patches and not
the person wearing it. Since there are always nearby visi-
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Method Pre-train data Date Extra model Epochs Linear probing Fine-tune
Supervised traning from scratch
ViT [14] IN-1K w/ label ICLR 2021 - 300 - 77.9
DeiT [33] IN-1K w/ label ICML 2021 - 300 - 81.8
Contrastive-based SSL Pre-training
DINO [5] IN-1K CVPR 2021 momentum ViT 1600 74.6 82.8
MoCo v3 [11] IN-1K ICCV 2021 momentum ViT 300 76.5 83.2
MST [24] IN-1K NIPS 2021 MLP Head 100 75.0 -
AttnMask [22] IN-1K ECCV 2022 momentum ViT 100 76.1 -
MIM SSL Pre-training
BEiT [2] IN-1K+DALL-E ICCV 2021 dVAE [31] 300 56.7 82.9
CAE [9] IN-1K arxiv 2022 - 300 64.1 83.6
MAE [18] IN-1K CVPR 2022 - 300 64.4 83.6
SimMIM [38] IN-1K CVPR 2022 - 800 56.7 83.8
MFM [36] IN-1K arxiv 2022 - 300 - 83.1
SemMAE [23] IN-1K NIPS 2022 iBOT [41] 800 68.7 83.3
Ours IN-1K - - 200 59.6 83.6
Ours IN-1K - - 300 64.7 84.1

Table 5. Comparison of popular self-supervise learning methods on imageNet-1K [12] using ViT-B [14] as the encoder. Evaluation
protocols include top-1 linear probing accuracy and top-1 fine-tuning accuracy. All entries are on an image size of 224× 224.

Grid Random BlockInput Ours

Figure 6. Visualization of attention map for sampled patches under
different masking methods. A red dot in the input image annotates
the sampled patch. Attention heads are encoded in various colours,
and the brightness indicates the attention value.

ble patches to provide cues, the model tends to reconstruct
the masked content based on these visible patches, which
makes it attends mainly to nearby resemble patches. Yet,
the other masking approaches, to varying degrees, allow the
network to learn more about high-level relationships. For
the masks containing objects with less visible patches, the
model must learn to model the relationship between global
cues to help predict these objects. Compared to random
masks, block-wise ones make the model establish connec-
tions between objects on a larger scale. Meanwhile, model
with our method also learned the relationship between ob-
jects, and the recognition of local features is more accurate.

To summarize, the masks with the visible and the masked
patches containing similar content make the pre-trained

model learn more low-level texture and better facilitate con-
vergence in shallow layers. Masking the entire parts in the
image makes the model pay more attention to global in-
formation and learn the connection between objects, which
benefits more on the convergence of deep layers and dense
prediction tasks. The proposed method enables the mask
to evolve with model training, combining the advantages of
static methods and overcoming disadvantages.

5. Conclusion
This paper investigates the masks on MIM and proposes

an evolved part-wise masking method. We find that the
choice of masking method directly affects the knowledge
learned by the pre-trained model, e.g., grid-wise masking
guides the network to learn more local pattern knowledge
and removing entire parts pushes it to learn more semantic
relationships. The proposed masks combine the advantages
of different masking ways by making the masks evolve with
the pre-training process and model parameters. We build
the patch association graph and reformulate the image par-
tition into a classic graph cut problem, which adaptively
groups the patches without introducing additional networks
and extra training. With extensive experiments, the model
pre-trained under the proposed method demonstrates good
versatility and scalability for downstream visual tasks. We
hope our study and method will provide timely insights for
the superior representation learning ability of SSL.
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