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Abstract

The success of deep learning is largely attributed to the
training over clean data. However, data is often coupled
with noisy labels in practice. Learning with noisy labels
is challenging because the performance of the deep neural
networks (DNN) drastically degenerates, due to confirma-
tion bias caused by the network memorization over noisy
labels. To alleviate that, a recent prominent direction is
on sample selection, which retrieves clean data samples
from noisy samples, so as to enhance the model’s robust-
ness and tolerance to noisy labels. In this paper, we re-
vamp the sample selection from the perspective of optimal
transport theory and propose a novel method, called the
OT-Filter. The OT-Filter provides geometrically meaning-
ful distances and preserves distribution patterns to measure
the data discrepancy, thus alleviating the confirmation bias.
Extensive experiments on benchmarks, such as Clothing1M
and ANIMAL-10N, show that the performance of the OT-
Filter outperforms its counterparts. Meanwhile, results on
benchmarks with synthetic labels, such as CIFAR-10/100,
show the superiority of the OT-Filter in handling data la-
bels of high noise.

1. Introduction

Deep learning has achieved great success on a flurry of
emerging applications, such as [28, 29, 32, 49]. It is be-
lieved that the phenomenal achievement of deep learning
is largely attributed to accurate labels. However, the in-
accuracy or imprecision of labels is inherent in real-world
datasets, the so-called noisy label challenge. One way to
alleviate that is to collect labels from internet queries over
data-level tags, but the performance of deep neural networks
(DNN) suffers drastically from the inaccuracy of such la-
bels [27,32]. A higher quality of data labels can be obtained
by employing human workers, but the seemingly “ground
truth annotations” inevitably involve human biases or mis-
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takes [45,66]. More, the human annotation is expensive and
time-consuming, especially for large-scale datasets.

There have been many works on handling noisy labels,
such as regularization [23] and transition matrix [13, 43].
The regularization approach leverages the regularization
bias to overcome the label noise issue. But the regular-
ization bias is permanent [62], thus overfitting models to
noisy labels. The transition matrix approach assumes that
the transition probabilities between clean and noisy labels
are fixed and independent of data samples. However, a
quality label transition matrix is hard to be estimated, es-
pecially when the number of classes is big, making it fall
short in handling noisy real-world datasets, such as [60]
and [36]. A recent prominent direction is on adopting sam-
ple selection [27, 38, 58] for enhancing the label quality,
by selecting clean samples from the noisy training dataset.
In general, existing literatures in sample selection can be
grouped to two categories, co-training networking [27, 62]
and criterion-based filtering [31, 34, 57, 58].

The former utilizes the memorization of DNNs and
multiple networks (e.g., co-teaching [27] and its variants
[38, 62]) to filter label noise with small loss trick, so that
a small set of clean samples are used as training examples.
Letting alone the high training overhead of multiple net-
works, the disadvantages are two-fold: 1) it may require
the a-prior knowledge of noisy rates to select the specified
proportion of small loss samples as clean samples; 2) the
small-loss trick is not tolerant to the error accumulation of
network training once a clean sample is falsely recognized,
the so-called confirmation bias, especially for labels with
high noise where clean and noisy samples largely overlap.

The latter alleviates the problem by setting a specific cri-
terion. Mostly, existing works [31] [58] adopt Euclidean
distances for measuring the similarity between data sam-
ples. Distance-based filtering iteratively explores the neigh-
borhood of the feature representation and infers/cleans sam-
ple labels by aggregating the information from their neigh-
borhoods. Despite the simplicity, distance-based filtering
is insufficient to address noisy labels, especially when the
label noise is high, e.g., overlapped label classes.
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In this paper, we revamp the sample selection from the
perspective of optimal transport [56] and propose a novel
filtering method, called the OT-Filter. In light of the op-
timal transport, we construct discrete probability measures
over the sample features, which lifts the Euclidean space of
feature vectors to a probability space. It thus enables a ge-
ometric way of measuring the discrepancy between proba-
bility measures, representing the corresponding sample fea-
tures. In addition to the distance-based metric in the Eu-
clidean space [31,58], the OT-Filter also captures the distri-
bution information in the probability space so as to alleviate
the confirmation bias. Accordingly, a clean representation
can be obtained for each class in the probability space. By
optimizing the transport plan from a sample to a clean rep-
resentation, one can better determine if a sample is clean or
noisy, thus improving the quality of sample selection.

In general, the merits of the OT-Filter can be summa-
rized as follows. First, it does not require any a-prior knowl-
edge about the noisy rate of a dataset. Second, it utilizes the
optimal transport which provides geometrically meaningful
distances to exploit the sample discrepancy yet preserving
the distribution patterns in corresponding probability space,
making the sample selection of high quality and theoretical
support. Third, it can be plugged to existing robust train-
ing paradigms, e.g., supervised and semi-supervised robust
training.

We conduct extensive experiments with a series of syn-
thetic and real datasets to gain insights into our propos-
als. The result shows that the OT-Filter follows state-of-
the-art (SOTA) [38] when the noise rate is low, and dom-
inates SOTA when the noise rate is high. For instance,
the OT-Filter achieves about 14% and 12% higher accu-
racy than SOTA, in the presence of 90% noise rate, on
synthetic datasets CIFAR-10 and CIFAR-100, respectively.
Moreover, the OT-Filter outperforms the competitors on
real datasets Clothing1M and ANIMAL-10N.

The rest of the paper is organized as follows. We re-
view the existing literature in Section 2. In Section 3, we
present preliminaries of optimal transport. We investigate
our proposed OT-Filter in Section 4. Furthermore, we con-
duct extensive empirical studies in Section 5 and conclude
the paper in Section 6.

2. Related Work

2.1. Learning with Noisy Label

A flurry of research methods [5, 13, 14, 27, 40, 54] was
proposed for learning with noisy labels, which can be
roughly divided into two categories, robust model [13, 22,
39, 43, 54, 61, 64] and clean sample selection [27, 32, 62].
The clean sample selection aims to select a clean subset
from a noisy dataset [14, 27, 38]. One way is to train mul-
tiple networks to filter noisy samples. For instance, [32]

proposed to pre-train an extra network to select clean sam-
ples for the main network. The inferiority of this method
is on error accumulation. To relieve that, Han et al. [27]
proposed Co-teaching that maintains two networks simulta-
neously, where one network selects clean samples for the
other network by small loss trick. However, as the in-
crease of training epochs, Co-teaching would converge to
consensus gradually. Then, Co-teaching+ [62] was pro-
posed to keep two networks diverged. To avoid confirma-
tion bias, DivMix [38] proposed a hybrid framework with
semi-supervised training, achieving the state-of-the-art per-
formance. Based on DivMix, [41, 65] modified the training
schema, such as self-supervised training [11, 33], to boost
the performance.

The other research line of sample selection is to filter
noisy samples based on specific criteria [31,34,42,59]. For
example, Xia et al. [59] proposed to reduce the uncertainty
of loss using specific strategies. Iscen et al. [31] proposed to
leverage similarities between training examples in the fea-
ture space, encouraging the prediction of each example to
be close to its nearest neighbors. Also, in Euclidean space,
Wu et al. [58] proposed the TopoFilter that filters noisy sam-
ples using k-nearest neighborhood distance between pre-
logits. Fine [34] proposed to use the principal components
of latent representations to select clean samples.

2.2. Optimal Transport

The optimal transport problem [55, 56] aims to move
mass from a probability measure to another probability
measure at a minimum cost. It defines the Wasserstein
distance [24] and provides a geometric way to measure
the discrepancy between probability measures. One fac-
tor that limits the wide application of optimal transport
is the high computational cost. To improve its scalabil-
ity, Cuturi [17] proposed an entropic regularization for the
transport plan, which yields an efficient algorithm with
the matrix scaling method of Sinkhorn-Knopp [35]. Re-
cently, computational optimal transport [44, 48] has found
many applications in various areas, e.g., generative mod-
els [4,25], domain adaptation [15,16], and semi-supervised
learning [52,53]. In particular, [1] studied the barycenter in
Wasserstein space. [18] explored the efficient computing of
Wasserstein barycenter. [19] proposed to use entropic opti-
mal transport loss, based on joint distribution optimal trans-
port [15], to build a robust training.

In this paper, we study the problem of clean sample se-
lection from the perspective of optimal transport to combat
label noise. The proposed method can potentially capture
geometric information from the probability space. Unlike
the mechanism of multiple network training, it only trains
a single network without a-prior information on noise rates.
Moreover, it can be easily plugged to multiple robust train-
ing paradigms.

16165



3. Preliminary
In this section, we present preliminaries on optimal

transport, making a basis for subsequent proposed tech-
niques. The optimal transport [56] is to seek an optimal
transport plan between two measures at a minimal cost
(e.g. the Wasserstein distance), which provides a geometric
way of matching probability measures. Here we first intro-
duce the general definition of Wasserstein distance induced
by optimal transport problem. More details about optimal
transport can be found in [44, 48, 55].

Wassertein Distance. Let S be a locally complete and
separable metric space, the P(S) be the Borel probability
measures set on S. For any X ,Y ⊂ S , given µ ∈ P(X )
and ν ∈ P(Y), the optimal transport defines a Wasserstein
distance between two probability measures, denoted as

Wp(µ, ν) :=

(
inf

π(µ,ν)

∫
X×Y

||x− y||pdπ(µ, ν)
) 1

p

p ≥ 1, where the π(µ, ν) is the set of joint probability mea-
sures with marginal µ and ν.

3.1. Discrete Optimal Transport

Let ∆n = {a ∈ Rn
+|

∑n
i=1 ai = 1,∀ai ≥ 0} be

a probability simplex in dimension n. Consider two em-
pirical probability measures µ =

∑n
i=1 aiδxi

and ν =∑m
j=1 bjδyj , defined on metric space X with support

{xi}ni=1 and Y with support {yj}mj=1 respectively. Here the
weight vector a = (a1, a2, ..., an) and b = (b1, b2, ..., bm)
live in ∆n and ∆m, respectively. The δ stands for the Dirac
unit mass function. Given a transport cost c : X×Y → R+,
the discrete optimal transport between probability measures
µ and ν can be formulated as

W p
p (µ, ν) := min

M∈Π(µ,ν)
⟨C,M⟩F

s.t. M1m = µ, MT1n = ν
(1)

where C ∈ Rn×m
+ is the transport cost matrix, and cij

represents a unit transport cost from xi to yj . The M ∈
Rn×m

+ is transport plan in which mij denotes the amount
of mass transported from xi to yj . All feasible transport
plans constitute transport polytope Π(µ, ν). The ⟨C,M⟩F
is the Frobenius inner product of matrices and equals to
tr(CTM).

3.2. Regularized Optimal Transport

The discrete optimal transport formulation, in essence, is
a convex optimization problem. More precisely, it’s a linear
programming problem. Unfortunately, this linear program-
ming problem has a cubic computing complexity. A way
to relieve this is to leverage entropic regularization [17] for-
mulated as

min
M∈Π(µ,ν)

⟨C,M⟩F − ϵH(M) (2)

where ϵ > 0 is the regularization coefficient, and H(M)
is the entropic regularization term, which promotes an effi-
cient computation for transportation via the matrix scaling
algorithm [17], given by

H(M) := −
∑
ij

Mij

(
log(Mij)− 1

)
3.3. Wasserstein Barycenter

Given N probability measures {ν1, ν2, ..., νN}, νi ∈
P(S), each of which has finite supports and second mo-
ments. A Wasserstein barycenter of these measures is a
probability measure µ, satisfying:

µ := inf

N∑
i=1

λiW
2
2 (νi, µ), s.t.

N∑
i=1

λi = 1, ∀λi ≥ 0

The notion was first proposed by [1], where some elegant
properties of Wasserstein barycenter were presented. Then
[2] discussed it on the discrete case and showed that the
problem of finding Wasserstein barycenter over the space
P(S) can be reduced to a simpler space Or(S), where
r =

∑N
i=1 ei − N + 1, and ei is the number of compo-

nents of νi, i ∈ [1, N ]. To find Wasserstein barycenter over
space Or(S), a set of efficient algorithms [7, 18, 26] were
proposed.

4. Methods
4.1. Overview

In this section, we study the OT-Filter, the proposed
method based on optimal transport for learning with noisy
labels in a semi-supervised paradigm. The key idea of our
proposed method is to transport samples with noisy labels to
samples with clean labels at a minimum cost, which makes
sample selection of high quality and theoretical support.

The mechanism of the OT-Filter, consists of two phases,
representation phase (Section 4.2) and transportation phase
(Section 4.3). Then, the OT-Filter can be plugged to off-
the-shelf SSLs for robust training, e.g., MixMatch [8], by
treating clean samples as labeled data and noisy samples as
unlabeled samples (Section 4.4).

4.2. Representation Phase: Finding Clean Repre-
sentations via Wasserstein Barycenters

In the representation phase, we first use a pre-trained net-
work, e.g., ResNet [29], to extract a set of feature represen-
tations of the labeled samples. Then, we define a discrete
probability measure over the feature representations of each
class to find the clean representations (or prototypes) via
Wasserstein barycenters. Since there are mislabeled sam-
ples, the barycenters we obtained may be noisy. Therefore,
we iteratively optimize the barycenters with the expectation
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maximization (EM) algorithm [20] to converge to clean rep-
resentations. The details about the representation phase are
covered in Algorithm 1.

Feature Extraction. The purpose of the feature ex-
traction is to transform the input noisy label dataset into a
feature-label dataset via a network. A noisy label dataset of
N samples can be represented by D̂ = {(xi, ŷi)}Ni=1, where
xi ∈ Rd denotes the i-th sample and ŷi ∈ {0, 1}K de-
notes the corresponding noisy label over K classes. Then,
a feature extraction network f(ω,xi) : Rd → Rm with pa-
rameters ω maps a sample xi to a m-dimensional feature
representation, denoted as x̃i ∈ Rm. Therefore, all output
feature representations and their corresponding labels con-
stitute a feature-label set, denoted as D̃ = {(x̃i, ŷi)}Ni=1.

Probability Measure Modeling. The purpose of prob-
ability measure modeling is to define a probability measure
over the feature-label set. This definition will potentially lift
a Euclidean space D, in which the feature representations
originally live, to a probability space, abbreviated as P(D).
Assume that the labels are of K classes. First, we split the
feature-label set D̃ into K subsets, i.e, {s1, s2, ..., sK} ac-
cording to the label class. For one feature representation
x̃i in class k ∈ [1,K], we represent it as x̃k

i , i ∈ [1, |sk|].
Then, all feature representations in subset sk construct a
probability measure, denoted as

Q =
1

|sk|

|sk|∑
i=1

δx̃k
i

where the δx̃k
i

is a Dirac unit mass on x̃k
i , and for simplicity,

we use uniform weights.
Clean Representation Retrieval. The problem of find-

ing the representation of any subset sk is equivalent to find-
ing the corresponding Wasserstein barycenter Bk with finite
supports, formalized as follows:

Bk := inf
B∈Or(D̃)

W 2
2 (B,Q) (3)

where the W is the Wasserstein distance, and r = |sk|.
As mentioned in Section 3, from the perspective of linear
programming, the above optimization admits the dual:

D(α, β) = max
(α,β)∈R(C)

αTB + βTQ

where the polyhedron of dual variables is:

R(C) = {(α, β) ∈ Rr × Rr|αi + βj ≤ Cij ∧ i, j ∈ [r]}

By means of duality theory [6,9,10], we can find the relation
of solution between the primal and dual problem. Here, the
optimal solution of D(α, β) is a subgradient of W 2

2 (Q,B)
with respect to B. Thus, we employ a simple projected sub-
gradient [18] to optimize Equation 3. over B.

Despite we have found a set of Wasserstein barycen-
ters {Bi}Ki=1, the barycenters may be noisy since there are
mislabeled data. Moreover, the clean barycenters are un-
known. Therefore, for each class, we consider the ideal and
clean barycenter Bc as a hidden variable, the obtained noisy
barycenter B as an observed variable. Then, the problem
of finding clean barycenter Bc is to maximize the following
log-likelihood:

θ̂ ← argmax
θ

log
∑
Bc

p(Bc,B|θ)

where the θ is the parameters of probabilistic model. By
this way, we can optimize the noisy barycenters iteratively
with the EM algorithm to converge to clean barycenters. In
E-step, we construct optimal transport between all samples
and clean barycenters, thereby we can infer the labels of all
samples. In M-step, we refine the barycenters with inferred
label obtained from E-step. The overall computing details
see Algorithm 1.

Algorithm 1 Find Clean Representation via Wasserstein
Barycenter

Require: Q = {x̃i}|sk|i=1 ∈ Rm×r, regularization coeffi-
cient ϵ, B ∈ Rm×e

1: Initialize: B, ν ← B, µ← Q, η = 1/2, t = 2
2: while B not converged do
3: set ν = 1e/e, µ = 1r/r, ν̂ = ν̃ = 1/e
4: while ν not converged do
5: β ← (t+ 1)/2, ν ← (1− β−1)ν̂ + β−1ν̃
6: α← optimizer of d(ν, µ, C)
7: ν̃ ← ν̃ ◦ exp(−βα), ν̃ ← ν̃/ν̃T1
8: ν̂ ← (1− β−1)ν̂ + β−1ν̃
9: t← t+ 1

10: end while
11: ν ← ν̂
12: M← optimizer of p(ν, µ, C)
13: B ← (1− η)B + η(QM)diag(ν−1)
14: end while
15: while Bc not converged do
16: E-Step:
17: LD̂ ← OT(µ, ν, C)
18: M-Step:
19: Bc ← refine B with LD̂
20: end while
21: Return Bc

4.3. Transportation Phase: Transporting Noisy La-
bels via Regularized Optimal Transport

In the transportation phase, noisy feature representations
are transported to clean representations. In particular, we
align all feature representations, including those of noisy
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samples, to the clean representations (obtained in the repre-
sentation phase) via sparsity regularized optimal transport.
This operation potentially detects the corrupted labels based
on the result of the optimal transport. Here, the mechanism
of our sample selection via optimal transport is described as
follows. First, we align the clean barycenters to the all rest
samples via optimal transport. Based on the result of op-
timal transport, we can infer the labels of the all rest sam-
ples. We consider the route with the max mass transport
that forms a coupling and then assign the label of a clean
barycenter to the samples on this route. Second, we select
the sample whose inferred label is identical to the original
label as a clean sample.

Sparsity Regularization. After the representation
phase, clean representations are obtained, which are essen-
tially the barycenters of label classes. The clean representa-
tion of a class provides the guidance of identifying whether
samples are clean or noisy w.r.t. the given class.

We consider the barycenters of all the K classes as a dis-
crete probability measure, denoted as µ = 1

K

∑K
k=1 δuk

,
where δµk

is a Dirac unit mass on µk. Accordingly, the fea-
ture representations of the entire dataset construct a discrete
probability measure ν = 1

N

∑N
i=1 δx̃i

. Then, we trans-
port feature representations ν of all samples to the clean
barycenters µ, in order to detect if a sample is clean or mis-
labeled. Inspired by [16,46], we view the clean barycenters
as the source domain and the feature representations of sam-
ples as the target domain. Then, we recast the alignments
as an optimal transport problem with a sparsity regulariza-
tion [16], written as

min
M∈Π(µ,ν)

⟨C,M⟩F − ϵH(M) + γ
∑
j,c

||M(ic, j)||
1
2
1 (4)

The second term is an entropic regularization, as described
in Equation 2. The third term is a sparsity regularization
with coefficient γ, where ic index the line if its element in
class c, and M(ic, j) is a vector consisting of the j-th col-
umn of M in class c. The || · ||1/21 denotes an L1 norm with
the power of 1

2 . The entropic regularization enables discrete
optimal transport to be efficient. However, it disperses the
transport route, which negatively affects sample selection.
Therefore, to improve the quality of sample selection, we
employ a sparsity regularization. The sparsity regulariza-
tion promotes a feature representation that would be aligned
to one of the clean barycenters and penalizes transportation
matrix M that aligns together feature representations with
different labels.

Optimization. Despite the consistent sparsity achieved
by the regularization, the objective function of Equation 4 is
non-convex. Moreover, the L1 norm with the power in label
regularization term is a concave function. A common opti-
mization strategy [37] is to construct a convex upper bound,
represented by convex functions, over the non-convex prob-

lem. By doing so, we can use the optimal solution of con-
vex upper bound to approximate the optimal solution of the
original non-convex problem. If applying the simplest lin-
ear approximation, we have∑

j,c

||M(ic, j)||
1
2
1 ≤ ⟨G,M⟩F + L

where matrix G is 1
2 (||M̂(ic, j) + δ||− 1

2 ), and M̂ is a given
start point. The steps of optimization process are depicted
as Algorithm 2.

Algorithm 2 Transportation: Transport Noisy Label via
Regularized Optimal Transport

Require: optimal cost Cmin from Equation 1,
1: Initialize: G = 0
2: while G not converged do
3: Cmin ← Cmin +G
4: M ← optimizer of Equation 2 with Cmin

5: G← update G using M
6: end while

4.4. Robust Training in SSL

After all feature representations are transported to the
clean barycenters. We filter noisy samples and obtain two
data subsets, namely the clean sample set and noisy sam-
ple set. As aforementioned, our sample selection method
is flexible enough for supporting various robust training
paradigms, e.g., the robust supervised training [64] and the
robust semi-supervised learning [50]. Following [38], we
select MixMatch [8] with data augmentation strategy [41]
as the practice of robust semi-supervised training but with
fewer operations. We admit the labels of clean samples and
neglect the labels of noisy samples, and then we use labeled
data and unlabeled data for training in a semi-supervised
learning fashion. The overall training process is described
as Algorithm 3.

5. Experiments
5.1. Datasets

We perform extensive experiments on four benchmark
datasets: CIFAR-10 [36] and CIFAR-100 [36] with syn-
thetic label noise, and Clothing1M [60] and ANIMAL-10N
[51] with real label noise.

CIFAR10/100. We evaluate the OT-Filter on CIFAR-
10 and CIFAR-100 [36] with synthetic noise. Both datasets
contain 60, 000 32×32 color images, in 10 and 100 classes,
respectively. From both datasets, 50K images are used for
training, and 10K images are used for testing. Since noise
characteristics can hardly be determined in advance, syn-
thetic noise is commonly taken for controlling the noise rate
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Algorithm 3 Robust Training in SSL

Require: network parameter ω, Beta distribution parame-
ter α, weight of unlabeled loss λU , batch size B, num-
ber of augmentations K, sharpening temperature T , la-
beled data X , unlabeled data U

1: while b in B do
2: x̂b ← augment(xb)
3: for k in K do
4: ûb,k ←augment(ub)
5: end for
6: q̂b ← 1

K

∑
k pmodel(ûb,k;ω)

7: qb ← sharpen(q̂b, T )
8: end while
9: X̂ = {(x̂b, pb)}Bb=1, Û = {(ûb,k, qb)}B,K

b,k=1

10: W = shuffle (concat(X̂ , Û))
11: X̂ ′

= Mixup(X̂i,Wi), i ∈ [1, |X̂ |]
12: Û ′

= Mixup(Ûi,Wi+Û ), i ∈ [1, |Û |]
13: LX ←CE(X ′

), LU ←MAE(U ′
)

14: L ← LX + λULU

to deliberately evaluate learning algorithms with noisy la-
bels. Thus, following previous works [27, 38], we consider
two types of label noise, i.e., symmetric and asymmetric
label noise. The symmetric label noise is generated by ran-
domly flipping labels of a portion of samples from one class
to all other possible classes. The asymmetric label noise is
designed to follow the structure of real-world label noise,
where labels are flipped to similar classes within the super-
classes.

Clothing1M. Clothing1M is a large-scale dataset with
noisy labels [60], containing over 1M images obtained from
online shopping websites. The labels are from 14 classes
generated based on surrounding texts provided by the sell-
ers, and the noise rate is estimated around 38.5% [39]. Also,
the dataset provides 3 clean datasets for training, validation,
and testing, containing 50K, 14K, and 10K images, respec-
tively.

ANIMAL-10N. ANIMAL-10N is a real-world noisy
dataset released by [51], which is crawled from several
online search engines using predefined labels as searching
keywords. There are in total 55K images, of which 50K
images are for training, and 5K images are for testing. The
noise rate was estimated to be around 8%.

5.2. Implementation Details

For CIFAR-10 and CIFAR-100, we use the PreAct
ResNet18 [29] as the backbone and train it using the SGD
optimizer with the following settings: a momentum of 0.9,
a weight decay of 5e-4, and a batch size of 128. The learn-
ing rate was initialized as 0.02 and reduced by a factor of
10, after 150 epochs. The network was trained for 300

epochs. The warmup period is 10 epochs for CIFAR-10,
and 30 epochs for CIFAR-100.

For Clothing1M, we use the ResNet50 [28] pre-trained
on ImageNet [21] as the backbone and train it using the
SGD optimizer with the following settings: a momentum
of 0.9, a weight decay of 1e-3, and a batch size of 32. The
learning rate was initialized as 0.002 and reduced by a factor
of 10 after 50 epochs. The network was trained for 120
epochs. For each epoch, we sample 1000 mini-batches from
the training data.

For ANIMAL-10N, we use VGG19 [49] with batch nor-
malization [30] as the backbone and train it using the SGD
optimizer. We train the network for 100 epochs. The initial
learning rate is set as 0.01 and reduced by a factor of 5 after
50 and 75 epochs.

In addition, we set the entropic regularization coefficient
ϵ and sparsity regularization coefficient γ as 10 and 1, re-
spectively, which are consistent for all training implemen-
tations.

5.3. Experimental Results

In this section, we present experimental results of the
OT-Filter on benchmark datasets with both synthetic and
real label noises. For CIFAR-10 and CIFAR-100, we con-
sider the noise rate of 20%, 50%, 80%, and 90% for sym-
metric noise, and noise rate of 40% for asymmetric noise,
respectively. The results regarding precision and recall were
drawn from the 100-th epoch of robust training.

Sample Selection Performance. We first present the
empirical study on the quality of sample selection. The
dataset CIFAR-10 under noise rate of 90% (symmetric) and
noise rate (asymmetric) of 40% was employed to compare
our method with state-of-the-art sample selection method
DivMix [38]. Here, we consider two metrics, precision and
recall. As shown in Figure 1, with the increase of training
epochs, our method outperforms the DivMix [38] in terms
of both precision and recall.

For example, on 90% symmetric noise, when the training
epoch is above 100, the precision of the OT-Filter is steadily
above 90%, while the precision of DivMix is less than 73%.
In terms of the recall, the OT-Filter is above 90%, while the
DivMix is below 82%, when the training epochs are higher
than 100. It also shows that our method converges steadily
to the optimal solution, which DivMix yields fluctuations in
the convergence process. Similar trends can be observed on
40% asymmetric noise.

CIFAR10 and CIFAR100 Datasets. Table 1 shows the
test accuracy on CIFAR-10 for symmetric and asymmetric
noise, respectively. In all testings, the OT-Filter demon-
strates good performance in test accuracy. In particular, in
the presence of high noise, the OT-Filter significantly out-
performs other competitors. For 90% noise rate, the test
accuracy of our OT-Filter is 90.5%, which is about 14%
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Figure 1. Sample selection performance (Precision & Recall) w.r.t. Training Epochs on CIFAR-10 under synthetic label noise.

CIFAR-10 Asym
Method 20% 50% 80% 90% 40%

CE 86.8 79.4 62.9 42.7 77.3
Co-teaching+ [62] 89.5 85.7 67.4 47.9 71.3
Co-learning [54] 92.2 84.5 61.2 - 81.4
TopoFilter [58] 90.2 - 45.7 - 87.9
CRUST [40] 91.1 86.3 58.3 - 88.8
Fine [34] 91.0 87.3 69.4 - 89.5
M-correction [3] 93.6 91.8 75.8 74.7 93.3
CTRR [61] 93.1 - 83.7 81.7 89.0
DivMix [38] 96.1 94.6 93.2 76.0 93.4
Fine+DivMix [34] 96.1 94.9 93.5 90.5 93.8

OT-Filter 96.0 95.3 94.0 90.5 95.1

Table 1. Test accuracies(%) obtained from state-of-the-art sam-
ple selection methods. The best results are in bold. The data are
copied from respective papers. The - denotes the lack of respective
data.

CIFAR-100 Asym
Method 20% 50% 80% 90% 40%

CE 62.0 46.7 19.9 10.1 44.5
Co-teaching+ [62] 65.6 51.8 27.9 13.7 -
Co-learning [54] 66.6 54.5 35.5 - 47.6
CRUST [40] 65.2 56.4 - - 53.0
M-correction [3] 73.9 66.1 41.6 24.3 47.4
CTRR [61] 70.1 - 43.7 - 54.5
TopoFilter [58] 65.6 - 20.7 - -
Fine [34] 70.3 64.2 25.6 - 61.7
DivMix [38] 77.3 74.6 60.2 31.5 55.1
Fine+DivMix [34] 79.1 74.6 61.0 34.3 -

OT-Filter 76.7 73.8 61.8 42.8 76.5

Table 2. Test accuracies(%) obtained from state-of-the-art sam-
ple selection methods. The best results are in bold. The data are
copied from respective papers. The - denotes the lack of respective
data.

better than DivMix. Although [38] performs slightly bet-
ter than the OT-Filter at the 20% noise rate, our method is
also competitive. Similar trends can be observed on CIFAR-
100 (Table 2), where our method mostly follows the SOTA
method and significantly outperforms its competitors when

the noise rate is high.

Method Backbone Test Accuracy

CE ResNet-50 69.2
M-correction [1] ResNet-50 71.0
Co-teaching [27] ResNet-50 71.7
CTRR [61] ResNet-50 72.7
Fine [34] ResNet-50 72.9
CRUST [40] ResNet-50 73.5
TopoFilter [58] ResNet-50 74.1
DivMix∗ [38] ResNet-50 74.3
Fine+DivMix [34] ResNet-50 74.4

OT-Filter ResNet-50 74.5

Table 3. Test accuracy(%) on Clothing1M. The * denotes we have
run the algorithm based on the official implementation. The data
are copied from respective papers. The best result is in bold.

Clothing1M Dataset. Table 3 shows the result of test
accuracy on Clothing1M by comparing different competi-
tors. The result validates the effectiveness of the OT-Filter
on the large-scale real-world dataset. Moreover, It can be
observed that the OT-Filter follows the state-of-the-art per-
formance regarding test accuracy.

Method Test Accuracy

CE 79.4
Nested [47] 81.3
SELFIE [51] 81.8
PLC [63] 83.4
Co-teaching+Nested [12] 84.1
GJS [22] 84.2

OT-Filter 85.5

Table 4. Test accuracy(%) on ANIMAL-10N. The data are copied
from respective papers. The best result is in bold.

ANIMAL-10N Dataset. Table 4 shows the experimen-
tal results on ANIMAL-10N, a real-world dataset with mod-
erate label noise. We compared our method with multiple
state-of-the-art baseline methods that are not limited to sam-
ple selection. For fair comparison, we use the same VGG-
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Dataset CIFAR-100

Noise Rate 80% 90% 80% 90%

Method Best Last Best Last Precision Recall Precision Recall

OT-Filter w/o Spar-Reg 51.0 50.7 23.8 23.7 90.4 47.1 62.1 19.7

OT-Filter 61.8 61.5 42.8 42.1 93.7 61.8 72.3 40.0

Table 5. Ablation study for sparsity regularization on CIFAR-100
dataset. The left part is the performance comparison and the right
part is the quality of sample selection.

Figure 2. The ablation study for the quality of sample selec-
tion w/o sparsity regularization on CIFAR-100 under noise rate
of 90%. The result shows that sparsity regularization brings a rel-
atively uniform sample selection.

19 network architecture. The results show we outperform
all competitors, and have 2.1% performance improvement
over PLC [63], and 3.7% performance improvement over
SELFIE [51].

5.4. Analysis

We conduct a series of ablation studies to understand the
effectiveness of the key components of the OT-Filter, in-
cluding the sparsity regularization of the optimal transport,
the EM algorithm, and the entropic regularization coeffi-
cient.

Effect of Sparsity Regularization. The sparsity regu-
larization discussed in Section 4.3 is one of the key com-
ponents in our OT-Filter, which is designed to improve the
accuracy of the optimal transport by controlling the spar-
sity of transport. We therefore study the effect of the spar-
sity regularization over sample selection and performance
under high noise on CIFAR-100 in Table 5. It can be ob-
served, with the sparsity regularization, both the quality of
sample selection and test accuracy are much better than the
counterpart without it. In particular, when the noise rate
is 90%, it shows that the technique of sparsity regulariza-
tion brings in over 10% improvement in precision, about
21% improvement in recall, and 19% improvement in per-
formance. Moreover, as shown in Figure 2, with the spar-
sity regularization, the number of samples selected for each
class is more uniform. It is mainly attributed to discrete
optimal transport allowing mass split.

Dataset CIFAR-10

Noise Rate 20% 50% 80% 90%

Method Best Last Best Last Best Last Best Last

OT-Filter w/o EM 95.9 95.7 95.0 94.8 93.6 93.4 90.0 89.8

OT-Filter 96.0 95.8 95.3 95.1 93.7 93.5 90.5 90.2

Table 6. Ablation study for EM algorithm on CIFAR-10 dataset.

Dataset CIFAR-10

Noise Rate 20% 50% 80% 90%

Method Precision Recall Precision Recall Precision Recall Precision Recall

ϵ = 1 99.7 93.9 99.0 93.9 94.6 90.6 88.6 84.2
ϵ = 5 99.7 93.8 99.0 93.8 94.6 90.6 88.6 84.2
ϵ = 10 99.7 93.8 99.0 93.8 94.5 90.6 88.6 84.2

Table 7. Ablation study for entropic regularization coefficient on
CIFAR-10 dataset.

Effect of Expectation Maximization. To filter noisy
labels, we align all samples to clean barycenters via opti-
mal transport. Therefore, the quality of clean barycenters
affects the quality of sample selection and therefore the per-
formance of the robust training. Table 6 indicates the impact
of EM on CIFAR-10 dataset. It shows that the EM helps in
improving the performance under different noise rates, and
the significance is higher for high noise rates.

Effect of Entropic Regularization Coefficient ϵ. The
motivation for equipping the optimal transport with entropic
regularization is to speed up its computation. However, the
entropic regularization could potentially degrade the trans-
port sparsity and therefore the quality of sample selection.
To alleviate that, we propose sparsity regularization, whose
effectiveness is examined in Table 5. Then, a by-product
of sparsity regularization is the parameter robustness of the
regularization coefficient ϵ. As shown in Table 7, the perfor-
mance of sample selection stays quite stable when varying
ϵ from 1 to 10.

6. Conclusion
In this work, we study the problem of sample selection

for learning with noisy labels. We propose the OT-Filter, a
novel technique for retrieving clean samples, which can also
be combined with existing semi-supervised learning tech-
niques for handling noisy labels. Unlike previous works re-
lying on a-prior knowledge or conforming to confirmation
bias, the OT-Filter enhances the measurement of data dis-
crepancy, by lifting data from Euclidean space to the prob-
ability space, and thus improves the quality of sample se-
lection. Extensive experiments on synthetic and real-world
noisy datasets are conducted to evaluate our proposals. The
results show its effectiveness and superiority.
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