
Neural Dependencies Emerging from Learning Massive Categories

Ruili Feng1,3, Kecheng Zheng2,1, Kai Zhu1, Yujun Shen2, Jian Zhao 1, Yukun Huang1, Deli Zhao3,
Jingren Zhou3, Michael Jordan4, Zheng-Jun Zha1

1University of Science and Technology of China, Hefei, China
2Ant Group, 3Alibaba Group, Hangzhou, China

4University of California, Berkeley
ruilifengustc@gmail.com,{zkcys001,kaizhu}@mail.ustc.edu.cn,
shenyujun0302@gmail.com, {zj140,kevinh}@mail.ustc.edu.cn,

zhaodeli@gmail.com,jingren.zhou@alibaba-inc.com,
jordan@cs.berkeley.edu,zhazj@ustc.edu.cn.

× 𝜽𝒊𝟏

𝒄𝑵 ResNet-50ResNet-50

Swin-TSwin-T

ResNet-50ResNet-50

𝒙~𝑝𝑑𝑎𝑡𝑎 𝒙~𝑝𝑑𝑎𝑡𝑎

(b) Neural Dependency between ResNet-50 and Swin-T(a) Neural Dependency within a ResNet-50

𝒄𝒊𝟏

𝒄𝒊𝒌

𝒄𝒊𝟐

× 𝜽𝒊𝟐

× 𝜽𝒊𝒌

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝑵−𝟏

… 𝒄𝑵

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝑵−𝟏

…

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝑵−𝟏

……

𝒄𝑵

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝑵−𝟏

…

𝒄𝟏

𝒄𝟐

𝒄𝟑

𝒄𝑵−𝟏

…

𝒄𝑵

× 𝜽𝒊𝟏
𝒄𝒊𝟏

𝒄𝒊𝒌

𝒄𝒊𝟐

× 𝜽𝒊𝟐

× 𝜽𝒊𝒌
…

Original Acc. ≈ Acc.
Original Acc. ≈Acc.

Figure 1. Illustration of neural dependencies that emerge (a) within a single network and (b) between two independently learned
networks. Taking the intra-network dependency as an instance, the logits predicted for the category “macaw” can be safely replaced by a
linear combination of the logits predicted for a few other categories, barely scarifying the accuracy.

Abstract

This work presents two astonishing findings on neural
networks learned for large-scale image classification. 1)
Given a well-trained model, the logits predicted for some
category can be directly obtained by linearly combining
the predictions of a few other categories, which we call
neural dependency. 2) Neural dependencies exist not only
within a single model, but even between two independently
learned models, regardless of their architectures. Towards
a theoretical analysis of such phenomena, we demon-
strate that identifying neural dependencies is equivalent
to solving the Covariance Lasso (CovLasso) regression
problem proposed in this paper. Through investigating
the properties of the problem solution, we confirm that
neural dependency is guaranteed by a redundant logit
covariance matrix, which condition is easily met given
massive categories, and that neural dependency is highly
sparse, implying that one category correlates to only a few
others. We further empirically show the potential of neural
dependencies in understanding internal data correlations,
generalizing models to unseen categories, and improving

model robustness with a dependency-derived regularizer.
Code to reproduce the results in this paper is available at
https://github.com/RuiLiFeng/Neural-Dependencies.

1. Introduction
Despite the tremendous success of deep neural networks

in recognizing massive categories of objects [8–10, 12, 14–
16, 23, 27, 29], how they manage to organize and relate dif-
ferent categories remains less explored. A proper analysis
of such a problem is beneficial to understanding the network
behavior, which further facilitates better utilization of this
powerful tool.

In this work, we reveal that a deep model tends to
make its own way of data exploration, which sometimes
contrasts sharply with human consciousness. We reveal
some underlying connections between the predictions from
a well-learned image classification model, which appears
as one category highly depending on a few others. In
the example given in Fig. 1a, we can directly replace the
logits predicted for “macaw” with a linear combination
of the logits for “ostrich”, “bittern”, etc. (without tuning

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11711

the network parameters) and achieve similar performance.
We call this phenomenon as neural dependency, which
automatically emerges from learning massive categories.
A more surprising finding is that neural dependencies
exist not only within a single model, but also between
two independently learned models, as shown in Fig. 1b.
It is noteworthy that these two models can even have
different architectures (e.g., one with convolutional neural
network [12] and the other with transformer [10, 16]) and
different training strategies.

Towards figuring out what brings neural dependencies
and whether they happen accidentally, we make a the-
oretical investigation and confirm that identifying neural
dependencies is equivalent to solving a carefully designed
convex optimization—the Covariance Lasso (CovLasso)
regression problem proposed in this paper. Such a problem
owns a smooth solution path when varying its hyper-
parameters [21], which has two appealing properties. First,
the solution is guaranteed by a redundant covariance matrix
of the category-wise logits. This condition is easily met
when the model is trained on a sufficiently large number
of categories [11]. Second, the solution admits elegant
sparsity. It implies that a category involved in neural
dependencies only relates to several instead of numerous
other categories.

We further study the potential utilities of neural depen-
dencies, as a support to our theoretical contributions. One
straightforward application is to help interpret the internal
data correlations, such as what categories are more likely
to link to each other (Sec. 3.1). Another application is to
investigate how we can generalize a well-learned model
to unseen categories with the help of neural dependencies
(Sec. 3.2). We also propose a regularizer to test whether dis-
couraging the neural dependencies could assist the model in
learning a more robust representation (Sec. 3.3). We believe
the findings in this paper would deepen our understanding
of the working mechanism of deep neural networks, and
also shed light on some common rules in knowledge learn-
ing with visual intelligence systems.

2. Neural Dependencies
We consider the n-category classification neural network

f : Rm → Rn, which takes an input image x ∈ Rm and
outputs the logits vector of x being any of the n-categories
of the task. We assume the network is well-trained and
produce meaningful outputs for each category. Naively,
each element of the logits vector reports the confidence of
the network predicting x belonging to the corresponding
category. We are curious about whether those confidences
can be used to predict each other. Before we start, we
formally introduce the key concept of neural dependency
in this work.

Definition 1 We say the target category ci and categories
{cij}kj=1 have neural dependency, if and only if for almost
every x ∼ pdata, there are 0 < ϵ, δ ≪ 1 and a few constant
non-zero coefficients {θij}kj=1, i ̸= ij ∈ [n], k ≪ n, such
that

Pr(|f(x)i −
k∑

j=1

θijf(x)ij | < ϵ) > 1− δ. (1)

Remark 1 We do not normalize nor centralize the logits
output f(x) so that no information is added or removed
for logits of each category. Different from usual linear
dependency system (where y = Ax + b), we omit bias
in the neural dependency, i.e., we require b = 0 if
f(x)i ≈

∑k
j=1 θijf(x)ij + b. Thus the existence of neural

dependencies suggests that the network believes category ci
is nearly purely decided by categories ci1 , · · · , cik without
its own unique information.

What Does It Means? The neural dependency means that
a linear combination of a few categories is in fact another
category. It is natural to believe that those categories should
admit certain intrinsic correlations. However, for an idea
classifier, each category should hold a unique piece of
information thus they should not be purely decided by other
categories. What’s more, we will find that some neural
dependencies are also not that understandable for humans.
Overall, the neural dependencies reveal a rather strong
intrinsic connection of hidden units of neural networks, and
are potentially interesting for understanding the generality
and robustness of networks.

Between Network Dependencies. We can also solve and
analyze the between network neural dependencies through
the above methodology for two different neural networks
f, g trained on the same dataset independently. Here we
want to find a few constant non-zero coefficients {θij}kj=1

such that Pr(|g(x)i −
∑k

j=1 θijf(x)ij | < ϵ) > 1 − δ. To
find those coefficients, we only need to use the i-th row of
g(x) to replace f(x)i in Eq. (2). The concepts of within and
between network dependencies are also illustrated in Fig. 1.

Notations. We use bold characters to denote vectors and
matrix, under-subscript to denote their rows and upper-
subscript to denote their columns. For example, for a matrix
µ, µB

A denote the sub-matrix of µ consists of the elements
with row indexes in set A and column indexes in set B;
for a vector θ, we use θi to denote its i-th row which is a
scalar. For a function f : Rm → Rn, f(x)i denote the i-
th row of vector f(x), while fi(x) is some other function
that connected with sub-script i. For an integer n ∈ N, we
use [n] to denote the set {1, · · · , n}. We always assume
that matrices have full rank unless specifically mentioned;
low-rank matrices are represented as full rank matrices with
many tiny singular values (or eigenvalues for symmetry
low-rank matrices).

11712

Experiments Setup in This Section. In this section
we reveal the neural dependencies empirically among
some most popular neural networks, i.e., ResNet-18,
ResNet-50 [12], Swin-Transformer [16], and Vision-
Transformer [10]. As a benchmark for massive category
classification, we use ImageNet-1k [9], which includes
examples ranging from 1,000 diverse categories, as the
default dataset. Training details of those networks, and
other necessary hyper-parameters to reproduce the results
in this paper can be found in the Appendix.

2.1. Identifying Neural Dependencies through Co-
variance Lasso

We propose the Covariance Lasso (CovLasso) problem
which will help us identify the neural dependencies in the
network and play an essential role in this paper:

min
θ∈Rn,θi=−1

Ex∼pdata
[∥θT f(x)∥22] + λ∥θ∥1. (2)

Let θ∗(λ) be the solution of Eq. (2) given hyper-parameter
λ > 0, we can have the following observations

1. θ∗(λ) will be a sparse n-dimensional vector, meaning
many of its elements will be zero, due to the property
of ℓ1 penalty [20];

2. the prediction error |fi(x)−
∑s

k=1 θ
∗(λ)ikfik(x)| =

∥θ∗T (λ)f(x)∥22 will be very small for most x ∼ pdata,
due to the property of minimization of expectation.

Combining these two observations, it is easy to find out
the solution of Eq. (2) naturally induces the linear neural
dependencies in Definition 1. Rigorously, by Markov
inequality, if Ex∼pdata

[∥θT f(x)∥22] ≤ ϵδ, we have

Pr(|f(x)i −
∑
j ̸=i

θjf(x)j | < ϵ)

=1− Pr(|f(x)i −
∑
j ̸=i

θjf(x)j | ≥ ϵ)

≥1− Ex∼pdata
[∥θT f(x)∥22]
ϵ

≥ 1− δ,

(3)

so we can have the following theorem.

Theorem 1 The solution to Eq. (2) satisfies Definition 1 for
some small ϵ and δ and appropriate λ.

The CovLasso problem is a convex problem; we can effi-
ciently solve it by various methods like coordinate descent
or subgradient descent [4]. Finding the neural dependencies
for some category ci is now transferring into solving the
CovLasso problem under the constraint θi = −1.

Results. Fig. 2 reports some results of both within and
between network neural dependencies acquired by solving
Eq. (2). In the center we report the target category and
in the surroundings we enumerate those categories that

emerge neural dependencies with it. We show more
results in the Appendix. For the cases in Fig. 2, Tab. 1
further reports the absolute and relative errors of predicting
the logits of target categories using formula f(x)i ≈∑s

k=1 θikf(x)ik , and the corresponding classification
accuracy on this category (using the replaced logits
(f(x)1, · · · , f(x)i−1,

∑
j ̸=i θjf(x)j , f(x)i+1, · · · , f(x)n)T

instead of f(x)), tested both on positive samples only and
the full validation set of ImageNet. We can find that, as
claimed by Definition 1, a small number of other categories
(3 or 4 in the illustrated cases) are enough to accurately
predict the network output for the target category.
Moreover, the predictions are all linear combinations:
for example, Fig. 2f tells that for almost every image
x ∼ pdata, we have

R50(x)hamster ≈ 3.395× S(x)broccoli

+ 3.395× S(x)guineapig + 3.395× S(x)corn,
(4)

where R50 denotes the ResNet-50 and S denotes the Swin-
Transformer. We can achieve comparable classification
performance if using the above linear combination to re-
place the logits output for category ‘hamster’ of ResNet-
50. For both single models and two independently trained
models with different architectures, we can observe clear
neural dependencies. Future work may further investigate
connections and differences in neural dependencies from
different networks.

Peculiar Neural Dependencies. As we have mentioned
before, the solved neural dependencies are not all that
understandable for humans. Fig. 2 actually picks up a few
peculiar neural dependencies for both within and between
network dependencies. For example, the dependencies
between ‘jellyfish’ and ‘spot’ in Fig. 2a, ‘egretta albus’ and
‘ostrich’ in Fig. 2b, ‘basketball’ and ‘unicycle’ in Fig. 2c,
‘komondor’ and ‘swab’ in Fig. 2d, ‘bustard’ and ‘bittern’
in Fig. 2e, and ‘hamster’ and ‘brocoli’ in Fig. 2f. This
reveals the unique way of understanding image data of
neural networks compared with human intelligence that has
been unclear in the past [19, 30]. Further investigating
those cases can be of general interests to future works in AI
interpretability and learning theory, and potentially provide
a new way to dig intrinsic information in image data.

2.2. What Brings Dependencies

After identifying the neural dependencies in deep net-
works, we are curious about why this intriguing phe-
nomenon can broadly exist in different architectures. So we
need a further understanding of the sources of it, which can
be discovered through a careful analysis on Eq. (2). This
section will reveal how a redundant covariance matrix for
the terminal representations induces neural dependencies.

11713

(a) ResNet-18

: ‘jellyfish’

Acc. = 60.9%

: ‘torpedo’

= 0.498

: ‘nautilus’

= 0.428

: ‘spot’

= 0.349

: ‘anemone’

= 0.277

Original Acc. on ‘jellyfish’ = 61.0 %

(d) VIT-S

: ‘komondor’

Acc. =62.3%

: ‘Tibetan terrier’

= 0.408
: ‘swab’

=0.308

: ‘otterhound’

=0.307

(b) ResNet-50

: ‘egretta albus’

Acc. = 64.9%

: ‘ostrich’

= 0.573

: ‘blue heron’

= 0.363

: ‘spoonbill’

= 0.314

: ‘white stork’

= 0.026

Original Acc. on ‘komondor’ = 62.3 %

Original Acc. on ‘egretta albus’ = 64.9 %

(c) Swin-T

: ‘basketball’

Acc. =45.8%

: ‘volleyball’

= 0.559

: ‘unicycle’

=0.470

: ‘ballplayer’

=0.235

Original Acc. on ‘basketball’ = 45.9 %

(f) Swin-T → ResNet-50

: ‘hamster’

Acc. =49.0%

: ‘broccoli’

= 3.395

: ‘corn’

=0.442

: ‘guinea pig’

=0.154

(e) ResNet-50 → Swin-T

: ‘bustard’

Acc. = 69.5%

: ‘ostrich’

= 0.310

: ‘bittern’

= 0.117

: ‘crane’

= 0.112

: ‘peacock’

= 0.109

Original Acc. on ‘hamster’ = 49.2 %Original Acc. on ‘bustard’ = 69.5 %

: ‘scoreboard’

= 0.185

Figure 2. Neural dependencies in popular multi-class classification networks. (a;b;c) Within-network neural dependencies in
ResNet18, ResNet50, Swin-Transformer and VIT-Transformer; (e;f) Between-network neural dependencies between ResNet50 and Swin-
Transformer. Much more results can be found in Appendix.

Table 1. Prediction error and classification accuracy of neural dependencies in cases in Fig. 2. Both the error of logits prediction and the
loss in classification accuracy are tiny. Much more results can be found in Appendix.

Metrics ResNet-18 ResNet-50 Swin-T VIT-S R-50 → Swin-T Swin-T → R-50

Abs Err 2.568 1.063 0.926 4.276 1.776 3.939

Rel Err (%) 18.7 6.8 10.4 29.7 20.7 21.1

Acc (Ori. Acc) 60.9 (61.0) 64.9 (64.9) 40.1 (40.1) 45.9 (45.9) 69.5 (69.5) 49.0 (49.2)

Pos Acc (Ori. Pos Acc) 72.0 (84.0) 92.0 (92.0) 94.0 (92.0) 96.0 (100.0) 94.0 (96.0) 94.0 (100.0)

11714

Observe that Ex∼pdata
[∥θT f(x)∥22] = θTCovθ, where

Cov = Ex∼pdata
[f(x)f(x)T] is the (uncerntralized and

unnormalized) covariance matrix of the terminal repre-
sentations. Let erri(θ) = θTCovθ be the predicting
error of using coefficient θ for category ci, the property
of Lasso regression indicates that (see proof in Appendix)
erri(θ

∗(λ)) is continuous about λ and
det[Cov]

det[Cov
[n]\i
[n]\i]

= erri(θ
∗(0)

≤ erri(θ
∗(λ)) ≤ erri(θ

∗(λ′))

≤ erri(θ
∗(λmax)) = Covii,

(5)

where λ ≤ λ′, and λmax = 2∥Covi[n]\i∥∞ is the
supremum of valid hyper-parameter λ, i.e., θ∗(λ) =
−ei = (0, · · · , 0︸ ︷︷ ︸

i−1

,−1, 0, · · · , 0),∀λ ≥ λmax, and θ∗(λ) ̸=

−ei,∀0 ≤ λ < λmax.
Regardless of the sparsity, to yield neural dependency for

the target category ci, we expect a very small erri(θ∗(λ)).
So if the lower bound erri(θ

∗(0)) is already far larger
than ϵδ, the predicting error can be too large to yield
neural dependencies. Reversely, using the continuity of
erri(θ

∗(λ)) about λ, we can know that if the lower bound
erri(θ

∗(0)) is very small, then there should be a small
λ such that erri(θ∗(λ)) is also very small. Eq. (2) can
then bring neural dependencies to category ci. (This need
to exclude a trivial case where the predicting error upper
bound Covii = Ex∼pdata

[f(x)2i] is already very small as
it does not reveal any meaningful dependencies but that
the network may be very unconfident about category ci.
While this is rare for well-trained networks, we leave the
discussion of this case in Appendix.)

So to have neural dependencies, we require the term
erri(θ

∗(0)) to be as small as possible. For term
erri(θ

∗(0)) we can have the following observations from
two different perspectives (see Appendix for deduction):

1. Information Volume: erri(θ
∗(0)) = det[Cov]

det[Cov
[n]\i
[n]\i]

=

Vol(Cov)

Vol(Cov
[n]\i
[n]\i)

measures the ratio between the n-

dimensional volumes of the parallelotope Cov and the
n − 1 dimensional volumes of Cov removing the i-th
row and i-th column; if assume Gaussian distributions
of random variable f(x),x ∼ pdata, they are also
the normalizing constants of the probability density
of the terminal representations with and without the
i-th category; this term measures the information loss
while removing the i-th category and is small if the i-
th row and i-th column of Cov carry little information
and are redundant;

2. Geometry: erri(θ
∗(0)) = det[Cov]

det[Cov
[n]\i
[n]\i]

=

(
∑n

j=1

α2
j

σ2
j
)−1 which will be small if some

αj corresponding to tiny σ2
j is large, where

σ2
1 ≥ · · · ≥ σ2

n are the eigenvalues of Cov and
q1, · · · , qn are the corresponding eigenvectors,
αj = ⟨ei, qj⟩, j ∈ [n]; this further means that the
i-th coordinate axis is close to the null space (linear
subspace spanned by eigenvectors corresponding to
tiny eigenvalues) of the covariance matrix Cov, which
suggests the i-th category is redundant geometrically.

Let det[Cov]

det[Cov
[n]\i
[n]\i]

be the metric for redundancy of category

ci, both perspectives lead to the same conclusion that:

Redundancy of the target category ci in the terminal
representations brings it neural dependencies.

Remark 2 Unfortunately, though it can help us understand
the intrinsic mechanism that brings neural dependencies,
this principle is only intuitive in practice—we cannot accu-
rately calculate the value det[Cov]

det[Cov
[n]\i
[n]\i]

in most cases due to

numerical instability. det[Cov[n]\i[n]\i] tends to have some tiny
singular values (smaller than 1e− 3), making the quotient
operation extremely sensitive to minor numerical errors in
computation, and thus often induces NaN results.

2.3. What Brings Sparsity

The last section omits the discussion of sparsity, which
we want to study carefully in this section. We want to find a
value that estimates whether two categories have neural de-
pendencies, which we will show later is the (uncerntralized)
covariance between the logits for two different categories.

The sparsity property, i.e., whether category cj is in-
volved in the neural dependencies with ci, can be identified
by the KKT condition of Eq. (2). Let ˆCov = Cov

[n]\i
[n]\i,

θ̂ = θ[n]\i, b̂ = Covi[n]\i, and ĵ = j + 1(j>i) such that
θ̂j = θĵ , then Eq. (2) can be transferred into

min
θ̂∈Rn−1

θ̂T ˆCovθ̂ − 2b̂T θ̂ + λ∥θ̂∥1. (6)

By KKT conditions, the optimal value is attained only if

0 ∈ ˆCovθ̂∗(λ)− b̂+
λ

2
∂∥θ̂∥1. (7)

and the sparsity can be estimated by the following proposi-
tion (see detailed deduction in Appendix)

| ˆCovj θ̂
∗(λ)− b̂j | <

λ

2
⇒ θ̂∗(λ)j = 0, j ∈ [n− 1]. (8)

This means that we can know whether two categories admit
neural dependencies by estimating | ˆCovj θ̂

∗(λ) − b̂j |. A
surprising fact is that the term | ˆCovj θ̂

∗(λ)−b̂j | can actually
be estimated without solving Eq. (2), but using the slope of
the solution path of the Lasso problem. By convexity of
Eq. (2), the slope of Eq. (2) admits the following bound.

11715

Theorem 2 Let ˆCov = QΣQT be the eigenvalue decom-
position of ˆCov, and A = QΣ1/2QT , then we have for
λ′, λ′′ ∈ [0, λmax],

|
ˆCovj θ̂

∗(λ′)− b̂j
λ′ −

ˆCovj θ̂
∗(λ′′)− b̂j
λ′′ |

≤∥Aj∥2∥A−T b̂∥2|
1

λ′ −
1

λ′′ |, j ∈ [n− 1].

(9)

Remark 3 Using this theorem we can also get a finer
estimation of the value of erri(θ̂∗(λ)) than Eq. (5), see
Appendix for detail.

Using triangular inequality and the closed-form solution for
λmax (θ̂∗(λmax) = 0), we have for j ∈ [n− 1],

| ˆCovj θ̂
∗(λ)− b̂j | ≤ λ|

ˆCovj θ̂
∗(λmax)− b̂j
λmax

| (10)

+λ|
ˆCovj θ̂

∗(λ)− b̂j
λ

−
ˆCovj θ̂

∗(λmax)− b̂j
λmax

| (11)

≤λ| b̂j
λmax

|+ λ∥Aj∥2∥A−T b̂∥2|
1

λ
− 1

2∥b̂∥∞
|. (12)

Thus if λ| b̂j

λmax
| + λ∥Aj∥2∥A−T b̂∥2| 1λ − 1

2∥b̂∥∞
| < λ

2 ⇔

| b̂j

∥b̂∥∞
| < 1−2∥Aj∥2∥A−T b̂∥2| 1λ − 1

2∥b̂∥∞
|, we know that

θ̂∗(λ)j = 0 and category cĵ is independent (meaning not
involved in the neural dependencies) with ci.

Theorem 3 When 0 < λ < λmax and ĵ ̸= i, if

|Ex∼pdata
[f(x)if(x)ĵ]|

maxs ̸=i |Ex∼pdata
[f(x)if(x)s]|

<1− 2∥Aj∥2∥A−T b̂∥2|
1

λ
− 1

2∥b̂∥∞
|,

(13)

then θ∗(λ)ĵ = 0 and category cĵ is independent with ci.

High dimensional vectors are known to tend to be orthog-
onal to each other [5], thus if we assume Aj is nearly
orthogonal to A−T b̂, then ∥Aj∥2∥A−T b̂∥2 ≈ |b̂j | and we
can further simplify the above sparsity criterion as

Conjecture 1 When 0 < λ < λmax and j ̸= i, if

|Ex∼pdata
[f(x)if(x)j]| <

λ

2
(equivalent to

|Ex∼pdata
[f(x)if(x)j]

maxs ̸=i |Ex∼pdata
[f(x)if(x)s]|

| < λ

λmax
),

(14)

then θ∗(λ)j = 0 and category cj is independent with ci.

In practice we find that this conjecture is seldom wrong.
Combining with Theorem 3, they together tell us that the co-
variance of terminal representations has an important role in
assigning neural dependencies: more correlated categories

S
p

a
rs

it
y

ResNet-18

S
p

a
rs

it
y

ResNet-50

Correlation

(b) ResNet-50

Correlation

(a) ResNet-18

S
p

a
rs

it
y

VIT-S SWIN-T

Correlation

(d) SWIN-T

Correlation

(c) VIT-S

S
p

a
rs

it
y

Figure 3. Relation between correlations and dependency coeffi-
cients.

tend to have neural dependencies, while weakly correlated
categories will not have neural dependencies. They also
describe the role of the hyper-parameter λ in Eq. (2): it
screens out less correlated categories when searching neural
dependencies, and larger λ corresponds to higher sparsity of
dependencies. In conclusion, let |Ex∼pdata

[f(x)if(x)j]| be
the metric for correlations between category ci and cj , we
can say that

Low covariance between categories in the terminal
representations brings sparsity of dependencies.

Numerical Validation. We validate the above principle,
i.e., Conject. 1 in Fig. 3. Each subfigure picks up one
target category ci and solves Eq. (2) to calculate the
corresponding coefficients θ∗

j , j ̸= i for all the remain-
ing 999 categories of the ImageNet. θ∗

j = 0 implies
no neural dependency between category ci and cj , and
vice versa. We plot the relation between the covariance
of ci, cj , |Ex∼pdata

[f(x)if(x)j]|, and the corresponding
dependency coefficient θ∗

j . We can clearly find out that
a small correlation corresponds to no neural dependency.
Specifically, when the correlation between ci, cj is smaller
than λ

2 , ci and cj admit no neural dependency. In most
cases, the bar λ

2 does exclude a considerable amount of zero
dependency categories, which makes it a good indicator
for the existence of neural dependency. This validates our
principle for the source of sparsity.

Controlling Neural Dependencies. Conject. 1 also
points out that we can disentangle neural dependencies
by regularizing the covariance term, as tiny covariance
indicates no neural dependency. We will discuss this later
in Sec. 3.3.

11716

2.4. Between Network Neural Dependencies

The general math property of the between network
neural dependencies shows no essential difference from
the within network ones. Let f, g be two different
classification neural networks trained on pdata indepen-
dently. We want to use the logits of f to predict
the logits of the ci category of g. Let f̃(x) =
(f(x)1, · · · , f(x)i−1, g(x)i, f(x)i+1, · · · , f(x)n)T , and
˜Cov = Ex∼pdata

[f̃(x)f̃(x)T], then we know that

• if det[˜Cov]

det[˜Cov]
[n]\i
[n]\i

= det[˜Cov]

det[Cov
[n]\i
[n]\i]

is small, then category

ci of network g have neural dependencies with some
other categories of network f ;

• if |Ex∼pdata
[f(x)jg(x)i]| (j ̸= i) is small, then the cj

category of f is independent with the ci category of g.

3. Potentials of Neural Dependencies
In this section, we discuss some interesting potentials

and inspirations of neural dependencies in general scenarios
of modern machine learning.

3.1. Visualization Neural Dependencies

We are curious about the intrinsic data relations revealed
by neural dependencies. Specifically, if we have some base
classes in the coordinate space, can we plot the relative
position of the target classes that can be linearly decided
by those classes through neural dependencies? Fig. 4
gives such an example for ResNet-50 in ImageNet. In
the surroundings are 88 base categories and in the center
are 10 target categories that can be linearly predicted by
them using neural dependencies. The length of the arc
between two categories gives their dependency coefficient.
This result illustrates the relative relationship of different
categories acknowledged by the neural network. It may be
of potential interests to multiple domains like data relation
mining, visualization, and interpretability of deep networks.

3.2. Generalizability

Now that the logits of one category can be well predicted
by the logits of some others, we are curious about whether
we can learn a cluster of base categories, and then predict
new classes purely using linear combinations of the logits
of those base categories. Especially, can the overall
performance of this setting be comparable to training the
baseline model on the whole dataset? This problem is of
general interest to many machine learning scenarios. 1)
Incremental Learning. In incremental learning [6,17,28] we
need to learn to predict novel categories using a pretrained
network on old categories. Typical methods will finetune
the pretrained network in the new categories to achieve

Figure 4. The graph visualization of neural dependencies in a
pretrained ResNet-50. Please refer to Sec. 3.1 for detail.

this goal, which then arouses concerns of damaging the
knowledge of the old categories. Using our setting we
can explore the potential of keeping the pretrained network
unchanged and learning merely a small weight matrix to
handle novel categories, which is cheap and efficient to train
and deploy in various devices and realistic scenarios. 2)
Transfer Learning. A similar but different occasion is trans-
fer learning [18, 25, 26], where we seek to take advantage
of knowledge of old domains to improve performance in
new data domains. While categories are also instances of
domains, our setting also explores a new way of knowledge
transfer among domains. 3) Representation Learning. Our
setting can partially reveal how representations [2] of base
knowledge help classifications in out-of-distribution data
(new categories). Future studies of this setting may reveal
the source of the generalizability of neural networks from
the perspective of neural dependencies.

To implement our setting, we may first train a deep
classification network fbase : Rm → Rn1 on the n1 base
categories. Then we learn a coefficient matrix Θ ∈ Rn1×n2

by fixing the parameters of fbase and minimizing the train-
ing loss of fnew = fbaseΘ on the training set of the new
categories. We then concatenate fall = [fbase, fbaseΘ]T to
form a new classifier for all the categories. We sample 500
samples per category from the training set of ImageNet-1K
as our training data; the remains are used for constructing
a balanced binary testing set we will use later. We evaluate
the following three settings: 1) from 900 base classes to
100 new classes (900 → 100), 2) from 950 base classes to
50 new classes (950 → 50), and 3) from 999 base classes
to 1 new class (999 → 1) within a dataset. To approach
a binary classification scenario, for 999 → 1 case we
additionally test on 500 positive and negative sample pairs
from the remained training set of ImageNet as the 999 →
1(pos&neg) setting. The baselines fbaseline are backbone
models trained on the whole 1,000 category training data.

11717

Table 2. Classification accuracy of baselines and learning new categories through neural dependencies (ours). While much simpler, learning
new categories through neural dependencies barely loses accuracy. All figures are the mean of five independent runs.

900 → 100 950 → 50 999 → 1 999 → 1(pos&neg)Backbone
Baseline Ours Impro Baseline Ours Impro Baseline Ours Impro Baseline Ours Impro

ResNet50 68.47±0.25 68.03±0.89 -0.44 68.47±0.25 68.45±0.67 -0.02 68.47±0.25 68.46±0.41 -0.01 60.70±0.16 61.50±0.38 +0.80
Swin-T 71.49±0.14 71.486±0.17 -0.004 71.49±0.21 71.578±0.34 +0.088 71.49±0.09 71.56±0.13 +0.07 76.20±0.27 78.00±0.24 +1.80

Table 3. Metrics of using (ours) and not using (baselines) the dependency regularization. All figures are mean of five independent runs.

ImageNet Acc. (↑) Dependency Coefficients (↓) ImageNet-O AUPR (↑)Backbone
Baseline Ours Impro Baseline Ours Impro Baseline Ours Impro

ResNet18 69.83±0.033 70.12±0.084 +0.29 0.70 0.02 +0.68 15.15±0.04 15.48±0.09 +0.33
ResNet50 76.37±0.25 76.66±0.13 +0.29 1.10 4.5e−4 +1.10 13.98±0.05 14.07±0.02 +0.09
Vit-S 80.67±0.305 81.52±0.212 +0.85 0.1 3.1e−3 +0.1 28.54±0.11 31.14±0.10 +2.60
Swin-T 82.16±0.046 82.18±0.062 +0.02 0.39 0.01 +0.38 27.66±0.08 28.13±0.06 +0.47

Table 4. Classification accuracy in base (900) and new (100)
categories separately. While much simpler, learning new cate-
gories through neural dependencies outperform baselines if only
considering the performance in the new categories. All figures are
the mean of five independent runs.

ResNet-50 Swin-TMethod
900 100 900 100

Baseline 67.43±0.16 68.87±0.84 71.28±0.29 70.73±1.03

Ours 68.65±0.13 71.06±1.15 71.50±0.40 72.47±0.41

Other details can be found in Appendix.
Experimental Results. We report the performance of fall
and fbaseline in Tab. 2, where we can find both settings (ours
v.s. baselines) achieve comparable performance. While our
setting requires training on only a small coefficient matrix,
it consumes much less computation and time resources (less
than 60% time consumption of the baseline in each epoch,
see Appendix for detail) compared with the baselines. We
further investigate how our setting performs in the new
categories. Tab. 4 reports classification accuracy in the old
900 and new 100 categories of our setting and baselines
(here we choose the class with maximum logits in the
900/100 categories as the prediction results). We can find
that our setting significantly outperforms the baselines in
the new classes. Both results reveal the power of neural
dependencies in the generalizability of deep networks.

3.3. Robustness

As we have mentioned before, some neural dependencies
are not that sensible for humans. We are therefore curious
about whether cutting off them can help the network and
improve robustness. Here we compare two cases, the
baselines, and baselines finetuned by adding the regulariza-
tion term |Ex∼pdata

[f(x)if(x)j]| where ci, cj are the two
categories that emerge irrational neural dependencies to cut
off. We use two benchmarks, ImageNet-1K and ImageNet-
O [13]. ImageNet-O consists of images from 200 classes
that are unseen in ImageNet-1K, and is used to test the
robustness on out-of-distribution samples. This ability is

usually measured by the AUPR (i.e., the area under the
precision-recall curve) metric [3]. This metric requires
anomaly scores, which is the negative of the maximum
softmax probabilities from a model that can classify the
200 classes. We train the baseline models for 90 epochs
and our settings for 60 epochs of regular training followed
by 30 epochs of finetuning using the regularization term
|Ex∼pdata

[f(x)if(x)j]|. We manually choose one depen-
dency to cut off for each case. Details are in Appendix.
Experimental Results. Tab. 3 reports the results. The
regularization term does cut off the neural dependencies
as the dependency coefficients are approaching zero after
regularization. This then results in some improvements
of performance in both ImageNet and ImageNet-O for all
the backbones. While here we only cut-off one depen-
dency for each case, we believe a thorough consideration
of reasonable dependencies to maintain may benefit the
network more. This reveals the connection between neural
dependencies and the robustness of networks.

4. Conclusion

This paper reveals an astonishing neural dependency
phenomenon emerging from learning massive categories.
Given a well-trained model, the logits predicted for some
category can be directly obtained by linearly combining the
predictions of a few others. Theoretical investments demon-
strate how to find those neural dependencies precisely, when
they happen, and why the dependency is usually sparse, i.e.
only a few instead of numerous of other categories related
to one target category. Further empirical studies reveal
multiple attractive potentials of neural dependencies from
the aspects of visualization, generalization, and robustness
of deep classification networks.

This work was supported by the National Key R&D Program of China
under Grant 2020AAA0105702, National Natural Science Foundation of
China (NSFC) under Grants 62225207 and U19B2038, and the University
Synergy Innovation Program of Anhui Province under Grants GXXT-
2019-025.

11718

References
[1] Yusuf Aytar and Andrew Zisserman. Enhancing exemplar

svms using part level transfer regularization. In British
Machine Vision Conference (BMVC), pages 1–11, 2012. 8

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Rep-
resentation learning: A review and new perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 35(8):1798–1828, 2013. 7

[3] Kendrick Boyd, Kevin H Eng, and C David Page. Area under
the precision-recall curve: point estimates and confidence
intervals. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 451–466,
2013. 8

[4] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe.
Convex optimization. Cambridge university press, 2004. 3

[5] Peter Bühlmann and Sara Van De Geer. Statistics for
high-dimensional data: methods, theory and applications.
Springer Science & Business Media, 2011. 6

[6] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incre-
mental learning. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 233–248, 2018. 7

[7] Minshuo Chen, Yu Bai, Jason D Lee, Tuo Zhao, Huan
Wang, Caiming Xiong, and Richard Socher. Towards
understanding hierarchical learning: Benefits of neural rep-
resentations. Advances in Neural Information Processing
Systems, 33:22134–22145, 2020. 8

[8] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni,
Piotr Padlewski, Daniel Salz, Sebastian Goodman, Adam
Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-
scaled multilingual language-image model. arXiv preprint
arXiv:2209.06794, 2022. 1

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
248–255, 2009. 1, 3

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2, 3

[11] Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao,
Michael Jordan, and Zheng-Jun Zha. Rank diminishing in
deep neural networks. arXiv preprint arXiv:2206.06072,
2022. 2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016. 1, 2, 3

[13] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 15262–15271,
2021. 8

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Ima-
genet classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017. 1

[16] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 10012–10022, 2021. 1, 2, 3

[17] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Es-
sentials for class incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3513–3522, 2021. 7

[18] Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(10):1345–1359, 2009. 7

[19] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
618–626, 2017. 3

[20] Robert Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996. 3

[21] Ryan J Tibshirani and Jonathan Taylor. The solution path of
the generalized lasso. The Annals of Statistics, 39(3):1335–
1371, 2011. 2

[22] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, Yasemin Altun, and Yoram Singer. Large margin
methods for structured and interdependent output variables.
Journal of machine learning research, 6(9), 2005. 8

[23] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng
Yang, Peyman Milanfar, Alan Bovik, and Yinxiao Li.
Maxvit: Multi-axis vision transformer. arXiv preprint
arXiv:2204.01697, 2022. 1

[24] Gang Wang, Derek Hoiem, and David Forsyth. Learning
image similarity from flickr groups using stochastic inter-
section kernel machines. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
428–435. IEEE, 2009. 8

[25] Mei Wang and Weihong Deng. Deep visual domain adapta-
tion: A survey. Neurocomputing, 312:135–153, 2018. 7

[26] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A
survey of transfer learning. Journal of Big Data, 3(1):1–40,
2016. 7

[27] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Re-
becca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon
Kornblith, et al. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increasing in-
ference time. In Proceedings of the International Conference
on Machine Learning (ICML), pages 23965–23998, 2022. 1

[28] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale
incremental learning. In Proceedings of the IEEE/CVF

11719

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 374–382, 2019. 7

[29] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung,
Mojtaba Seyedhosseini, and Yonghui Wu. Coca: Contrastive
captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022. 1

[30] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for dis-
criminative localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2921–2929, 2016. 3

11720

