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Figure 1. Semantic segmentation results of scenes and single objects. Top row: Segmentation of couches (blue mask) and coffee tables
(orange mask) in living room scene images. Middle row: Foreground-background face segmentation as well as fine-grained semantic
segmentation of facial components. Bottom row: Foreground-background segmentation of animals.

Abstract

We derive a method that yields highly accurate semantic
segmentation maps without the use of any additional neu-
ral network, layers, manually annotated training data, or
supervised training. Our method is based on the observa-
tion that the correlation of a set of pixels belonging to the
same semantic segment do not change when generating syn-
thetic variants of an image using the style mixing approach
in GANs. We show how we can use GAN inversion to ac-
curately semantically segment synthetic and real photos as
well as generate large training image-semantic segmenta-
tion mask pairs for downstream tasks.

1. Introduction

Semantic segmentation is a computer vision prob-
lem with countless important applications, including self-
driving cars, medical image analysis, and image content
generation and editing [5, 11, 12, 19]. Yet, attaining accu-
rate semantic segmentation masks remains an open prob-
lem [18, 28]. A recent proposed solution is to synthesize
large training data-sets of photo-realistic images and their
masks using generative models like Generative Adversarial
Networks (GANs) [1, 6, 18, 19, 28]. However, these meth-
ods require 1. adding and training an extra neural network
to synthesize the mask, increasing model and training com-
plexity, and 2. very costly pixel-wise human annotations on
a large set of training images for every type of object and
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scene of interest [19, 28].
Here, we propose a new algorithm that does not require

the addition of any extra network, costly pixel-wise human
annotations, or supervised training. Our key observation is
that the correlation of a set of pixels belonging to the same
semantic segment do not change when generating synthetic
variants of an image using the style mixing approach [14].
This allows us to derive an unsupervised algorithm to gen-
erate highly accurate semantic segmentation masks without
the need to incorporate new nets or layers to existing ones
or the need to re-train them. We show how our algorithm
can be used to semantically segment real photos, generate
synthetic data to successfully train semantic segmentation
algorithms, and create semantic segmentation masks for ap-
plications like style mixing Fig. 1.

In recent years, a number of works [1,4,6,19,21,24,28]
have emerged to address the problem of semantic segmenta-
tion with synthetic images. The difference of this solution,
compared to a classical semantic segmentation methods on
photos, is that we can take advantage of the rich semantic
structured in models like StyleGAN2. This, combined with
cheap photo-realistic image synthesis at scale, provides the
possibility to synthesize large training sets with their se-
mantic masks to train semantic segmentation algorithms at
low cost while attaining better or state-of-the-art results [4].

2. Related Works
The works most relevant to this study include supervised

and unsupervised method that do semantic segmentation on
synthetic images (fine-grained semantic masks and/or fore-
ground vs. background extraction).

One of the first attempts to do semantic segmentation on
synthetic images is DatasetGAN [18, 28]. DatasetGAN is a
few-shot fully supervised solution, where a small MLP net-
work is trained on the activation of a StyleGAN synthesis
networks to regress a fully annotated fine-grained segmen-
tation mask. DatasetGAN still requires pixel-wise human
annotations though. A number of efforts have been made
to remove this human annotation requirement, e.g., La-
bels4Free [1] and FurryGAN [4]. Both of these approaches
use an independent masking network that’s trained unsuper-
visedly to discriminate foreground vs background. Unfortu-
nately, extensions to a full, fine-grained semantic map is not
available and unclear how to achieve it. A potential solution
is to use unsupervised clustering on a CLIP-based map [21]
but this leads to inaccurate segmentations.

Another characteristic of existing methods is that the al-
gorithms operate on intermediate features of the StyleGAN
generators, introducing additional dependencies on the gen-
erator architectures and the trained weights. Thus, when-
ever the pre-trained generator is updated, either with new
weights or new architectures, it is often necessary to re-
configure the masking network branch correspondingly, fol-

Figure 2. The key insight of our paper is to use generative model’s
editing techniques like style mixing in StyleGAN2 to identify im-
age segments that co-vary vs segments that do not (mixing cutoff
c = 8). Notice that across style-mixed images, pixels vary con-
sistently within the same semantic segment but differently across
them.

lowed by re-training. The high dimensionality of the inter-
mediate features also poses significant computational de-
mand, which has to be resolved by often more costly ma-
chines, or segmentation at lower resolution.

In contrast, the method we derive below achieves highly
accurate semantic segmentation maps in a fully unsuper-
vised way without the need of adding any new net/layers,
re-train any components of the existing models, or the use
of human annotations. As our method operate on raw pix-
els, it also gives flexibility and adaptability to new models,
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Figure 3. Overview of our method. Given a photo (and its synthetic version obtained with GAN inversion) or a synthetic image generated
by StyleGAN2, we first construct a style summary tensor by concatenating style-mixed images. Unsupervised pixel-wise clustering is then
applied on the style summary tensor, yielding semantic specific masks. These can be further combined to create the desirable semantic
segment.

reducing computational and operational cost.

3. Method
This section provides detailed derivation of the proposed

algorithm, Fig. 2 and Fig. 3.

3.1. Prelimiaries on style mixing

Style mixing is a technique first proposed in Style-
GAN [15] as a regularization during training, but was later
adopted as a method for synthesizing synthetic image vari-
ants, Fig. 2(a).

Figure 4. Style mixing process of StyleGAN2.

More formally, a StyleGAN generator G(·) =
Gs(Gm(·)) is composed by two sub-networks Gm the map-
ping network and Gs the synthesis network. Gm maps from
input latent z to intermediate latent w ∈ Rd×l, where d and
l are the latent dimensions and number of modulated lay-
ers in Gs respectively. Gs then maps w to the image space
X ∈ Rw×h×3.

As shown in Fig. 4, style mixing operates on two latent
codes z0, z1 for a trained generator. Given a layer cutoff c ∈

{0, ..., l}, a new code w01 is generated by concatenating w0

before layer c and w1 after layer c. The style-mixed image
is then given by X01 = Gs(w01).

This process is called style mixing, as the image X01

is a mix of X0 = Gs(w0) and X1 = Gs(w1). The
level of combination depends on the cutoff c. From 0 to
l, the style-mixed image X01 will change from X1 to X0.
As illustrated in Fig. 5, when c increases, X01 becomes
closer to X0 with the mixing happens in the orders of [high-
level (pose, identity, etc.)]→ [low-level (texture, color style,
color shift, etc.)].

In the rest of the paper, w0 will be referred as the
structure latent, and w1,w2, ...,wn the style latent(s),
X01,X02, ...,X0n style-mixed images.

3.2. Semantic clustering through Style Mixing

Given a synthetic image X0 ∈ Rw×h×3 generated by
its latent code z0 for a trained StyleGAN generator and a
content of interest o, we wish to find a binary mask Y0 ∈
Rw×h for o such that each element yij follows:

yij =

{
1 if pixel [i, j] belongs to o,

0 otherwise
(1)

We will first address when o is the image foreground and
extending to object-wise masking in Sec. 3.3.

To generate high-precision object mask without training,
the key question is which pixels in X0 belongs to the same
semantic segment. We note that this can be readily achieved
by leveraging the properties of style mixing in StyleGAN
generators.

How can style mixing help cluster pixels by objects? We
observe that with a properly selected c, style-mixed images
generally maintain all the semantic structure of the origi-
nal image, Fig. 5. This allows pixel-wise color correlation
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Figure 5. Changing c changes the level of style mixing.

across different style-mixed images serves as an surrogate
of their semantic categories.

Specifically, for a given query image X0, n style-mixed
images X1,...,Xn are generated. First, we construct a style
summary tensor Xs ∈ Rw×h×3n by concatenating style-
mixed images at each pixel location, Fig. 3 columns 1-2.
Second, K-means clustering is applied on Xs across pixels
with 3n-dimension style summary features. That is,

Y′ = kmeans(Xs, k), (2)

where k is the number of clusters and Y′ ∈ [1, ..., k]w×h

is the w× h cluster assignment map of X0 whose elements
∈ {1, ..., k}. This creates pixel sets where within-cluster
pixels change their color similarly, and across-cluster pixels
display much wider, random changes, Fig. 2(b). Hence, Y′

is a surrogate of the desirable semantic segmentation map
of X0, Fig. 3 column 3.

At this stage, the cluster map Y′ is intermediate as we do
not know which clusters correspond to the content of inter-
est o. Thus, foreground identification has to be performed
to map Y′ to Y. Many algorithms can be used to decide the
foreground cluster. In this paper, we give examples on two
methods: 1. corner minority, 2. saliency.

Corner minority approach. For a given bounding box
around an object and the intermediate mask Y′, we can gen-
erally assume that the object is locate at the center of the
bounding box and the four corners are mostly occupied by
background pixels. Thus, we examine a b × b area in the 4
corners of Y′. For a pre-defined threshold θcorner, if a clus-
ter occupies greater or equal to round(θcorner b

2) pixels, then
it is a background cluster. We iterate through all k clusters.

Pixels within background clusters are assigned to 0, other-
wise 1, yielding the final binary mask Y.

This method is simple, but particularly effective against
rigid, convex objects without substantial shape variation
across images.

Saliency approach. An alternative foreground detection
algorithm utilizes a saliency map S ∈ Rw×h. Each element
sij ∈ [0, 1] in S approximates how likely it is for a pixel to
belong to o in Y′. Given a predefined threshold θsaliency and
cluster index m ∈ {1, ..., k}, the foreground clusters can
be identified by examining the average saliency for all the
pixels within the cluster m. Specifically, cluster m belongs
to o if,

1

N

∑
i,j

S(i, j) > θsaliency, for all i, j ∈ {Y′ = m}, (3)

where N is the number of pixels belonging to cluster m.
For most single convex objects, a pre-defined Gaussian

heat map peaked at the center of the image is sufficiently
good as the saliency map, which is what we use in our ex-
periments for human and animal faces.

3.3. Object and instance segmentation

In this section we extend our method to the object level.
This is crucial for complex scenes. In scenes the foreground
is not always consistently defined by a type of object, nor is
its appearance and alignment [12]. This complexity poses
special challenges for existing unsupervised segmentation
algorithms on synthetic images, as most of them rely on a
stable foreground-background decomposition.

To extend our method to object- or even instance-level,
one only needs to apply the aforementioned algorithm to the
pixels within the bounding box of the object/instance (Xo

is an image crop instead of full image). With the current
significant progress on pre-trained object detector [10, 25]
and zero-shot object detector [26], one can obtain high-
performance model on a wide range of object categories. In
this study, we use GLIP [26] for its accuracy on zero-shot
object detection.

3.4. Assumptions and limitations

Not relying on an additional network branch to perform
the task of segmentation makes our method clearer in its
assumption and limitation, as well as higher interpretability
when the program fails. Here, we provide an analysis of
our algorithm to provide initial applicability assessment and
troubleshooting directions.

Our method currently uses images from StyleGAN2
models. As the nature of our algorithm relies on the prop-
erty of style mixing, directly applying the method on syn-
thetic images generated by other architectures that signifi-
cantly different from StyleGAN is not straightforward. This
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is specially true for generative models where style mixing
(or variants) cannot be used. This can be resolved indirectly
by using a StyleGAN model of the same domain with an
accurate GAN inversion algorithm like [3, 11, 22]. On the
other hand, one should notice that our method relies on the
style mixing property on a set of images. StyleGAN is cur-
rently a straightforward source of such images. With the
recent development such as ControlNet [27], one could gen-
eralize our method to diffusion models as well.

Our foreground modeling only works when the corner
background assumption is met or the saliency map can ap-
proximately reflect the actual content of interest. When the
interested object violate those assumptions, one will find
our foreground identification fails and a custom foreground
heuristic has to be used. We have not seen this in any
of our experimental results but one can always compile a
scene where these assumptions are violated. We will pro-
vide more analysis on the failure mode of our method in
Sec. 5.

4. Experiments

We report the results of our approach in three different
applications and provide comparative results against state-
of-the-art methods.

4.1. Implementation details

Due to its simplicity and memory efficiency, we run our
algorithm on the native resolution of the pre-trained Style-
GAN2 generators, that is 1024×1024 pixels for faces and
scenes, 512×512 for horses and the face of the other ani-
mals. In all experiments, we set n = 50 for the style sum-
mary tensor described above. For facial images, the number
of clusters k in K-means is set to 3 for foreground segmen-
tation and 8 for eyes and mouth segmentation, both using
the saliency approach. For horses, animal faces and scenes,
k is set to 2 and we use the corner approach.

We use the K-means implementation faiss [13]. Each
image takes less than 1 second to process, taking 4GBs of
GPU memory on a single A100.

4.2. Synthetic Image Segmentation

We test our algorithm’s accuracy at extracting object
masks on the FFHQ [14], LSUN-Horses, AFHQ [8], and
DeepRooms [12] datasets.

Since synthetic images do not have golden ground truth
segmentation from humans, we use off-the-shelf state-of-
the-art semantic segmentation algorithm as pseudo-ground
truth, which is similar to the testing process used in prior
art like Labels4Free [1]. For experiments on FFHQ and
LSUN-horses, we use the DeepLabV3+ [7] model trained
on the augmented PASCAL-VOC12 dataset. For Deep-
Rooms, we used SwinTransformer [20] pre-trained on the

ADE20K dataset [29]. The foreground class is obtained by
choosing the mask from the appropriate semantic classes
sofa, table in our experiments. All the trained models are
taken from [9]. For LSUN-horses and DeepRoom, where
multiple foreground objects might appears in the images,
we first apply GLIP zero-shot object detector [26], then use
our algorithm within the detected bounding boxes, as de-
scribed in Sec. 3.3. We use “horses” and “sofa, coffee ta-
ble, lamp, side table, rug, in a livingroom” as GLIP text
caption for LSUN-horse and DeepRoom dataset images re-
spectively.

We report comparative results using mIOU (mean Inter-
section Over Union). For foreground segmentation, we re-
port foreground IOU, background IOU and their average as
mIOU. For object-wise semantic segmentation, we report
mIOU over object categories and individual object IOUs.

We compare the synthetic semantic segmentation per-
formance of our algorithm with DatasetGAN [28], La-
bels4Free(L4F) [1], and Semantic In Style (SiS) [21]. For
DatasetGAN, we train the model on stylegan2-ffhq-config-f
generator with the authors’ provided annotations on 16 fa-
cial images with the official optimization-based inversion
algorithm in StyleGAN2 at 512×512 resolution. For both
L4F and SiS, we re-train the model at 1024×1024 for a fair
comparison to ours. L4F requires around 10k synthetic im-
ages to train its Alpha Network while SiS requires 50 im-
ages for clustering and 15k images for training its masking
branch, Tab. 1.

As shown in Tab. 1 and Tab. 2, our method outperforms
the supervised baseline DatasetGAN on synthetic human
faces in terms of mIOU. Comparing to the state-of-the-art
unsupervised foreground segmentation algorithm, even if
with no training data is used to extract across sample in-
formation, we are able to achieve similar or better perfor-
mance.

4.3. Semantic segmentation of real photos

We compare our results against the golden ground-truth
given by human annotations. We perform real photo seman-
tic segmentation on the CelebAHQ-Mask [17] dataset. To
use our method and other synthetic segmentation algorithms
on photos, we use ReStyle encoder [2] to first perform GAN
inversion and then apply our algorithm to compute the se-
mantic segmentation mask. Similar to our previous exper-
iments, mIOU is used as the main evaluation metric, see
Tab. 1 CelebAMask-HQ columns.

4.4. Synthetic image and segmentation masks as
training data

As mentioned above, an important application of syn-
thetic semantic segmentation is to generate training data for
semantic segmentation algorithms. We use a similar eval-
uation framework as in [21, 28]. For this experiment, we
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FFHQ CelabAHQ-Mask
Methods Training data supervision additional network IOU (fg/bg) mIOU IOU (fg/bg) mIOU
DatasetGAN [28] 16 ✓ ✓ 0.83/0.73 0.78 0.87/0.73 0.80
L4F [1] 10k × ✓ 0.92/0.85 0.88 0.92/0.80 0.86
SiS [21] 50+15k × ✓ 0.89/0.77 0.83 0.92/0.81 0.87
Ours 0 × × 0.87/0.73 0.80 0.91/0.81 0.86

Table 1. Image segmentation performance on FFHQ (i.e., on synthetic data) and CelebA-Mask-HQ (i.e., on real data). IOU (fg/bg) is the
IOU for foreground/background segmentation. mIOU is the average between the IOU (fg) and IOU (bg).

LSUN-Horse DeepRoom-livingroom
Methods IOU (horse-fg/bg) mIOU IOU (sofa-fg/bg) mIOU IOU (table-fg/bg) mIOU
L4F [1] 0.51/0.73 0.62 × × × ×
SiS [21] 0.44/0.78 0.61 × × × ×
Ours 0.64/0.89 0.77 0.88/0.97 0.93 0.14/0.96 0.55

Table 2. Semantic segmentation performance on LSUN-horses, and DeepRoom-livingroom datasets, all with synthetic images and
DeepLabV3 as psuedo ground-truth.×: method not easily extendable to segment the target class.

IOU mIOU Trimap IOU Trimap mIOU
Methods # manual gt fg bg fg/bg fg bg fg/bg
U-net [23] 1000 0.95 0.87 0.91 0.53 0.45 0.49
w/ DatasetGAN [28] 16 0.90 0.79 0.84 0.43 0.39 0.41
w/ L4F [1] 0 0.92 0.82 0.87 0.43 0.38 0.41
w/ SiS [21] 0 0.92 0.80 0.86 0.45 0.33 0.39
w/ Ours 0 0.92 0.82 0.87 0.42 0.43 0.42

Table 3. Using synthetic data as training data for image segmentation. Trained on images generated from FFHQ model, test on CelebA-
Mask-HQ (real data). The supervised segmentation method is DeepLabV3. All synthetic data performances are trained from scratch using
synthetic data only. Trimap width is 3 pixels.

generate a synthetic segmentation dataset for faces using
the FFHQ generator [15]. Using the image and pixel-wise
labels we train a U-Net [23] from scratch, for 40K itera-
tions, to evaluate on photos from the test partition of the
CelebA-Mask-HQ dataset. Models are trained using the
public codebase from [9]. In addition to the standard mIOU
computed using entire images, we also report mIOU com-
puted on a Trimap of width 3 pixels following [16]. Such a
metric focuses on performance along the boundary pixels.
The more precise the boundary is, the higher the Trimap
mIOU. We report our results in Tab. 3.

4.5. Qualitative results

In this section, we provide qualitative results of our seg-
mentation. Fig. 6 shows facial foreground segmentation in
fine details. Fig. 8 shows alpha composition between the
original images and distinct style-mixed images with our
masks as alpha channel. We directly use the hard binary
mask without any feathering or Gaussian blur. These results
show the quality of our masks, since an inaccurate mask
leads to obvious artifact in the image composition that can
be readily detected by humans. We provide these visualiza-
tions on FFHQ, AFHQ-wild, and DeepRooms in Fig. 8.

RGB LAB
c k=2 k=4 k=10 k=2 k=4 k=10
4 0.66 0.73 0.67 0.70 0.70 0.66
6 0.74 0.75 0.68 0.74 0.79 0.69
8 0.76 0.76 0.67 0.76 0.78 0.69
12 0.44 0.58 0.68 0.45 0.61 0.69
14 0.45 0.59 0.66 0.51 0.60 0.62

Table 4. Ablation study on 500 randomly selected FFHQ images,
measured in mIOU.

4.6. Ablation Study

To test the effect of the parameters in our algorithm, we
perform a series of ablation studies. These correspond to the
layer cutoff c, the color space of the style summary tensor,
and the number of clusters k.

Effect of cutoff c.

As described in Sec. 3.1, the higher the c, the closer the
style-mixed image is to the original X0. Thus, if c is too
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Figure 6. Segmentation details of people from CelebAMask-HQ
photos and FFHQ synthetic images. Details zoomed in to compare
the segmentation precision.

high, the style summary tensor might lack the diversity and
style disentanglement between objects needed to yield ac-
curate results. If c is too low, then the tensor might contain
images of very different structures, losing their spatial and
semantic correspondences. In these cases, the performance
of clustering will be negatively affected. In Tab. 4, we com-
pare segmentation performance with c ranging from 4 to 12.
The mIOU is generally the worst when c = 4 and c = 12
while holding k constant.

Color space

The choice of color space also affects the performance of
the clustering algorithm. We observe that when construct-
ing the style summary tensor in RGB space, the K-means
clustering might be overly focused on the highlight of the
objects, especially when reflective surfaces are present.
This is because of highlights mostly vary in conjunction
with scene illumination, not with semantic segments (ob-
jects). Changing the color space to LAB addresses this
problem, as we show in Tab. 4.

Number of clusters

The number of clusters k is another parameter of impor-
tance. Generally, when the input X0 is an image cropped
from a tight bounding box, k = 2 yields very good semantic
segmentations. However, when estimating the foreground
of a main object class (e.g., a person or a cat) on an entire
image, it is likely that the foreground pixels clustered with

some background pixels. We wish to have a slightly larger
value for k that allows for shading and textural changes in
the same semantic segment. For this reson, we selected k=4.
We test the choice of k from 2 to 10 on faces. Tab. 4 shows
that both k = 2 and k = 10 give low performance and a
better mIOU is indeed achieved when k=4.

5. Failure Cases
There are two potential modes of failure in our method:

1. clustering failure, and 2. foreground failure. The lat-
ter we already discussed in the Sec. 3.4. The former hap-
pens when a) the style mixing properties does not hold well
and/or b) the main assumption of color correlation in style
summary tensor does not hold.

Figure 7. (a) Failure cases for our methods when k is small. (b)
Clustering with properly selected k.

Fig. 7 shows examples on the clustering results where
this failure happens. Specifically, (a) shows that when k is
selected to be too small, significant foreground-background
confusion may occur. This type of failure can be mitigated
when k is properly selected as in (b). However, even with
a proper k, it is possible (though rare) that areas in the
background are assigned as foreground (right most column,
black arrow).

6. Conclusion
Semantic segmentation is an important problem in com-

puter vision. In the present paper, we have derived a new ap-
proach that takes advantage of the consistency of pixel cor-
relations when editing synthetic images with techniques like
style mixing in GANs. We have shown how our approach
can be used to generate semantic segmentation masks of
real photos, create synthetic edits of these photos, and gen-
erate synthetic training data for downstream tasks. Compar-
ative results with state-of-the-art algorithms show that the
proposed approach yields as or more accurate results than
those reported in prior art with the added advantages that
our approach does 1. not require adding layers or networks
to existing pre-trained generative models, 2. not need to be
fine-tuned to each application, and 3. not require any super-
vision or labelled training data.
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Figure 8. Image composition with our masks on FFHQ, AFHQ-wild and DeepRoom images, blended using hard binary masks with no
feathering.
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