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Abstract

Federated Magnetic Resonance Imaging (MRI) recon-
struction enables multiple hospitals to collaborate dis-
tributedly without aggregating local data, thereby protect-
ing patient privacy. However, the data heterogeneity caused
by different MRI protocols, insufficient local training data,
and limited communication bandwidth inevitably impair
global model convergence and updating. In this paper, we
propose a new algorithm, FedPR, to learn federated vi-
sual prompts in the null space of global prompt for MRI
reconstruction. FedPR is a new federated paradigm that
adopts a powerful pre-trained model while only learning
and communicating the prompts with few learnable param-
eters, thereby significantly reducing communication costs
and achieving competitive performance on limited local
data. Moreover, to deal with catastrophic forgetting caused
by data heterogeneity, FedPR also updates efficient feder-
ated visual prompts that project the local prompts into an
approximate null space of the global prompt, thereby sup-
pressing the interference of gradients on the server perfor-
mance. Extensive experiments on federated MRI show that
FedPR significantly outperforms state-of-the-art FL algo-
rithms with < 6% of communication costs when given the
limited amount of local training data.

1. Introduction
Federated Magnetic Resonance Imaging (MRI) recon-

struction enables multiple hospitals to train a powerful
global model in a distributed manner without sharing pri-
vate data [7, 9, 13]. In federated MRI, each client (i.e.,
hospital) uses its local computing power, memory, and pri-
vate data to train local models independently, while the
server aggregates all the local models in each communica-
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Figure 1. Illustration of the three key issues in federated MRI.

tion round and distributes the global model to each client
again [26].

Existing federated MRI reconstruction techniques usu-
ally improve federated learning (FL) by enhancing the ag-
gregation process [9] and reducing the local parameter’s
variance [5, 13]. Such techniques require a large commu-
nication bandwidth and sufficient local training data. How-
ever, federated MRI often faces two issues, ❶ insufficient
amount of local training data due to the difficulty of ac-
quiring the ground-truth of MRI reconstruction [10, 11, 12]
and ❷ limited communication bandwidth due to unbalanced
regional development (see Fig. 1). To cope with the is-
sue ❶, pre-trained models have exhibited superior perfor-
mance, and have shown to close the gap between feder-
ated and centralized performance [3, 28]. However, since
the model parameters need to be shared between the client
and the server for updating, the large number of parame-
ters of pre-trained models will result in a huge communi-
cation cost. On contrary, prompt tuning has recently been
suggested as a new fine-tuning paradigm by freezing the
models and only learning a small number of learnable pa-
rameters in the input space [15, 31, 32]. Benefited from
pre-trained models, only parameter-efficient prompts are re-
quired in learning and communication, and prompt tuning
can be conducted with a limited number of samples, mak-
ing it very appealing in tackling the above two issues (i.e.,
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❶ and ❷) in federated MRI.
Besides, there is another critical issue for federated MRI,

i.e., ❸ catastrophic forgetting, caused by data heterogene-
ity due to the different imaging protocols of MRI scanners
adopted by different clients [9, 39] (see Fig. 1). In the
local update, the global model from the prior round tends
to be overfitted to the local training data, leading to catas-
trophic forgetting. Analogous to continual learning, sev-
eral techniques have been presented by introducing proper
regularization terms in local models [4, 33, 39] or retain-
ing previously acquired knowledge by knowledge distilla-
tion [14, 35, 38]. However, these strategies require seek-
ing a balance between multiple losses and relying on proxy
datasets. Instead, Adam-NSC mitigates catastrophic forget-
ting in continual learning with a new network parameter
update rule, i.e., forces the network update to lie in the ap-
proximate null space of the input features of previous tasks
at each layer [36]. However, the null space at feature level
is built upon large local training data, which generally can-
not be satisfied in federated MRI, i.e., the issue ❶. Taking
the issues ❶ and ❸ into account, we suggest to optimize lo-
cal prompts in the approximate null space of global prompts
instead of input features, thereby preventing the loss of pre-
viously gained global knowledge.

In a nutshell, we explore a new FL paradigm, i.e., FedPR,
to learn federated visual prompts for MRI reconstruction.
To begin with, we pre-train the model on a large-scale pub-
lic dataset. Given limited amount of local training data, vi-
sual prompt tuning is adopted to learn local prompts in a
distributed manner. For the issues ❶ and ❷, federated vi-
sual prompts are introduced to learn a strong global model,
where only local and global prompts are learnable and com-
municated. As for the issue ❸, we perform singular value
decomposition (SVD) on the uncentered covariance matrix
of global prompts to obtain the approximate null space.
FedPR tunes only the local parameters in the null space of
global prompts, thereby well preserving the prior knowl-
edge of previous rounds and resulting in low communica-
tion costs. In particular, FedPR achieves a > 4.5 dB gain in
PSNR with less than 6% of communication costs. To sum
up, our contributions are as follows:

• We propose a federated visual prompt algorithm, FedPR,
to solve the three key issues in federated MRI. By lever-
aging powerful pre-trained models and freezing backbone
networks in FL, only a small amount of parameters in the
input space are trainable, thereby reducing communica-
tion costs.

• We explore how to alleviate catastrophic forgetting in
FL while reducing communication costs. By optimiz-
ing local parameters only in the null space of global
prompts, FedPR well preserves the previously acquired
global knowledge in each round, maintaining competitive
performance with only a few local data.

• We evaluate the performance of FedPR for federated MRI
reconstruction. In comparison to the state-of-the-art FL
methods, FedPR achieves superior performance in com-
plex scenarios, e.g., less local data, lower communication
costs, and faster convergence.

2. Related Work
Federated MRI Reconstruction. MRI reconstruction
refers to reconstructing images without aliasing artifacts
from undersampled k-space data [6, 8, 12, 37, 41]. How-
ever, existing MRI reconstruction techniques are based on
large-scale paired data, which is not only labor-intensive but
also violates patient privacy [9]. Driven by these realistic
problems, a few FL-based methods for MRI reconstruction
have been proposed [5, 9, 13]. Guo et al. reduced data het-
erogeneity by iteratively aligning the data distribution be-
tween source and target clients [13]. Feng et al. proposed
a personalized FL reconstruction scheme and introduced
a weighted contrast regularization term to correct the up-
date direction of global generalization [9]. However, these
schemes either require frequent communication or are built
on a large amount of local data. As a result, these techniques
will produce sub-optimal solutions for MRI reconstruction
when there is limited bandwidth and insufficient local train-
ing data. In contrast to these works, we build a federated
MRI model upon a strong pre-trained model by updating
and communicating only a small portion of parameters for
each client using limited local data, achieving competitive
results.
Catastrophic Forgetting in FL. Due to the heterogeneous
data distributions of different tasks in continual learning,
when the network is fitted to the current task, the model pa-
rameters typically deviate from the areas where the previ-
ous knowledge is expected to be preserved [17]. Therefore,
catastrophic forgetting is a fundamental challenge of contin-
ual learning. Similarly, catastrophic forgetting also affects
FL [14, 19, 39]. When the client receives the global model
and continues to update locally, it will cause the global
model to forget the knowledge of the previous round due
to the data heterogeneity across clients [19]. As a result,
existing FL techniques that address catastrophic forgetting
are designed by referring to continual learning. For exam-
ple, knowledge distillation-based FL methods maintain pre-
viously gained knowledge, but this method strongly relies
on proxy data [14, 35, 38]; regularization-based FL meth-
ods regularize locally trained parameters, but they require
finding a compromise between loss terms [4, 33, 39]. All
these studies are built on classification tasks and cannot be
directly extended to MRI reconstruction. Inspired by the
success of null space in continual learning [18, 23, 36], we
try to update the local prompt in the approximate null space
of global prompts, thereby preserving the knowledge ac-
quired by the global model in the previous round and avoid-

8065



Massive
data

Backbone pre-training (off-line)

Backbone

(b) Federated visual prompt (c) Server update (a) Initialization and local update

Initialize

…

Download

UploadProjection

Backbone

Test data

Prom
pt(Clients)

Frozen

Trainable

Updated in null space Preserved

Local
data

Backbone
(Frozen)

Prom
pt (Tuned)

…

(Aggregate)
Prom

pt

Data flow

Client 1

Client 2

Client K

Pz
1

Pz
2

Pz
K

∆Pz
1

∆Pz
2

∆Pz
K

θ

θ

θ

Pz+1
g

P̂z
1

P̂z
2

P̂z
K

Pz+1
g

Pz+1
g

Pz+1
g

Figure 2. Illustration of our FedPR method. (a) For each client, the backbone model is pre-trained on massive data and fine-tuned via
prompt (see Sec. 3.2). (b) Federated visual prompt is executed by updating the local prompt of each client only in the approximate null
space of global prompts while preserving the previously acquired global knowledge (see Sec. 3.3). (c) Server update by aggregating local
prompts.

ing catastrophic forgetting.
Prompt Learning. Prompt tuning was initially proposed
to enable pre-trained language models to “understand”
downstream tasks by adding trainable tokens to the input
text [24]. For example, Jia et al. achieved good perfor-
mance on downstream tasks by introducing a small num-
ber of learnable tokens into the input space and keeping the
backbone frozen [15]. Hyojin et al. suggested to modify
pixel space for the frozen visual models [2]. Nie et al. pro-
posed a unified prompt tuning framework that performs on
different CNN and transformer-based architectures by train-
ing only a few additional parameters [29]. Although these
works have made progress on various visual tasks, prompt
is still limited to centralized systems, and the effectiveness
of prompt in distributed framework remains uninvestigated.
Therefore, this work focuses on how to learn a federated vi-
sual prompt to effectively tackle the three key problems in
federated MRI reconstruction, i.e., the issues ❶-❸.

3. Methodology
3.1. Federated MRI Reconstruction

MRI reconstruction is an inverse problem of recovering
an artifact-free image y from its undersampled observation
x that can reduce the online collection time and improve the
patient experience [34, 37, 40]. Formally, such undersam-
pling process can be expressed as

x = F−1 (M⊙F(y) + ϵ) , (1)
where F is multi-dimensional Fourier transform, ϵ is the
measurement noise, andM is the binary mask operator to
undersample the data points in the Fourier space.

The centralized approach violates patient privacy protec-
tion roles because it requires collecting large amounts of
training data from different hospitals. As a remedy, Feder-
ated MRI has been suggested by deploying MRI reconstruc-
tion in a distributed manner [9, 13]. Suppose there are K

hospitals (local clients). The private data of all hospitals can
be expressed as D =

{
D1,D2, . . . ,DK

}
, where each con-

tains limited pairs of undersampled samples xi and fully-
sampled images yi. Federated MRI aims to learn a global
model from the whole dataset D in a distributed manner,
which can be described as

argmin
w
L(w) =

K∑
k=1

|Dk|
|D|
Lk(w), (2)

where |D| denotes the number of samples in D, and Lk(w)
is the empirical loss of client k,

Lk(w) = E(x,y)∈Dkℓk (f (x;w)) , (3)

where ℓk represents the local loss for MRI reconstruction,
e.g., L1 loss. After training, the reconstructed image ŷ can
be produced by f (x;w).

3.2. Learning Federated Prompt
As mentioned in Sec. 1, there are three key issues, i.e.,

❶-❸, with the existing federated MRI algorithms. To tackle
the issue ❷, we freeze the backbone of the pre-trained
model while only tuning and communicating a few learn-
able parameters for the clients and server. More impor-
tantly, it enables the model to achieve very competitive re-
sults on limited local data, thereby providing an effective
solution to issue ❶.

As shown in Fig. 2, given a pre-trained model with pa-
rameters θ, we introduce a set of continuous embeddings
P = {p1,p2, · · · ,pl} as the prompts in the input space of
each layer [15], where l is the number of prompts. Thus,
the overall parameters can be expressed as w = {P ,θ}.
Suppose there are Z rounds of communication, each round
contains T local updates. During the local update, for the k-
th client, only the client-specific prompts Pk are learnable
and communicated while the backbone network is frozen.
Therefore, Eq. (2) can be rewritten as:
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Figure 3. Illustration of federated visual prompt for updating
local prompts in the null space of global prompts.

Pk = arg min
P
L(P ) =

K∑
k=1

|Dk|
|D|
Lk(P ), (4)

where the empirical loss for prompt tuning of client k can
be expressed as

Lk(P) = E(x,y)∈Dkℓk (f (x;P ,θ)) . (5)

Benefited from pre-trained models, federated prompt tuning
can be both parameter- and communication-efficient and ef-
fective in achieving competitive results with a small amount
of local data, thereby serving as a favorable solution to the
issues ❶ and ❷.
Local Update Step: In each communication round z =
{1, 2, ..., Z}, the clients are optimized using the following
update rules with a learning rate of ηk:

P z,t+1
k ← P z,t

k − ηk∇ℓk
(
xk;P z,t

k

)
, (6)

where t denotes the t-th update of the local clients.
Server Update Step: After a round of local updates, all
participating clients send their updated prompts P z

k to the
server performing aggregation. Such process can be ex-
pressed as follows

P z+1
g ←

K∑
k=1

|Dk|
|D|

P z
k , (7)

where P z+1
g denotes the global prompts of round z + 1.

To sum up, the issue ❷ can be largely mitigated because
there are only a small number of learnable parameters P
communicated between the server and local clients. After Z
rounds of communication, we can get a robust global model
parameterized by Pg without sharing local private data.

3.3. Local Updating in Prompting Null Space
The local update mechanism in Eq. (6), however, suffers

from the issue ❸, i.e., catastrophic forgetting, due to data
heterogeneity of different clients. Inspired by the contin-
ual learning method Adam-NSC [36] that sequentially opti-
mizes network parameters in the null space at feature level,
we suggest to optimize the local model in the null space of

Algorithm 1: FedPR
Input: Private datasets from K clients:

D1,D2, . . . ,DK , local updates T ,
communication rounds Z, pre-trained model
parameters θ, prompt embeddings P ,
learning rate η, hyperparameter γ;

1 // ServerExecution:
2 Initialize global prompt Pg with parameters θ.
3 for each communication round z ∈ {1, 2, ..., Z} do
4 for each client k ∈ {1, 2, ...K} in parallel do
5 P z

k ← P z
g ;

6 P̂ z
k ← LocalUpdate(k,P z

k );
7 end
8 P z+1

g ←
∑K

k=1
|Dk|
|D| P̂

z
k ;

9 Compute the uncentered covariance matrix:
10 Σz+1

g =
(
P z+1

g

)⊤P z+1
g ;

11 Approximate the null space of Σz+1
g :

12 Σz+1
g = Uz+1Λz+1

(
Uz+1

)⊤;
13 Select the smallest diagonal singular values of

Λz+1
2 with the ratio of γ;

14 Get Uz+1
2 corresponding to Λz+1

2 .
15 end
16 return P z+1

g

17 // LocalUpdate (k, Pk):
18 for each local epoch t ∈ {1, 2, ...T} do
19 Get the updated parameters ∆P z

k :
20 ∆P z

k = Uz+1
2

(
Uz+1

2

)⊤P z
k ;

21 P̂ z,t+1
k ← P z,t

k − ηk∆P z,t
k ;

22 end
23 return P̂ z

k

global prompts. Specifically, we train the local model in
the approximate null space of the global prompts in a dis-
tributed way, preventing knowledge outside the local distri-
bution from being overwritten and resulting in catastrophic
forgetting. In comparison to [36], approximating the null
space of global prompts instead of features does not require
a large amount of local data and not increase the communi-
cation cost, thus offering a feasible way to tackle the three
issues ❶-❸ in federated MRI.

As shown in Fig. 3, we first compute the uncentered co-
variance matrix of z+1 round global prompt P z+1

g by

Σz+1
g =

(
P z+1

g

)⊤P z+1
g . (8)

Then, we find the approximate null space of Σz+1
g by apply

SVD to it

Σz+1
g = Uz+1Λz+1

(
Uz+1

)⊤, (9)
where
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Uz+1=
[
Uz+1

1 ,Uz+1
2

]
,

Λz+1=

[
Λz+1

1 0
0 Λz+1

2

]
.

(10)

Here Uz+1
1 are the singular vectors corresponding to the

large singular values in Λz+1
1 [36]. According to princi-

pal component analysis (PCA), Uz+1
1 can be considered

as principal components, which contain the global knowl-
edge that has been captured in the previous round. Thus, we
have Σz+1

g ≈ Uz+1
1 Λz+1

1

(
Uz+1

1

)⊤. And the range space
of Uz+1

2 can be denoted as the approximate null space of
Σz+1

g [36]. In our implementation, we introduce a γ% to
control Uz+1

2 by selecting the last γ% of singular values in
Λz+1

2 to constitute Uz+1
2 .

To tackle the issue ❸, P z
k can be projected into the ap-

proximate null space of Σz+1
g to get the updated parame-

ters, while the principal components Uz+1
1 containing the

global knowledge from the previous round are preserved.
Thus, the updated parameters ∆P z

k can be optimized in the
null space of Σz+1

g by

∆P z
k = Uz+1

2

(
Uz+1

2

)⊤P z
k , (11)

where U t+1
2

(
U t+1

2

)⊤ is the projection operator [27]. For-
mally, the local update step of Eq. (6) can be rewritten as

P̂ z,t+1
k ← P z,t

k − ηk∆P z,t
k . (12)

The detailed FedPR algorithm is given in Algorithm 1.

4. Experiments
4.1. Experimental Setup
Implementation Details. Our method is trained by Pytorch
with one NVIDIA Tesla V100 GPU and 32GB of memory.
We use Adam as the optimizer, with a momentum of 0.9
and weight decay of 0.0005. The models are trained with 50
communication rounds and 10 local epochs for each round.
We set the batch size and initial learning rate to 8 and 1 ×
10−1, respectively. The hyperparameter γ is empirically set
to 80%. The prompt embeddings are added with a size of
8× 20× 256.
Datasets. We use fastMRI1, the largest publicly available
MRI dataset, to train the pre-training model, with Swin
Transformers and a standard ConvNet head serving as the
backbone of our experiments [25]. We note that the mean
and std of BN layer in the head are also shared with the
server to update the original statistical properties. For the
clients, we employ four datasets with a size of 320 × 320,
including FeTS2 [30], IXI3 [1], and two clinical datasets,

1https://fastmri.org/.
2https://www.synapse.org/#!Synapse:syn28546456/

wiki/.
3https://brain-development.org/

to comprise our local data. In our experiments, we di-
vide them into 15 clients according to the acquiring insti-
tutions, i.e., FeTS is divided into 10 clients with only 120,
304, 304, 240, 160, 160, 280, 224, 264, and 184 images,
respectively; IXI is divided into 3 clients with only 360,
328, and 296 images, respectively; two clinical datasets
collected from the United Imaging Healthcare uMR 790
scanner and 3T Siemens Magnetom Skyra system form two
clients with 432 and 360 images, respectively. The input
data of each client employs a 1D random sampling pattern
with 3× acceleration. We note that our clients have only a
small number of images. In comparison, FedMRI [9] and
FL-MRCM [13] require thousands to tens of thousands of
images. For In-Federation evaluation, we divide each
dataset with a ratio of 7 : 3 for local train/test. For
Out-of-Federation evaluation, we use the test set of
FeTS as our test set because it comes from a separate
institution with a quite different distribution.
Baselines. To demonstrate the effectiveness of our proposed
method, we compare it with three categories of methods,
including: a) SingleSet, a single model that each client is
trained with their local data without FL; b) Centralized, a
single model that is trained with the combination of all the
local data, which serves as the upper-bound of FL mod-
els; and c) eight state-of-the-art FL algorithms, including:
(1) FedAvg [26], a classical FL algorithm that is trained
by averaging parameters of all the participating clients; (2)
FedBN [22], a FL algorithm that alleviates the client-shift
by using batch normalization on each local client; (3) Fed-
Prox [21], a FL algorithm that applies a proximal term to the
local objective function; (4) SCAFFOLD [16], a FL algo-
rithm that uses control variates to correct the client-drift; (5)
MOON [20], a FL algorithm that utilizes the similarity be-
tween model representations to correct the local update; (6)
FedReg [39], a FL algorithm that regularizes locally trained
parameters with the loss on generated pseudo data to allevi-
ate knowledge forgetting; (7) FL-MRCM [13], a federated
MRI algorithm that aligns the latent features between the
source and target clients; and (8) FedMRI [9], a federated
MRI algorithm that preserves the client-specific properties
to improve the FL performance. For a fair comparison, we
adopt Swin Transformers and a standard ConvNet head as
the reconstruction network for each client among all the
baselines.

4.2. Comparison with State-of-the-arts
In-Federation Performance. The first subtable of Ta-
ble 1 provides a comprehensive evaluation of the
In-Federation setting with regards to various FL algo-
rithms, where SingleSet indicates that each client is trained
to use their local data without FL, and Centralized indicates
that all the local datasets are gathered, which serves as the
upper-bound of FL models. Ours (w. Pro) and Ours (Full)
are the variants of our method that only with prompts and
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Table 1. Quantitative comparison of state-of-the-art FL methods with regard to In-Federation and Out-of-Federation sce-
narios, where # Com.cost is the communication cost, Ub indicates the upper-bound of FL algorithms, ↑ and ↓ indicate increments and
decrements compared with FedAvg (w. FFt). Detailed analyses are provided in Sec. 4.2.

In-Federation Out-of-Federation

Method # Com.cost PSNR SSIM NMSE PSNR SSIM NMSE

SingleSet 18.43 M 28.79(3.35) ↓ 0.805(0.099) ↓ 0.021(0.011) ↓ 28.92(2.15) ↓ 0.808(0.091) ↓ 0.032(0.011) ↓
Centralized (Ub) 18.43 M 36.71(4.57) ↑ 0.947(0.044) ↑ 0.009(0.005) ↑ 35.73(4.66) ↑ 0.940(0.041) ↑ 0.008(0.013) ↑

FedAvg (w. FFt) [26] 18.43 M 32.14(0.00) ↓ 0.903(0.000) ↓ 0.010(0.000) ↓ 31.07(0.00) ↓ 0.899(0.000) ↓ 0.021(0.000) ↓
FedBN [22] 18.40 M 28.31(3.83) ↓ 0.817(0.086) ↓ 0.044(0.034) ↓ 25.65(5.42) ↓ 0.731(0.186) ↓ 0.080(0.059) ↓
FedProx [21] 18.43 M 32.84(0.70) ↑ 0.901(0.002) ↑ 0.010(0.000) ↓ 31.98(0.91) ↑ 0.905(0.006) ↑ 0.018(0.003) ↑
SCAFFOLD [16] 18.43 M 33.08(0.94) ↑ 0.914(0.010) ↑ 0.009(0.001) ↑ 32.20(1.13) ↑ 0.915(0.016) ↑ 0.018(0.003) ↑
MOON [20] 18.43 M 34.06(1.92) ↑ 0.927(0.023) ↑ 0.008(0.002) ↑ 31.16(0.09) ↑ 0.907(0.008) ↑ 0.023(0.002) ↓
FedReg [39] 18.43 M 33.29(1.15) ↑ 0.890(0.013) ↑ 0.009(0.001) ↑ 32.41(1.34) ↑ 0.907(0.008) ↑ 0.017(0.004) ↑
FL-MRCM [13] 18.43 M 33.60(1.46) ↑ 0.922(0.019) ↑ 0.013(0.003) ↓ 32.72(1.65) ↑ 0.911(0.012) ↑ 0.016(0.005) ↑
FedMRI [9] 17.46 M 33.35(1.21) ↑ 0.923(0.020) ↑ 0.014(0.004) ↓ 32.00(0.93) ↑ 0.914(0.015) ↑ 0.019(0.002) ↑
Ours (w. Pro) 0.11 M 35.29(3.15) ↑ 0.927(0.024) ↑ 0.009(0.001) ↑ 34.65(3.58) ↑ 0.921(0.022) ↑ 0.010(0.011) ↑
Ours (Full) 0.11 M 36.43(4.30) ↑ 0.945(0.042) ↑ 0.007(0.003) ↑ 35.60(4.53) ↑ 0.939(0.040) ↑ 0.008(0.013) ↑

our full method that with both prompts and the null space
mechanism. FedAvg (w. FFt) [26] indicates the FedAvg al-
gorithm while employing the pretrained model on the local
side and full fine-tuning with all the participating clients.
For a fair comparison, we retrain them on the two differ-
ent scenarios with their default parameters and report their
optimal results. All the competing methods are pretrained
with Swin Transformers on fastMRI and fully fine-tuned
with 50 communication rounds and 10 local epochs because
they all converge before round 50. To assess the difference
between a pair of methods, we use the paired Student’s t-
test to demonstrate that all results were at the 0.001 level of
statistical significance.

From Table 1, Ours (w. Pro) is superior to the compet-
ing FL methods in terms of PSNR, SSIM, and NMSE. In
comparison to FedAvg (w. FFt), Ours (w. Pro) increases
the PSNR results from 32.14 dB to 35.29 dB and the SSIM
results from 0.903 to 0.927, because the FedAvg (w. FFt) is
prone to overfitting when the local data is limited (i.e., issue
❶) even though FedAvg (w. FFt) also employ the pretrained
model on the local side. However, the method of freezing
backbone networks that only fine-tune prompts is consis-
tent with the mechanism of personalized FL, e.g., FedMRI,
which divides the local network into a shared global gen-
eralized representation and a locally client-specific repre-
sentation. More importantly, the number of training param-
eters and communication cost of Ours (w. Pro) is only
6% of FedAvg (w. FFt). Moreover, even compared to Fe-
dReg [39], which aims to address catastrophic forgetting in
FL, our method still achieves 9.43% improvement in terms
of PSNR. Furthermore, the reconstruction results of our
proposed method are almost on par with the Centralized re-
sults (upper bound), i.e., PSNR: 36.71 dB vs. 36.41 dB, and
SSIM: 0.947 vs. 0.945.

In contrast, SingleSet has the lowest results, even though

it is also fine-tuned on the pre-trained model, as it cannot
solve non-i.i.d. problems. For the classical federated MRI
methods, FL-MRCM [13] and FedMRI [9], they lead to
poor reconstruction performance when the number of local
clients is large and the amount of local data is insufficient.
Furthermore, other FL algorithms are either designed for
data heterogeneity problems or for catastrophic forgetting
problems. They have not considered the clinical issues of
federated MRI, i.e., issues ❶-❸, causing it to produce less
accurate reconstructions. These findings confirm our core
idea that the three issues of federated MRI can be relieved
by learning a federated visual prompt with our federated
MRI paradigm. In addition, we visualize the reconstructed
images and the corresponding error maps for all the com-
peting methods in the first two rows of Fig. 4. The fewer
textures in the error map, the better the reconstruction. It is
obvious from the error map in Fig. 4 that our method can
significantly reduce the reconstruction error.

Out-of-Federation Performance. The second sub-
table of Table 1 provides quantitative evaluations
under the Out-of-Federation scenario of var-
ious FL algorithms. Since the testing distribution
in the Out-of-Federation scenario is unseen
by the training distribution, the overall results of the
Out-of-Federation scenario are slightly lower than
those of In-Federation. However, our method still
achieves the best performance in terms of the reconstruction
results on the three metrics, i.e., Ours (Full) improves
PSNR values from 31.07 dB to 35.60 dB, raises SSIM
values from 0.899 to 0.939, and decreases NMSE values
from 0.021 to 0.008. Notably, our method even achieves
comparable results to the Centralized (Upper-bound)
method, i.e., PSNR: 35.73 dB vs. 35.60 dB, SSIM: 0.940
vs. 0.939 and NMSE: 0.008 vs. 0.008. That is, our method
suffers the least from the issue ❸ among all competing
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Figure 4. Qualitative comparison of different algorithms in terms of reconstruction images and error maps with corresponding quantitative
measurements in PSNR/SSIM under In-Federation and Out-of-Federation scenarios. The less texture in the error map, the
better reconstruction quality.

algorithms. These results support our core idea that learn-
ing federated visual prompts in the null space of global
prompts can alleviate the three key issues in federated MRI
while achieving competitive performance on limited local
data. In addition, we show the qualitative evaluation results
for the Out-of-Federation scenario in the second
rows of Fig. 4, which visualizes the high-precision results
of our method. As can be seen from this figure, our method
provides comparable effects to the Centralized one, with
clear details of tissue texture and boundaries.

4.3. Ablation Studies
Catastrophic Forgetting vs. Local Updates. The catas-
trophic forgetting (i.e., issue ❸) of federated MRI is caused
by data heterogeneity due to different imaging protocols.
As a result, more local updates will cause the local model to
deviate from the global optimal solution. Here, we explore
whether more local epochs cause the model to forget previ-
ously acquired global knowledge. In other words, it needs
to be explored whether our proposed method can force lo-
cal mitigation of this forgetting. Thus, we record the recon-
struction results in terms of PSNR, SSIM, and NMSE for
different numbers of local epochs in Fig. 5 (a). From this
figure, in comparison to FedAvg (w. FFt) [26], increasing
the local epoch does not greatly affect the accuracy of our
method, i.e., Ours (w. Pro), and Ours (Full). In particular,
as the number of local epochs increases, the performance of
our method gradually stabilizes. In contrast, when the num-
ber of local epochs is too large, the reconstruction accuracy
of FedAvg (w. FFt) will be reduced because it will gradually
deviate from the global knowledge area. As a result, the re-
sult indicates that our method can learn without forgetting
global knowledge over more local epochs.
Analysis of Ratio γ%. As we mentioned in Sec. 3.3, the
ratio γ% of the smallest singular values in Λz+1

2 controls

the size of the approximate null space in global prompts.
That is, the larger the γ%, the smaller the area of knowl-
edge preservation. However, the area of knowledge preser-
vation contains the global knowledge from the previous
round, which is expected to be unchanged. To analyze
the knowledge preservation capability that a good feder-
ated MRI framework should have, we discuss the recon-
struction accuracy for different γ% values with regard to
two scenarios in Fig. 6. It can be seen from this figure that,
with the increase in γ% values, the reconstruction accuracy
gradually increases. However, when γ% = 100%, the re-
construction accuracy drops rapidly. This is because when
the knowledge preservation area is reduced to zero, fitting
on the local distribution leads to forgetting the out-of-local
distribution, i.e., the issue ❸. Additionally, we can observe
from Fig. 6 that roughly 40% of the area comprises previ-
ously acquired global knowledge because our method ob-
tains the highest results at this point. Following [36], we
use the proportion of the sum of singular values of Λz+1

2 in
the sum of singular values of Λz+1 to verify the rationality
of the approximation. We find that the proportion in each
layer is smaller than 10−7. That is, the sum of the small-
est singular values Uz+1

2 can be ignored, thereby making it
reasonable to approximate the null space through the spatial
range of Uz+1

2 . Interestingly, our method only performs lo-
cal updates in the approximate null space of global prompts,
which greatly improves the stability of the model and thus
prevents catastrophic forgetting, i.e., the issue ❸.

Communication Efficiency Analysis. Our primal inter-
est is to learn a federated visual prompt that enables FL
to perform well with less local data, lower communication
cost, and faster convergence. Here, we investigate the com-
munication efficiency of our proposed method in terms of
communication cost and different communication rounds,
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Figure 5. Reconstruction accuracy of FedAvg (w. FFt), Ours (w. Pro), and Ours (Full) versus (a) local epochs and (b) communication
rounds under In-Federation and Out-of-Federation scenarios.

ratio ratio ratio% % %

Figure 6. Analysis of the ratio γ % of the approximate null space
in terms of PSNR, SSIM, and NMSE.

respectively. As shown in Table 1, the proposed method
only requires 0.11 M of communication, which is 6% of the
others, thereby addressing the issue ❷. However, although
the classical federated MRI algorithms FL-MRCM [13] and
FedMRI [9] can also achieve good accuracy, they ignored
this clinical issue of federated MRI. Additionally, the recon-
struction accuracy of FedAvg (w. FFt) [26],Ours (w. Pro),
and Ours (Full) under different communication rounds is
recorded in Fig. 5 (b), where the number of the local epochs
is fixed at 10 for each method. As can be seen from the fig-
ure, our method converges within 10 rounds, while FedAvg
(w. FFt) [26] converges after 30 rounds. Especially under
the mechanism of updating the local prompts in the approx-
imate null space of global prompts, our method provides
higher reconstruction results. This is because our federated
prompt learning mechanism prevents overfitting caused by
the limited amount of local training data and offers a per-
sonalized scheme for each client. The results in Fig. 5 (b)

confirm that our method provides the highest communica-
tion efficiency even on limited local data, thus relieving the
issues ❶ and ❷.

5. Conclusion
This paper presented a federated visual prompt learn-

ing method, FedPR, to tackle the three issues in feder-
ated MRI reconstruction, i.e., limited communication band-
width, insufficient local training data, and catastrophic for-
getting. Benefiting from a powerful pre-trained model, our
FedPR only learns prompts with a small number of learn-
able parameters. Additionally, FedPR greatly mitigates
catastrophic forgetting by updating local prompts only in
the approximate null space of global prompts, thereby pre-
venting knowledge outside the local distribution from being
overwritten. Experiments under In-Federation and
Out-of-Federation scenarios demonstrate the supe-
riority of FedPR in relieving the three issues of federated
MRI reconstruction.
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