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Abstract

Pre-training of deep convolutional neural networks (DC-
NNs) plays a crucial role in the field of visual sentiment anal-
ysis (VSA). Most proposed methods employ the off-the-shelf
backbones pre-trained on large-scale object classification
datasets (i.e., ImageNet). While it boosts performance for
a big margin against initializing model states from random,
we argue that DCNNs simply pre-trained on ImageNet may
excessively focus on recognizing objects, but failed to pro-
vide high-level concepts in terms of sentiment. To address
this long-term overlooked problem, we propose a sentiment-
oriented pre-training method that is built upon human visual
sentiment perception (VSP) mechanism. Specifically, we fac-
torize the process of VSP into three steps, namely stimuli
taking, holistic organizing, and high-level perceiving. From
imitating each VSP step, a total of three models are sepa-
rately pre-trained via our devised sentiment-aware tasks that
contribute to excavating sentiment-discriminated represen-
tations. Moreover, along with our elaborated multi-model
amalgamation strategy, the prior knowledge learned from
each perception step can be effectively transferred into a sin-
gle target model, yielding substantial performance gains. Fi-
nally, we verify the superiorities of our proposed method over
extensive experiments, covering mainstream VSA tasks from
single-label learning (SLL), multi-label learning (MLL), to
label distribution learning (LDL). Experiment results demon-
strate that our proposed method leads to unanimous improve-
ments in these downstream tasks. Our code is released on
https://github.com/tinglyfeng/sentiment_pretraining.

1. Introduction
Visual sentiment analysis aims to understand the senti-

ment embedded in an image, which gradually becomes a
critical computer vision task that enables numerous applica-
tions from opinion mining [45], entertainment assistance [5],
to business intelligence [18]. Given an image, the main goal
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of VSA is to recognize the emotion induced by viewers, pro-
viding either the categorical emotion states (CES) [9, 30] or
dimensional emotion space (DES) [23, 41] representations.
Traditional methods proposed for VSA normally involve
extracting sentiment-related hand-crafted features like line
directions [48], textures and colors [30], etc. These features
are then sent to a classifier e.g., a support vector machine
(SVM) to predict the emotional states. However, due to af-
fective gap [15], the low-level features can hardly meet the
high-level attributes requirement of VSA, thus resulting in
relatively unsatisfying performance.

Entering the deep learning era, DCNNs are now the dom-
inant tools applied to various computer vision tasks, such as
image classification, object detection, etc. Blessed with im-
pressive high-level feature extraction capabilities, DCNNs
have demonstrated superior advantages for modern VSA
proven by a lot of milestone works [3, 50, 56]. Beneath the
success, many may ignore one important factor that largely
determines the performance of VSA, saying the pre-trained
model. Due to the data-hungry nature of DCNNs, initializ-
ing model parameters from models trained on large-scale
datasets has been a go-to technique for most tasks to improve
their generalization abilities. When it comes to VSA, the
lack of data has been exacerbated by the arduous annota-
tion process (every image needs to be annotated by multiple
people due to the subjectivity of emotion), resulting in its
especially heavy reliance on pre-training. In our experiments
on FI dataset [57], the ResNet50 [16] pre-trained on Ima-
geNet [8] outperforms the one trained from scratch by 20
percent in terms of accuracy, revealing the undeniable crucial
role the pre-trained model plays in VSA.

Today’s deep models proposed for VSA are mostly ini-
tialized from models pre-trained on ImageNet to achieve sat-
isfactory performance [59]. However, different from many
other computer vision tasks that mainly depend on objec-
tive semantics, VSA requires a relatively higher level of
understanding of an image. Therefore, pre-training only on
ImageNet which is specially designed for object classifica-
tion may not be the best practice for VSA.

In this paper, we argue that the models pre-trained on Ima-
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Figure 1. Overview of our pre-training method. We split a CNN backbone into three stages, each of which is responsible for extracting
features corresponding to a certain VSP step. To fully excavate sentiment-related knowledge in terms of each step, a total of three models are
separately trained to perform our elaborated tasks shown at the bottom.

geNet fail to achieve sentiment-related initial states to relieve
the burden of learning sentiment representations from lim-
ited data. Also, due to the psychological and physiological
nature of VSA, we believe that only if we fully understand
how human sentiment is internally constructed can we thor-
oughly unveil the potential of VSA pre-training. Therefore,
our proposed pre-training method is built upon human vi-
sual sentiment perception mechanism. Summarized from
numerous existing research in the field of psychology and
neuroscience [24, 26], we factorize the process of VSP into
three steps in chronological order: 1) Stimuli Taking (ST):
the procedure starts with the retina receiving light signals
composed of colors and textures [29]. 2) Holistic Organizing
(HO): the second step taking place in the primary visual cor-
tex (V1) of our brain is to construct a whole map determining
the overall context and global organization of scene [10, 43].
3) High-level Perceiving (HP): the other parts of our brain
help us separate the main objects from ambient light and
build our high-level awareness [13, 19, 39].

Inspired by these theories, we build our pre-training
framework by instructing the DCNNs to mimic the behavior
of humans. In this work, we separately perform three groups
of pre-training tasks, each of which is corresponding to one
VSP step and is intentionally excavated the key sentiment
features. To fully leverage the sentiment knowledge learned
from pre-trained models, we then elaborate an amalgamation
strategy to effectively distillate their abilities into a single
target model. The amalgamation process is performed by
squeezing the gap between the target model and sentiment-
aware pre-trained models on both the logits and features at
various levels. Moreover, the pre-trained models still par-
ticipate in the whole downstream training, which further
unleashes the potential learning abilities of DCNNs to ac-
commodate the specialties of training data. We apply our
method to multiple downstream VSA tasks including single-
label learning, multi-label learning, and label distribution

learning. Extensive experiments have demonstrated favor-
able improvements from our proposed pre-training method.

Our contributions are three-fold. 1) We propose a
sentiment-oriented pre-training method to separately train a
total of three models, each of which is dedicated to mimick-
ing the human sentiment perception mechanism through per-
forming pre-training tasks. 2) We devise an amalgamation
strategy to aggregate the sentiment-discriminated knowledge
from pre-trained models into a single target model during
training downstream tasks, yielding favorable performance
gains. 3) We conduct extensive experiments on various back-
bones and diverse VSA datasets. The experiment results
demonstrate that our proposed method can unanimously im-
prove the performance of a wide variety of VSA tasks.

2. Related Work

2.1. Visual Sentiment Analysis

VSA which aims to analyze the emotion induced by hu-
mans looking at an image attracts numerous researchers.
Early pioneers study VSA by combining handcrafted fea-
tures. In this milestone [28], 70 types of features revolving
around colors and 23 types of features related to texture
have shown profound impacts on visual sentiment. In addi-
tion, mid-level image attributes like scene and geometry have
demonstrated their significance in image process [35], includ-
ing the field of VSA proved by plenty of works [27, 38, 47].
Entering the deep learning era, today’s methods based on
deep neural networks have the capability to provide a signifi-
cant high-level understanding of images, yielding numerous
works [3, 52–54] that consistently set new state-of-the-art
VSA performance records [20, 46]. In this work, we suggest
that with the development of machine learning techniques,
the evolution of VSA methods is similar to how visual signal
is progressively perceived step by step from the retina to the
cortex, thus we devise our pre-training method by mimicking
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the VSP mechanism to imitate human behavior.

2.2. Self-Supervised Learning

Having the advantages of training from artificially gener-
ated supervision signals, self-supervised learning has been
attracting enormous attentions [11, 12, 14, 22, 31, 58]. Zhang
et al. [58] first convert a photograph into a gray-scale image
and then used it as input to network in order to predict a plau-
sible colorful version image. Similar to this, Ledig et al. [22]
propose to reconstruct a fine-grained up-sampled image from
a low-resolution one, yielding a pre-trained model that is
comparable to the supervised method on some downstream
tasks. Considering that images contain rich context and
layout information, e.g., relative positions among different
objects, [31] proposes to perform self-supervised learning
from solving Jigsaw puzzles. They first crop an image into
multi-patches and send them to networks to predict their
permutation types among all preset possibilities. In this
work, we employ the aforementioned self-supervised learn-
ing methods as part of our pre-training tasks.

2.3. Knowledge Distillation and Amalgamation

Knowledge distillation (KD) [17] is a widely researched
technique mainly used to improve the performance of a
lightweight model by learning from a fancier and larger
teacher model. On the other hand, Knowledge amalgama-
tion (KA) [55] aims to aggregate the prior multi-domain
or multi-modality knowledge from several models to a sin-
gle target model. While KA is similar to KD, it holds its
own unique specialties and applications. First, the apparent
distinction is that KD normally involves only two models
(i.e., student model and teacher model) [33] while amalga-
mation call for the participation of multiple models. Second,
KD is mostly applied to two models performing the same
task [51, 61], but KA commonly works in scenarios inter-
twined with multi-task learning [42]. Given such differences
in a macro perspective, the implementation details beneath
the two paradigms are similar. The learning procedure from
one model to another model is mainly performed by squeez-
ing the distance between either their intermediate feature
representations or the logits from the last layer. In our work,
we implement our amalgamation strategy through features-
level and logits-level regularization.

3. Method
3.1. Overview

As demonstrated by Fig. 1, our pre-trained method is
built upon a multi-task framework. The components of each
model can be divided into two categories: backbone blocks
(encoder) and heads (decoder). The former basically consists
of multiple consecutive CNN blocks for feature extraction.
Fed with the captured features, each head in our proposed

method is corresponding to executing a specific task. The
labels used to supervise these tasks are either from the origi-
nal dataset or artificially generated, which means we employ
two common learning paradigms, namely fully-supervised
learning (FSL) and self-supervised learning (SSL). In the
pre-training phase, three models have been separately trained
on the tasks that are intended to imitate different human VSP
steps. Fig. 2 demonstrates how we amalgamate the prior
knowledge learned from pre-training into a target model
during performing downstream tasks. We will detail our
pre-training and amalgamation method below.

3.2. Pre-Training for Stimuli Taking

The visual stimuli occur in the first step of VSP when the
light signal passes through the retina of the eyes, where the
signal can be decomposed into two basic image attributes of
colors and textures. The two attributes have also been proved
to have direct impacts on deciding perceived sentiment [60].
A rule of thumb is that images accompanying bright color
and harmonious texture usually bring contentment while
those with murky backgrounds and irregular lines tend to
make most of us melancholy. As shown in Fig. 3, the
pleasant weather depicted by the bright color and soft sand
naturally brings the observer a positive atmosphere. While
assuming that on rainy days the dark sky and muddy road
inevitably make us depressed. In this work, we propose to
learn these two kinds of features via self-supervised learning.

• Colorization Given a gray-scale image as input, the
goal of image colorization is to predict the plausible color
version of that image. We follow this milestone work [58]
to construct the colorization task. For a RGB image I ∈
RH×W×3, we first convert it to LAB color space, where
L correlates with lightness, A and B reflect colors. We
then take the L space matrix Xcr ∈ RH×W×1 as input to
the backbone network, and the AB spaces matrix Y cr ∈
RH×W×2 as the target of our prediction. In our practice,
directly regressing two dense pixel maps (i.e., Y cr) yields
favorable results in terms of pre-training. Thus we formulate
the loss of colorization as Lcr:

Lcr =
1

HWC

∑
i,j,k

(Y cr
i,j,k − Ŷ cr

i,j,k)
2, (1)

where Ŷ cr is the predictions from colorization head.

• Super Resolution Image super resolution (ISR) aims
to recover the finer texture details from up-scaling an image
at low resolution [22]. We integrate this task into our
pre-training with a similar architecture to Tong et al. [44].
It can be regarded as a fully convolutional network (FCN)
where the backbone is used to encode image futures and
the ISR head is the decoder to restore finer details. We
employ deconvolutional layers to simultaneously upscale
and map the low-resolution features to a high-resolution
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Figure 2. The pipeline of our proposed amalgamation strategy. There are four backbones participating in training at the same time, i.e.,
the three pre-trained models and a target model. The knowledge transfer is implemented by regularization on intermediate feature maps and
output logits. The feature constraint is applied between the three pre-trained models and the target model while the logits constraint is only
adopted between the HP pre-trained model and the target model.

restored image. To train the backbone network and ISR
head, we adopt MSE loss computed between the original
image Xsr ∈ RH×W×C and the predicted image Ŷ sr ∈
RH×W×C , denoted as:

Lsr =
1

HWC

∑
i,j,k

(Xsr
i,j,k − Ŷ sr

i,j,k)
2. (2)

3.3. Pre-Training for Holistic Organizing

The second step of VSP taking place in the primary vi-
sual cortex is responsible for building an overview of the
whole reception field and constructing a holistic map [10,43].
Grounded into certain image attributes, we suggest that the
geometry and scenery reflecting the global organization and
holistic context of an image are the best choices to be the
pre-training pretext. As shown in Fig. 3, the vast sea and
rule of thirds have a huge impact on determining our feel-
ings when we have a glance at this picture. To improve the
abilities of DCNNs to extract these two kinds of features, we
employ both the FSL and SSL paradigms.

• Scene Recognition Since our pre-training method is
based on Places365 dataset [62], a large-scale scene recog-
nition dataset spanning more than three hundred categories,
it is intuitive that we can directly supervise our model with
the given labels. Here we can simply treat the scene recog-
nition task as a classification problem. Given an input im-
age Xsc ∈ RH×W×3 and its ground truth Y sc ∈ {0, 1}C ,
where C is the total number of scene categories, the loss for
scene recognition is denoted as:

Lsc = −
C∑
i=1

Y sc
i log(Ŷ sc

i ), (3)

where Ŷ sc is the possibility for each class output from the
softmax layer. All the following three tasks can be formu-
lated as classification problems.

• Jigsaw Puzzles Solving Jigsaw Puzzles is proven to
be an effective self-supervised task in computer vision [31].
Given an image, we first uniformly crop it to multiple small
patches (e.g.,3×3) and then randomly shuffle and reconstruct
them to a new disordered image. The goal of the network
is to infer the correct position of each patch by learning the
relative structure and geometry relationships within intra-
or inter-objects. We can formulate the Jigsaw puzzles as a
classification task where we can directly predict the correct
permutation among limited possibilities. However, given
3 × 3 patches from an image, there exists 362880 = 9!
combinations, which are too large to be accurately recog-
nized by deep models. Following [31], we only pick limited
permutations that have relatively large hamming distances.

3.4. Pre-Training for High-level Perceiving

Human sentiment is intrinsically a high-level concept. In
the third step of VSP, there are specialized partitions of the
human brain that deal with higher-level information, e.g.,
emotions in verbal logic [19], and the salience area [39].
As demonstrated in Fig. 3, the decisive factor of why we
humans feel pleasure when looking at this image is that we
can easily tell who is the protagonist (the little girl), how
is she (happily smiling) and infer from the whole context
that what she is doing (playing with sand). In this paper, we
propose to incorporate two essential high-level perceiving
modalities in the field of VSP, saying adjective-noun pairs
(ANP) and image caption(IC).
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Figure 3. Demonstration of how an image is perceived based on
image attributes from each VSP step. In this example, color and
texture from ST, scene and geometry from HO, ANP and caption
from HP contribute together to bringing observer contentment.

• ANP Prediction ANP stands for adjective-noun pairs.
In this paper, we employ the commonly used VSO [2] dataset.
The dataset comprises 1200 ANPs, which is built according
to the psychological theory of Plutchik’s Wheel of Emo-
tions [37]. Each ANP is ensured to reflect a strong sentiment
and link to emotions, for instance, beautiful flowers, dis-
gusting food, angry cat, etc. The purpose of adopting ANP
prediction is two-fold. First, the nouns here are equivalent
to objects, which is a high-level visual concept that can be
essential for VSA. For example, the "flower" normally gives
viewers positive emotions while the "shark" tends to make us
fear. One may argue that ImageNet has already provided suf-
ficient object semantics, but the pitfall here is that sometimes
the same object could induce different feelings. A piece of
simple evidence is that "vicious dog" can intimidate viewers
while "happy dog" brings us contentment. This phenomenon
introduces the second purpose of adopting ANP, which is
the significance of adjectives in ANP that describe the states
of objects. In the VSO dataset, the same object with a
different adjective (i.e., emotion-related state) is divided into
different categories. We argue that such taxonomy can en-
courage the DCNNs to learn features that help to distinguish
different states, which is more suitable for VSA than simply
employing the ImageNet dataset.

• Image Captioning The task of image captioning is to
generate a description for an image based on its content. Im-
age Captioning is usually considered a high-level task where
the model should not only determine which objects are in
an image but also reveal the relationships between different
objects and express them with natural language. While in the
field of VSA, learning to understand how an object or person
interacts with others often plays an important or even crucial
role in recognizing emotions. For instance, there are both
two images depicting a wife and a husband. The content
in the first one is "The wife is hugging her husband" while
another one shows "The husband is abusing his wife". Ap-
parently, the former makes viewers pleasant but the second

rises our anger. In this work, to excavate the relationships be-
tween objects, we employ the Image Captioning task as one
of our pre-training tasks. Moreover, rather than choose the
normally used captioning dataset like COCO Captions [6],
we prefer the more emotion-related ArtEmis [1]. Each image
in this dataset is provided with multiple emotion tags like
awe, fear, excitement, etc, along with each of which is a
description from annotators for expressing why they tend to
have these feelings when watching it. For instance, content-
ment is given to an artwork portraying a bunch of people due
to "These people seem to be getting along and happy to be
with one another, which makes me feel calm and accepted".
We add the Image Captioning task to our network by adding
an LSTM head to the end of the backbone.

3.5. Sentiment Amalgamation

Once the backbone is pre-trained on the aforementioned
tasks, a crucial question left is how we utilize the sentiment-
oriented model parameters. A simple solution comes that we
first train all the tasks simultaneously on the same backbone,
and then directly load the produced pre-trained model while
training downstream tasks. However, this strategy does not
bring us satisfactory performance gains in our experiments.
According to [40], the paradigm of multi-task learning gen-
erally works based on the assumption that the performed
tasks are tightly related to each other. In other words, MLL
can hardly be effective when some tasks are irrelevant or
even conflict with others. In our scenario, the six tasks are
responsible for learning prior sentiment knowledge from the
perspective of VSP mechanism. Since every two tasks are
designed for one specific VSP step, it is not applicable to
simply train all the tasks at once since the learning direction
for each task is not the same and may contradict others (e.g.,
the low-level colorization and high-level captioning).

To solve this problem, we propose a multi-model amal-
gamation strategy. As shown in Fig. 2, we distribute the six
tasks to three separated models, with model Mst for col-
orization and super resolution, model Mho for scene recog-
nition and jigsaw puzzles, model Mhp for ANP prediction
and image captioning. In this way, tasks in the same model
are highly related and similar, so that they can freely learn
specific features in terms of their VSP step to benefit each
other, without the disturbance from other non-related tasks.
Further, we propose a knowledge amalgamation method to
effectively transfer various levels of prior knowledge into a
single target model. As demonstrated in Fig. 2, a total of 4
models participate in the training of downstream tasks. One
of these models is the base model Mb and the other three are
pre-trained models. We separate each backbone into three
stages and denote the intermediate features from ith stage
in the base model as Fbi ∈ RCi×Hi×Wi , and Fsti, Fhoi,
Fhpi ∈ RCi×Hi×Wi for pre-trained models, where Ci, Hi,
Wi represent the channel, width, and height of feature maps
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outputted from ith stage. Similarly, the logits output from
each model is denoted as Lb, Lst, Lho, Lhp ∈ RN, where
N is the number of sentiment classes.

We observe that the feature extraction by forwarding im-
ages from shallow layers to deep layers in DCNNs exactly
resembles the pipeline of VSP: In the earlier period, the
entrance layers of DCNNs (stage 1) aim to extract features
from the basic colors and textures. Based on these local
features, the following layers (stage 2) with expanded re-
ception fields can progressively capture the global context.
Finally, the highest layers (stage 3) and classifiers are respon-
sible for high-level semantic and sentiment understanding.
In conclusion, the VSP process from the eyes to the brain
is similar to the feature flow in DCNNs layers. Therefore,
to effectively assimilate affluent prior sentiment knowledge
in terms of each VSP step, our amalgamation process is
performed between the pre-trained models and the corre-
sponding stage of the target model, where the knowledge
transfer is achieved by two types of regularization. The first
is the feature regularization performed on the output features
from every intermediate stage in a backbone model. Specifi-
cally, we assign three sets of this regularization on the first
stage between Mb and Mst, the second stage between Mb

and Mho, and the third stage between Mb and Mhp :

Lfr = 1
C1H1W1

||Fb1 − Fst1||2F+

1
C2H2W2

||Fb2 − Fho2||2F + 1
C3H3W3

||Fb3 − Fhp3||2F ,
(4)

where ||F ||F =
√∑C

i=i

∑H
j=1

∑W
k=1 F

2
ijk is the Frobenius

Norm of a matrix.
Another regularization is performed on the logits out-

putted from the last fully connected layer. The difference
here is that we only add constraint between the Lb from Mb

and Lhp from Mhp, which can be formulated as:

Llr = ||Lb −Lhp||22. (5)

This special setting is derived from that the logits used to
make the final decision for better predictions are naturally
prone to higher and more abstract features, and we will show
detailed experimental analysis in the following section. By
adding the two above constraints on both the features and
logits, we can transfer the base model with comprehensive
extra sentiment knowledge that it can hardly learn from the
limited downstream data.

Finally, an indispensable part of training is the target
loss between the predictions and ground truth labels for
each specific downstream task. Instead of assigning the
target loss Ltarb for only the base model, we additionally
back-propagate the prediction error Ltarst, Ltarho, Ltarhp

of all the pre-trained models. In this way, we can adaptively
adjust the pre-trained parameters to accommodate different

Figure 4. Illustration of the effectiveness of different pre-training
strategies. The left figure presents the accuracy produced from
various backbones on the FI dataset. The curve on the right is loss
movement of ResNet50 with the increase of training epochs.

datasets in distinct domains. The total loss of the whole
amalgamation is defined as:

L = Lfr + Llr + Ltarb + Ltarst + Ltarho + Ltarhp. (6)

In our empirical experiments, the results are robust to differ-
ent sets of weights assigned to each loss. Thus we simply
omit the balance weights.

4. Experiments

4.1. Datasets and Model Settings
• Datasets All the tasks in ST and HO pre-training are
performed on Places365 [62] dataset, while the ANP Predic-
tion and Image Captioning in HP pre-training are conducted
on VSO [2] and ArtEmis [1] datasets respectively. To verify
the superiority of our proposed method, we conduct exper-
iments across three learning tasks (i.e., SLL, MLL, LDL)
over 7 VSA datasets. More specifically, We perform our
SLL experiments on FI [57], UnBiasedEmo [32] datasets,
MLL experiments on Emotic [21], Emotion6 [36] datasets,
LDL experiments on Emotion6 [36], Abstract [28] datasets.

• Implementation Details Our experiments are based on
Pytorch [34] framework running on two NVIDIA RTX 3090
GPUs. For the pre-training phase, we only employ the basic
data augmentation strategy where we first resize a given
image to 256× 256 and then randomly crop it to 224× 224,
finally a horizontal flip with probability 0.5 is applied to
this image. During training, we set the batch size to 2n

and optimize our model with stochastic gradient descent
(SGD), where n is the maximum number to train models
without exceeding the limit of GPU memory. The initial
learning rate is set to 0.01. For HO and HP pre-training,
we set the total epochs to 30 and divide the learning rate
by 10 every 10 epoch. While the total epochs and decay
interval in the ST pre-training are 12 and 4. During the
training of downstream tasks, we adopt the same simple data
augmentation strategy. We set the initial learning rate, total
epochs, and decay interval to 0.001, 30, and 10, respectively.
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Table 1. Results of several classic backbone networks on single-label learning datasets including FI, UnBiasedEmo (UB), multi-label
learning datasets including Emotic (EM), Emotion6 (E6), and label distribution learning datasets including Emotion6 (E6), Abstract (AB).
The numbers on the left are from models initialized from ImageNet while the numbers on the right are from our proposed method.

Dataset Metric
Backbone

Vgg16 Vgg19 ResNet18 ResNet50 ResNet101

SL
L FI [57] Acc ↑ 0.648 → 0.666 0.655 → 0.679 0.654 → 0.673 0.670 → 0.707 0.688 → 0.708

UB [32] Acc ↑ 0.773 → 0.839 0.770 → 0.846 0.816 → 0.836 0.821 → 0.839 0.823 → 0.859

M
L

L

EM [21]

Hamming ↓ 0.151 → 0.147 0.149 → 0.145 0.163 → 0.145 0.155 → 0.154 0.136 → 0.137
Ranking ↓ 0.159 → 0.155 0.158 → 0.154 0.161 → 0.154 0.145 → 0.143 0.155 → 0.152
MicroF1 ↑ 0.155 → 0.199 0.156 → 0.219 0.153 → 0.214 0.218 → 0.219 0.204 → 0.226
MacroF1 ↑ 0.024 → 0.038 0.026 → 0.042 0.026 → 0.040 0.041 → 0.043 0.046 → 0.049

E6 [36]

Hamming ↓ 0.260 → 0.180 0.253 → 0.171 0.248 → 0.187 0.256 → 0.221 0.158 → 0.157
Ranking ↓ 0.294 → 0.226 0.295 → 0.229 0.282 → 0.236 0.191 → 0.160 0.216 → 0.216
MicroF1 ↑ 0.809 → 0.846 0.808 → 0.845 0.817 → 0.842 0.831 → 0.849 0.848 → 0.849
MacroF1 ↑ 0.726 → 0.825 0.718 → 0.823 0.776 → 0.817 0.798 → 0.827 0.825 → 0.827

L
D

L

E6 [36]

Chebyshev ↓ 0.335 → 0.322 0.337 → 0.326 0.278 → 0.276 0.252 → 0.251 0.259 → 0.253
Clark ↓ 1.669 → 1.660 1.672 → 1.662 1.636 → 1.629 1.614 → 1.615 1.621 → 1.618

Canberra ↓ 3.768 → 3.721 3.775 → 3.732 3.620 → 3.587 3.516 → 3.514 3.533 → 3.533
KL ↓ 0.637 → 0.597 0.642 → 0.608 0.466 → 0.464 0.403 → 0.402 0.405 → 0.391

Cosine ↑ 0.697 → 0.716 0.694 → 0.710 0.786 → 0.788 0.822 → 0.823 0.818 → 0.835
Intersection ↑ 0.553 → 0.573 0.551 → 0.568 0.634 → 0.636 0.666 → 0.669 0.684 → 0.687

AB [28]

Chebyshev ↓ 0.268 → 0.266 0.267 → 0.267 0.279 → 0.259 0.256 → 0.247 0.258 → 0.249
Clark ↓ 1.663 → 1.658 1.660 → 1.660 1.714 → 1.677 1.662 → 1.644 1.653 → 1.655

Canberra ↓ 3.950 → 3.930 3.928 → 3.924 4.086 → 3.940 3.936 → 3.835 3.886 → 3.880
KL ↓ 0.580 → 0.568 0.573 → 0.571 0.702 → 0.570 0.568 → 0.517 0.554 → 0.536

Cosine ↑ 0.702 → 0.710 0.707 → 0.708 0.642 → 0.711 0.707 → 0.743 0.719 → 0.731
Intersection ↑ 0.579 → 0.585 0.584 → 0.585 0.553 → 0.595 0.587 → 0.614 0.597 → 0.605

Table 2. Comparison with SSL methods on FI dataset.

Method SimCLR [4] SimSiam [7] MoCoV3 [49] A2MIM [25] Ours
Accuracy 0.627 0.636 0.626 0.484 0.707

4.2. Effectiveness of Our Pre-Training Method

The foundation of our work is that pre-training is a cru-
cial impetus for improving the performance of DCNNs on
VSA. To first prove this assumption, we conduct experiments
with a set of naive DCNNs initializing from scratch and an-
other set initializing from ImageNet pre-trained models. The
results are shown in Fig. 4. We are not surprised to see
that the pre-trained models outperform the naive by a big
margin, reaching approximately 20 percent improvements.
An interesting observation is that the models with more ele-
gant architecture (ResNet vs. VggNet) and higher capacity
(ResNet101 vs. ResNet18) perform worse when training
from scratch. Such a phenomenon is mainly attributed to the
notorious overfitting problem due to a lack of data. That is
why DCNNs are usually criticized for their huge requirement
of tons of data. And their performances further deteriorate
when it comes to data deficiency in the field of VSA. As the
knowledge transferred from tasks such as object classifica-
tion can save the model from exhausting learning general

features, the problem is alleviated. However, the model per-
formance can be further boosted if we provide models with
more prior knowledge of sentiment. As shown in Fig. 4,
our proposed pre-training method has the ability to transfer
multi-level prior sentiment knowledge from the pre-trained
model into the target model, thus it achieves consistent im-
provements over the ImageNet pre-training strategy.

From observing the loss curve on the right of Fig. 4,
we can dive deeper to inspect why our method performs
better. First, due to nearly no awareness of extracting image
features, the loss of the model trained from scratch converges
very slowly and heavily fluctuates during the whole training,
remaining relatively higher loss at the end. Second, the
model pre-trained on ImageNet presents impressive learning
ability at the start of training, but sinks into severe overfitting
because of lack of sentiment knowledge. Finally, the target
model in our method can constantly learn sentiment-related
features from not only the current dataset but also other
mature models carrying affluent sentiment knowledge, hence
it converges much faster and continues learning smoothly in
the whole training process.

Compared to ImageNet pre-training method in down-
stream training, the total parameters involved in our method
are quadrupled, and the CUDA time for training a single
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Table 3. Ablation study of feature and logits regularization from
different pre-trained models with ResNet50 on FI dataset.

Sentiment Stages Feature Reg Logits Reg
ST HO HP Acc ↑ Acc ↑
− − − 66.95 66.95
✓ − − 67.83 66.38
− ✓ − 67.89 69.50
− − ✓ 68.15 70.20
✓ ✓ ✓ 68.92 68.83

Table 4. Ablation study of the effectiveness of target loss (TL) in
our method on FI dataset.

Models Vgg16 Vgg19 ResNet18 ResNet50 ResNet101
w/o TL 62.46 64.19 65.89 69.27 70.21
w/ TL 66.57 67.89 67.27 70.68 70.77

sample in our method (ResNet50) is about 39 ms while the
ImageNet pre-training takes 6 ms. However, in terms of
inference latency, a more important metric that evaluates
computation consumption, our pure training-time techniques
achieve better predictions without any expense of speed.

4.3. Unanimous Improvements over VSA Tasks

We conduct extensive experiments to verify that our pre-
training method has a strong generalization ability to im-
prove the performance of VSA on a total of three dimensions,
i.e., tasks, models, and datasets, as shown in Tab. 1. From
the perspective of the task dimension, we can conclude that
our pre-training strategy can simply increase the accuracy of
single-label classification by 2 to 3 percent. When it comes
to more fine-grained tasks like MLL and LDL, the results
on multiple datasets prove that prior knowledge relating to
sentiment can be also beneficial for recognizing more diverse
and implicit emotions brought to humans. Focusing on the
model dimension, i.e., each column of Tab. 1, an obvious
observation is that the more sophisticated and bigger models
generally perform better on VSA like on other tasks. For all
of these different backbones, we can reach a conclusion that
our proposed method achieves unanimous improvements,
which shows the robustness of our pre-training strategy re-
gardless of model architecture or model size.

Further, we compare the proposed method with recent
SSL methods [7, 25, 49, 49], where the training data is the
same as ours. As shown in Tab. 2, our method outperforms
others by a large margin, which attributes to our utilization
of the characteristic of sentiment (e.g., hierarchy) rather than
the diversity of data distributions.

4.4. Ablation Study
To explore the effectiveness of each part in our method,

we conduct extensive experiments with ResNet50 on the FI
dataset. As shown in Tab. 3, we first investigate the impact of
each set of feature amalgamation. The bare backbone with-
out any prior knowledge related to sentiment can only reach

an accuracy of 66.95%. Once we add the ST or HO feature
regularization, the accuracy is boosted by approximately one
percent. Moreover, we can observe that high-level perceiv-
ing regularization produces slightly more performance gains,
which tells us that visual sentiment recognition relies more
on the more advanced and abstract features. Nevertheless,
these three kinds of sentiment knowledge from different
perspectives are all crucial factors of VSA. And only if we
fully utilize all the knowledge learned from each VSP step
can we achieve the best results, which is proved by the last
column. Different from the feature level, the ablation stud-
ies of logits regularization gives us another perspective of
VSA. First, forcing the logits output of the base model to
be similar to logits from only the ST pre-trained model can
degenerate model performance. Second, employing all three
regularization does not work as better as only performing
the HP regularization. These facts imply that the logits used
to make the final decision tend to correlate with the highest
level of stimulation, which makes sense according to the
VSP mechanism—that is, the first ST and second HO are
mainly used for pre-processing low- and mid- level signals,
as for high-level understanding, it is our brain’s responsibil-
ity and functionality to perform sentiment perceiving and
decision making. Finally, we also provide comparisons be-
tween models with and without target loss. As explained in
Tab. 4, adding target loss of pre-trained models is an essen-
tial part of our amalgamation strategy. With target loss, the
pre-trained model can flexibly adjust its model parameter to
accommodate specifies of different datasets, thus narrowing
the gap from the domain discrepancy between pre-training
datasets and downstream datasets, and therefore, easing the
training of the whole amalgamation process.

5. Conclusion
In this work, we explore the crucial yet long-term over-

looked pre-training paradigm in the field of VSA. We first
propose a sentiment-oriented pre-training strategy via both
fully-supervised and self-supervised learning to excavate
sentiment-specific features from the perspective of VSP
mechanism. Next, an elaborated sentiment amalgamation
strategy is proposed to effectively transfer all the prior sen-
timent knowledge into a single model. Finally, we verify
the effectiveness of our method with various VSA tasks and
diverse datasets. The limitation is that our amalgamation
process is more computation-intensive compared to directly
loading a pre-trained model. We will devote ourselves to
solving this problem in the future.

6. Acknowledgments
This work was supported by the National Key Research
and Development Program of China Grant (NO. 2018AA
A0100400), Natural Science Foundation of Tianjin, China
(NO.20JCJQJC00020), and Fundamental Research Funds
for the Central Universities.

2857



References
[1] Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov,

Mohamed Elhoseiny, and Leonidas J Guibas. Artemis: Affec-
tive language for visual art. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11569–11579, 2021. 5, 6

[2] Damian Borth, Tao Chen, Rongrong Ji, and Shih-Fu Chang.
Sentibank: large-scale ontology and classifiers for detecting
sentiment and emotions in visual content. In Proceedings of
the 21st ACM International Conference on Multimedia, pages
459–460, 2013. 5, 6

[3] Tao Chen, Damian Borth, Trevor Darrell, and Shih-Fu
Chang. Deepsentibank: Visual sentiment concept classifica-
tion with deep convolutional neural networks. arXiv preprint
arXiv:1410.8586, 2014. 1, 2

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020. 7

[5] Tao Chen, Felix X Yu, Jiawei Chen, Yin Cui, Yan-Ying Chen,
and Shih-Fu Chang. Object-based visual sentiment concept
analysis and application. In Proceedings of the 22nd ACM In-
ternational Conference on Multimedia, pages 367–376, 2014.
1

[6] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-
tam, Saurabh Gupta, Piotr Dollár, and C Lawrence Zitnick.
Microsoft coco captions: Data collection and evaluation
server. arXiv preprint arXiv:1504.00325, 2015. 5

[7] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
15750–15758, 2021. 7, 8

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255. Ieee, 2009. 1

[9] Paul Ekman. An argument for basic emotions. Cognition &
emotion, 6(3-4):169–200, 1992. 1

[10] Edward F Ester, John T Serences, and Edward Awh. Spatially
global representations in human primary visual cortex during
working memory maintenance. Journal of Neuroscience,
29(48):15258–15265, 2009. 2, 4

[11] Solène Evain, Ha Nguyen, Hang Le, Marcely Zanon
Boito, Salima Mdhaffar, Sina Alisamir, Ziyi Tong, Na-
talia Tomashenko, Marco Dinarelli, Titouan Parcollet, et al.
Task agnostic and task specific self-supervised learning from
speech with lebenchmark. In Thirty-fifth Conference on Neu-
ral Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. 3

[12] Lluis Gomez, Yash Patel, Marçal Rusinol, Dimosthenis
Karatzas, and CV Jawahar. Self-supervised learning of visual
features through embedding images into text topic spaces. In
Proceedings of the ieee conference on computer vision and
pattern recognition, pages 4230–4239, 2017. 3

[13] Kalanit Grill-Spector and Rafael Malach. The human visual
cortex. Annu. Rev. Neurosci., 27:649–677, 2004. 2

[14] Jianhua Han, Xiwen Liang, Hang Xu, Kai Chen, HONG
Lanqing, Jiageng Mao, Chaoqiang Ye, Wei Zhang, Zhenguo
Li, Xiaodan Liang, et al. Soda10m: A large-scale 2d self/semi-
supervised object detection dataset for autonomous driving.
In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021. 3

[15] Alan Hanjalic. Extracting moods from pictures and sounds:
Towards truly personalized tv. IEEE Signal Processing Mag-
azine, 23(2):90–100, 2006. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1

[17] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 3

[18] Morris B Holbrook and John O’Shaughnessy. The role of
emotion in advertising. Psychology & Marketing, 1(2):45–64,
1984. 1

[19] Khodijah Hulliyah, Normi Sham Awang Abu Bakar, and
Amelia Ritahani Ismail. Emotion recognition and brain map-
ping for sentiment analysis: A review. In 2017 Second Inter-
national Conference on Informatics and Computing (ICIC),
pages 1–5. IEEE, 2017. 2, 4

[20] Guoli Jia and Jufeng Yang. S 2-ver: Semi-supervised visual
emotion recognition. In European conference on computer
vision, pages 493–509, 2022. 2

[21] Ronak Kosti, Jose M Alvarez, Adria Recasens, and Agata
Lapedriza. Emotion recognition in context. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1667–1675, 2017. 6, 7

[22] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4681–4690,
2017. 3

[23] Joonwhoan Lee and EunJong Park. Fuzzy similarity-based
emotional classification of color images. IEEE Transactions
on Multimedia, 13(5):1031–1039, 2011. 1

[24] Giada Lettieri, Giacomo Handjaras, Emiliano Ricciardi, An-
drea Leo, Paolo Papale, Monica Betta, Pietro Pietrini, and
Luca Cecchetti. Emotionotopy in the human right temporo-
parietal cortex. Nature communications, 10(1):1–13, 2019.
2

[25] Siyuan Li, Di Wu, Fang Wu, Zelin Zang, Baigui Sun, Hao
Li, Xuansong Xie, Stan Li, et al. Architecture-agnostic
masked image modeling–from vit back to cnn. arXiv preprint
arXiv:2205.13943, 2022. 7, 8

[26] Kristen A Lindquist, Tor D Wager, Hedy Kober, Eliza Bliss-
Moreau, and Lisa Feldman Barrett. The brain basis of emo-
tion: a meta-analytic review. The Behavioral and Brain Sci-
ences, 35(3):121, 2012. 2

[27] Xin Lu, Reginald B Adams, Jia Li, Michelle G Newman, and
James Z Wang. An investigation into three visual characteris-
tics of complex scenes that evoke human emotion. In 2017

2858



Seventh International Conference on Affective Computing and
Intelligent Interaction (ACII), pages 440–447. IEEE, 2017. 2

[28] Jana Machajdik and Allan Hanbury. Affective image classifi-
cation using features inspired by psychology and art theory.
In Proceedings of the 18th ACM International Conference on
Multimedia, pages 83–92, 2010. 2, 6, 7

[29] Richard H Masland. The neuronal organization of the retina.
Neuron, 76(2):266–280, 2012. 2

[30] Joseph A Mikels, Barbara L Fredrickson, Gregory R Larkin,
Casey M Lindberg, Sam J Maglio, and Patricia A Reuter-
Lorenz. Emotional category data on images from the interna-
tional affective picture system. Behavior Research Methods,
37(4):626–630, 2005. 1

[31] Mehdi Noroozi and Paolo Favaro. Unsupervised learning
of visual representations by solving jigsaw puzzles. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 69–84. Springer, 2016. 3, 4

[32] Rameswar Panda, Jianming Zhang, Haoxiang Li, Joon-Young
Lee, Xin Lu, and Amit K Roy-Chowdhury. Contemplating
visual emotions: Understanding and overcoming dataset bias.
In Proceedings of the European Conference on Computer
Vision (ECCV), pages 579–595, 2018. 6, 7

[33] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Re-
lational knowledge distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3967–3976, 2019. 3

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Ad-
vances in Neural Information Processing Systems, 32:8026–
8037, 2019. 6

[35] Genevieve Patterson and James Hays. Sun attribute database:
Discovering, annotating, and recognizing scene attributes.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2751–2758. IEEE, 2012. 2

[36] Kuan-Chuan Peng, Tsuhan Chen, Amir Sadovnik, and An-
drew C Gallagher. A mixed bag of emotions: Model, predict,
and transfer emotion distributions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 860–868, 2015. 6, 7

[37] Robert Plutchik. A psychoevolutionary theory of emotions,
1982. 5

[38] Tianrong Rao, Min Xu, Huiying Liu, Jinqiao Wang, and
Ian Burnett. Multi-scale blocks based image emotion clas-
sification using multiple instance learning. In 2016 IEEE
International Conference on Image Processing (ICIP), pages
634–638. IEEE, 2016. 2

[39] Edmund T Rolls. Vision, emotion and memory: from neuro-
physiology to computation. In International Congress Series,
volume 1250, pages 547–573. Elsevier, 2003. 2, 4

[40] Sebastian Ruder. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098, 2017. 5

[41] Harold Schlosberg. Three dimensions of emotion. Psycho-
logical Review, 61(2):81, 1954. 1

[42] Chengchao Shen, Mengqi Xue, Xinchao Wang, Jie Song,
Li Sun, and Mingli Song. Customizing student networks

from heterogeneous teachers via adaptive knowledge amal-
gamation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3504–3513, 2019. 3

[43] Frank Tong. Primary visual cortex and visual awareness.
Nature Reviews Neuroscience, 4(3):219–229, 2003. 2, 4

[44] Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Image
super-resolution using dense skip connections. In Proceedings
of the IEEE international Conference on Computer Vision,
pages 4799–4807, 2017. 3

[45] Quoc-Tuan Truong and Hady W Lauw. Visual sentiment anal-
ysis for review images with item-oriented and user-oriented
cnn. In Proceedings of the 25th ACM International Confer-
ence on Multimedia, pages 1274–1282, 2017. 1

[46] Lijuan Wang, Guoli Jia, Ning Jiang, Haiying Wu, and Jufeng
Yang. Ease: Robust facial expression recognition via emotion
ambiguity-sensitive cooperative networks. In Proceedings
of the 30th ACM International Conference on Multimedia,
pages 218–227, 2022. 2

[47] Xiaohui Wang, Jia Jia, Jiaming Yin, and Lianhong Cai. Inter-
pretable aesthetic features for affective image classification.
In 2013 IEEE International Conference on Image Processing,
pages 3230–3234. IEEE, 2013. 2

[48] Wang Wei-ning, Yu Ying-lin, and Zhang Jian-chao. Image
emotional classification: static vs. dynamic. In 2004 IEEE
International Conference on Systems, Man and Cybernetics
(IEEE Cat. No. 04CH37583), volume 7, pages 6407–6411.
IEEE, 2004. 1

[49] Chen Xinlei, Xie Saining, and He Kaiming. An empirical
study of training self-supervised visual transformers. arXiv
preprint arXiv:2104.02057, 8, 2021. 7, 8

[50] C Xu, S Cetintas, KC Lee, and LJ Li. Visual sentiment
prediction with deep convolutional neural networks (2014).
arXiv preprint arXiv:1411.5731. 1

[51] Chuanguang Yang, Helong Zhou, Zhulin An, Xue Jiang,
Yongjun Xu, and Qian Zhang. Cross-image relational knowl-
edge distillation for semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12319–12328, 2022. 3

[52] Jingyuan Yang, Jie Li, Xiumei Wang, Yuxuan Ding, and
Xinbo Gao. Stimuli-aware visual emotion analysis. IEEE
Transactions on Image Processing, 30:7432–7445, 2021. 2

[53] Jufeng Yang, Dongyu She, Ming Sun, Ming-Ming Cheng,
Paul L Rosin, and Liang Wang. Visual sentiment prediction
based on automatic discovery of affective regions. IEEE
Transactions on Multimedia, 20(9):2513–2525, 2018. 2

[54] Xingxu Yao, Dongyu She, Sicheng Zhao, Jie Liang, Yu-Kun
Lai, and Jufeng Yang. Attention-aware polarity sensitive
embedding for affective image retrieval. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 1140–1150, 2019. 2

[55] Jingwen Ye, Xinchao Wang, Yixin Ji, Kairi Ou, and Mingli
Song. Amalgamating filtered knowledge: Learning task-
customized student from multi-task teachers. arXiv preprint
arXiv:1905.11569, 2019. 3

[56] Quanzeng You, Jiebo Luo, Hailin Jin, and Jianchao Yang.
Robust image sentiment analysis using progressively trained
and domain transferred deep networks. In Twenty-ninth AAAI
Conference on Artificial Intelligence, 2015. 1

2859



[57] Quanzeng You, Jiebo Luo, Hailin Jin, and Jianchao Yang.
Building a large scale dataset for image emotion recognition:
The fine print and the benchmark. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30, 2016. 1, 6,
7

[58] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 649–666. Springer,
2016. 3

[59] Sicheng Zhao, Guoli Jia, Jufeng Yang, Guiguang Ding, and
Kurt Keutzer. Emotion recognition from multiple modalities:
Fundamentals and methodologies. IEEE Signal Processing
Magazine, 38(6):59–73, 2021. 1

[60] Sicheng Zhao, Xingxu Yao, Jufeng Yang, Guoli Jia, Guiguang
Ding, Tat-Seng Chua, Bjoern W Schuller, and Kurt Keutzer.
Affective image content analysis: Two decades review and
new perspectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021. 3

[61] Zhaohui Zheng, Rongguang Ye, Ping Wang, Dongwei Ren,
Wangmeng Zuo, Qibin Hou, and Mingming Cheng. Localiza-
tion distillation for dense object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 3

[62] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(6):1452–1464, 2017. 4, 6

2860


