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Figure 1. Probability distributions for the vehicle position predicted by our model which matches the vehicle’s surround camera images with
an aerial image. The first and second rows show the front and back cameras in the Ford AV dataset [6]. The last row shows the aerial image
with the search region in the center and driving direction pointing upwards. Blue and red color refer to low and high probability predicted by
our model. Map data: Bing Maps © 2022 TomTom, © Vexcel Imaging [1].

Abstract

This paper proposes a novel method for vision-based
metric cross-view geolocalization (CVGL) that matches
the camera images captured from a ground-based vehicle
with an aerial image to determine the vehicle’s geo-pose.
Since aerial images are globally available at low cost,
they represent a potential compromise between two estab-
lished paradigms of autonomous driving, i.e. using expensive
high-definition prior maps or relying entirely on the sensor
data captured at runtime.

We present an end-to-end differentiable model that uses
the ground and aerial images to predict a probability distri-
bution over possible vehicle poses. We combine multiple ve-
hicle datasets with aerial images from orthophoto providers
on which we demonstrate the feasibility of our method. Since

the ground truth poses are often inaccurate w.r.t. the aerial
images, we implement a pseudo-label approach to produce
more accurate ground truth poses and make them publicly
available.

While previous works require training data from the tar-
get region to achieve reasonable localization accuracy (i.e.
same-area evaluation), our approach overcomes this limi-
tation and outperforms previous results even in the strictly
more challenging cross-area case. We improve the previous
state-of-the-art by a large margin even without ground or
aerial data from the test region, which highlights the model’s
potential for global-scale application. We further integrate
the uncertainty-aware predictions in a tracking framework
to determine the vehicle’s trajectory over time resulting in a
mean position error on KITTI-360 of 0.78m.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Systems for autonomous driving require both a model

of the vehicle’s environment as well as the location of the
vehicle relative to the model. These systems either construct
the full model during runtime (i.e. entirely online), or create
some parts prior to runtime (i.e. partly offline). The latter
methods typically construct high-definition maps of a region
in advance (e.g. using lidar sensors) and localize the vehi-
cle at runtime relative to that map [34]. While prior maps
facilitate a high localization accuracy of the system, they are
also expensive to construct and maintain. Online methods
on the other hand create a model of the local environment
using only the live sensor readings e.g. from lidar [52], cam-
era [15] or both [26]. This avoids the need for expensive
prior maps, but represents a more difficult task as the system
has to predict both the spatial structure of the environment
as well as its relative location within it.

Aerial images offer the potential to leverage the advan-
tages of both approaches: They can be used as a prior map for
localization, while also being affordable, globally available
and up-to-date due to an established infrastructure of satel-
lite and aerial orthophoto providers [1, 3]. We consider the
problem of matching the sensor measurements of the vehicle
against aerial images to determine the vehicle’s location on
the images and thereby its geo-location.

Previous research in this area focuses on methods that
cover large (e.g. city-scale) search regions [23,46], but suffer
from low metric accuracy [57] insufficient for the navigation
of autonomous vehicles. Since a prior pose estimate of the
vehicle can be provided by global navigation satellite sys-
tems (GNSS) or by tracking the vehicle continuously, several
recent methods employ smaller search regions to achieve
higher metric accuracy [13, 35].

Without access to three-dimensional lidar point clouds,
a purely vision-based model has to bridge the gap between
ground and aerial perspectives, for example by learning the
transformation in a data-centric manner. We utilize a trans-
former model that iteratively constructs a bird’s eye view
(BEV) map of the local vehicle environment by aggregating
information from the ground-level perspective views (PV).
The BEV refers to a nadir (i.e. orthogonal) view of the local
vehicle environment. The final BEV map is matched with an
aerial image to predict the relative vehicle pose with three de-
grees of freedom (3-DoF), i.e. a two-dimensional translation
and a one-dimensional rotation.

Our model outperforms previous approaches for the met-
ric CVGL task on the Ford AV [6] and KITTI-360 [21]
datasets and even surpasses related approaches utilizing lidar
sensors in addition to camera input. It predicts a soft prob-
ability distribution over possible vehicle poses (cf . Fig. 1)
rather than a single pose which specifically benefits trackers
that use the model predictions to determine the vehicle’s
trajectory over time.

While previous works rely on the availability of training
data from the target region to achieve reasonable localization
accuracy, we address the strictly more challenging task of
non-overlapping train and test regions. We further train and
test the model on entirely different datasets that were cap-
tured with different ground-based vehicles. Our evaluation
demonstrates the generalization capabilities of our model
under cross-area and cross-vehicle conditions and highlights
the potential for global-scale application without fine-tuning
on a new region or a new vehicle setup.

We collect multiple datasets from the autonomous driv-
ing sector in addition to aerial images from several or-
thophoto providers for our evaluation. Since the vehicle’s
geo-locations do not always accurately match the correspond-
ing aerial images, we compute new geo-registered ground
truth poses for all datasets used in the work and filter out
invalid samples via a data-pruning approach.

We publish the source code of our method online includ-
ing a common interface for the different datasets. We also
make the improved ground truth for all datasets publicly
available. 1

In summary, our contributions are as follows:

1. We present a novel end-to-end trainable model for met-
ric CVGL that requires only visual input and yields
uncertainty-aware predictions.

2. We collect multiple vehicle datasets and aerial im-
ages from several orthophoto providers for our eval-
uation. We compute improved ground truth poses using
a pseudo-label approach and filter out invalid samples
via data-pruning.

3. Our method outperforms previous works by a large
margin even under strictly more challenging cross-area
and cross-vehicle settings.

2. Related Work
Cross-view Geolocalization. CVGL refers to the task

of matching camera images of a ground-based agent to
geo-registered aerial images to determine the agent’s geo-
location. Approaches in this area typically focus on one of
two problems.

Large-area CVGL methods start from a large (e.g.
city-scale) search region and find a rough estimate of the
agent’s position. They typically use an image retrieval ap-
proach and therefore do not predict orientation or reach high
metric accuracy (e.g. less than 10% of predictions reported
by the state-of-the-art method TransGeo [57] are localized
with less than 10m error).

Metric CVGL methods start from a rough pose estimate
of the agent (e.g. up to 50m error [13]) and determine the
location and orientation with higher accuracy by matching

1Project page: https://fferflo.github.io/projects/
vismetcvgl23

21622



the agent’s sensor readings with an aerial image centered on
the prior pose.

Zhu et al. [58] propose to differentiate the evaluation
of a model into same-area and cross-area categories based
on the availability of data from the test region during train-
ing. While same-area models are trained on the same aerial
images used at test time and outperform cross-area mod-
els [57,58] they require obtaining data from the target region
first. This limits their scalability and contradicts our moti-
vation for using aerial images, i.e. global availability at low
cost. Furthermore, same-area models have not been shown
to memorize large areas (e.g. country-scale) from training
data, even when such data is available. We therefore consider
only the strictly more challenging task of cross-area CVGL.

While metric CVGL utilizing lidar and camera sensors
has been shown to achieve sub-meter accurate poses [13],
previous purely vision-based methods have not reached com-
parable performance. Zhu et al. [58] treat the problem as a
regression task on top of large-area CVGL. Xia et al. [47,48]
utilize image retrieval methods from large-area CVGL and
adapt them to work with smaller search regions for metric
CVGL. These methods do not explicitly consider the spatial
layout of both aerial and ground input data, since the images
are reduced to one-dimensional feature vectors where spatial
information can only be stored implicitly in the neurons’
activations.

Shi et al. [35] propose the first method that digresses
from the image retrieval paradigm of large-area CVGL by
using an end-to-end differentiable Levenberg-Marquardt op-
timizer that iteratively estimates the relative pose between
aerial and ground-level images. They rely on a flat-ground
assumption by using a homography to project satellite fea-
tures to the ground-level view. They further do not consider
a multi-camera setup.

Perspective View to Bird’s Eye View. Cameras mounted
on vehicles show a two-dimensional perspective projection
of the environment typically as pinhole or panoramic images.
However, the preferred representation for many tasks (e.g.
navigation, object detection or localization), is a BEV, i.e.
a two-dimensional orthographic projection of the ground-
level features in the top-down view. The perspective view
to bird’s eye view transformation (PV2BEV) represents a
novel research field that has recently gained attention in the
research community. [27]

PV2BEV methods can be categorized based on whether
they explicitly exploit the geometry of the scene to bridge
the gap between PV and BEV or learn the mapping in a
data-centric manner.

Geometry-based methods typically use one of two ap-
proaches. Inverse Projective Mapping [28] transforms PV
features to BEV via a homography based on the camera’s
intrinsic and extrinsic parameters [7,33]. These methods rely
on a flat-ground assumption and are not able to properly ex-

Figure 2. Overview of the architecture. (a) Aerial and ground in-
put images are processed by separate encoders to predict high-level
feature maps. (b) A bird’s eye view (BEV) representation of the
local vehicle environment is constructed. The BEV map is initial-
ized as a grid of learnable parameters and iteratively refined by
cross-attending to the ground features. (c) The final BEV and aerial
features are matched via cross-correlation to predict a probability
distribution over possible 3-DoF vehicle poses.

ploit features above or below the ground-plane. Depth-based
methods explicitly predict depth in the ground images as
discrete point-clouds or probabilistic depth distributions and
utilize a three-dimensional model (e.g. point-cloud or voxel-
map) for the projection [31, 32, 41].

Recent learning-based methods utilize transformers to
project features from PV to BEV. Here, queries defined in
BEV space gather information from values defined in PV
space via a cross-attention mechanism. Queries are either
defined sparsely (e.g. for object detection) [10, 24, 42] or as
a dense spatial grid around the vehicle (e.g. for semantic
segmentation) [20, 30, 56]. Some methods further utilize
deformable attention to reduce the memory consumption,
such that each query attends only to a sparse set of points in
the PV rather than to all PV features [20, 30].

3. Method

Our model predicts a probability distribution for the pose
of a ground-based vehicle relative to an aerial image. It first
builds a BEV representation of the local vehicle environment
using a cross-attention mechanism. The BEV is then matched
with the aerial image to determine the vehicle’s pose. Fig. 2
shows a summary of the model.

3.1. Feature extraction

The ground and aerial input images are first processed
by encoder networks that predict pixelwise features at stride
s ∈ N, i.e. with 1

s of the original resolution. We use a shared
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encoder for the ground images and a separate encoder for
the aerial image (cf . Fig. 2a).

We choose a lightweight architecture for the network
based on common design principles as follows. For a given
image, we apply a pretrained vision backbone (i.e. Con-
vNeXt [25]) to extract a pyramid of intermediate feature
maps L at strides 4, 8, 16 and 32. We use a global average for
context pooling in the last feature map [12, 55]. All feature
maps in L are resized to stride s via bilinear interpolation,
summed and processed by a small multilayer perceptron
(MLP) to produce the final output feature map. More details
are provided in the supplementary material.

The ground image of the i-th camera is encoded into
feature map FGi with sG ≥ 1. Similarly, the aerial image is
encoded into feature map FA with stride sA = 1 since its
spatial resolution is particularly important for the localization
accuracy. Since vision backbones typically contain a stem
that initially reduces the resolution, e.g. by a factor of 4,
we additionally process the RGB input with two ResNet
blocks [16] at stride 1 and add the result to the intermediate
list of feature maps L to fully exploit the aerial image’s
spatial information. Our evaluation justifies this choice.

3.2. Perspective View to Bird’s Eye View

Overview. The BEV of the vehicle’s local environment
is iteratively constructed from the PVs captured by cameras
at a given point in time. The BEV is centered on the vehicle
and defined as a spatial grid B ∈ RdB×dB×cB with dimen-
sions dB × dB (at qB meters per cell) and cB channels. It
is initialized via learnable parameters and iteratively refined
in nblocks steps. We regard only cells in B with a distance of
less than dB

2 qB meters to the vehicle as valid and store the
corresponding mask as M ∈ {0, 1}dB×dB .

Each refinement step consists of two transformer blocks
that apply cross-attention to the PV features FGi as well as
self-attention on B (cf . Fig. 2b). In the following, the trans-
former block is reviewed and contrasted with the attention
mechanisms used in the cross- and self-attention blocks of
our model.

The general layout of the transformer block [38, 53] is
shown in Fig. 3. It operates on a set of query tokens Tq that
adaptively aggregate information from a set of value tokens
Tv . Tokens are generally packed into matrix form T ∈ Rn×c

with c channels per token. The transformer block consists
of two consecutive residual sub-blocks: The first contains
an attention mechanism that distributes information from
value tokens to query tokens. The second contains a MLP
that processes tokens separately and is largely responsible
for the representational power of the block.

The transformer blocks used in our model are based on
different choices for the attention mechanism. The original
design of transformers [38] uses query-key-value (QKV)
attention for this purpose: Tokens Tq are first projected onto

Figure 3. Transformer block [38, 53]. Queries representing the
bird’s eye view (BEV) map are used to attend to a set of values.
Cross- and self-attention blocks differ based on the choice for the
values (i.e. PV features FGi and BEV features B, respectively) and
the type of attention mechanism that is used (cf . Sec. 3.2). The
attention logits are optionally forwarded via a skip connection to
the next attention block of the same type. Normalization is applied
in the residual block (Pre-LN) [51].

queries Q, and tokens Tv onto keys K and values V by
learned linear transformations. We use the terms query for
Tq and Q, and value for Tv and V interchangeably. For each
query Qi, information is aggregated from values Vj based on
the similarity of the query Qi w.r.t. the value’s corresponding
key Kj . The attention map A represents the weights assigned
to each query-value pair and is defined as

A = softmax(Alogit) with Alogit =
QKT

√
cqk

(1)

where cqk is the channel dimension of Q and K. The val-
ues are averaged based on the weights A and then linearly
projected to produce the final output tokens.

For multi-head attention, the matrices Q, K and V are
first split along the channel axis into nheads equally sized
blocks before computation of the weighted averages. The
outputs of all heads are concatenated before the final linear
projection. This enables each query to incorporate nheads
distinct aggregations of the input values for nheads heads.

Cross-attention block. The cross-attention block gath-
ers information from the PV features FGi for all cells of
the BEV map B. Computing full cross-attention between
queries B and values FGi such that each query attends to
each PV feature leads to large memory and computational
cost. Instead, for each cell in the BEV we select a small set
of points in the PV and sample the features maps FGi at the
corresponding locations. The sampled features represent the
value tokens for the corresponding BEV query token.

The PV points for a given query are determined as follows.
We lift the corresponding point on the BEV into a pillar of z
points uniformly sampled from height hmin to hmax [20]. The
points are then transformed from vehicle coordinate system
into each camera coordinate system and projected onto the
camera plane using its extrinsic and intrinsic parameters.
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Points that do not fall into the camera frustrum are discarded.
This yields up to z points per query per camera. Since typical
camera setups for surround view have only little overlap
between cameras, most queries are assigned no more than z
values overall.

Since the value tokens for a given query token represent
only a sparse set of points on the PV, we enable more fine-
grained control over the points’ locations via deformable
offsets [59]. Given the pillar of z points for a BEV query
Bxy, we predict offsets ∆pj ∈ R2 with j ∈ {1, ..., z} via z
learnable linear transformations on Bxy. For the j-th point
in the pillar that is projected to location pij ∈ R2 in the i-th
camera view, the corresponding feature fij is sampled via
bilinear interpolation as

fij = FGi(
pij +∆pj

sG
) (2)

where sG represents the stride of the PV feature map FGi.
The offsets of each cross-attention block are further added
onto the predicted offsets of the next block via a skip connec-
tion, such that each block learns to refine the existing offsets
rather than predict entirely new offsets.

While queries are represented by a dense grid B, values
are given as a sparse set of features fij and cannot efficiently
be packed into a dense spatial representation. We therefore
implement values as a list of features FG ∈ Rnv×cv with
cv channels that contains all valid features fij concatenated
along the first axis. The interaction between list FG and
spatial grid B is implemented via efficient scatter and
gather operations [8].

To reduce the computational complexity of the trans-
former block, we simplify the computation of the attention
map A as follows. Instead of mapping query tokens B and
value tokens FG onto queries Q and keys K respectively,
we predict the attention logits Alogit directly from the BEV
features B via a learnable linear projection. Our ablation
studies demonstrate that this does not lead to reduced per-
formance. We further add a skip connection between the
attention logits of subsequent blocks such that each block
learns to refine the existing weights rather than predict en-
tirely new weights [17].

Self-attention block. The self-attention block refines the
BEV representation via a self-attention operation on B. We
choose a single block of the SegFormer architecture for this
purpose [50].

In classical self-attention, B is used both for query and
value tokens. To avoid the large memory and computational
cost of full attention, SegFormer uses spatial-reduction atten-
tion (SRA) [40]: While query tokens are given directly by B,
the spatial resolution of B is first reduced via a convolution
with stride sR for the value tokens. This reduces the number
of value tokens and thereby the computational complexity by
sR

2. The MLP component of the self-attention block is fur-
ther extended with a 3× 3 depthwise convolution to mimic

the use of positional encodings. Invalid features in B are set
to zero according to mask M .

3.3. Bird’s Eye View to Aerial View matching

In the last step of the model, the aerial features FA and the
final BEV features B are matched to determine the relative
3-DoF pose of the vehicle (cf . Fig. 2c). We test different hy-
potheses h ∈ H ⊂ SE(2) for the vehicle pose by comparing
FA with B.

In general, we choose a more fine-grained pixel resolu-
tion qA ≤ qB for FA which benefits localization accuracy.
Therefore, B is first upsampled to match the pixel resolution
qA via bilinear interpolation followed by a linear projection
to cA channels.

To test a hypothesis h, the upsampled BEV map is trans-
formed into aerial coordinates by the rigid transformation h
yielding the transformed BEV B(h) with the same dimen-
sions as FA. The logit of h is determined as the scaled inner
product of FA and B(h). A softmax operation is applied to
the logits of all hypotheses to produce the final probability
distribution as shown in Eq. (3).

P (h) =
exp k⟨FA, B

(h)⟩∑
h′∈H

exp k⟨FA, B(h′)⟩
with k =

1√
⟨M,M⟩ · cA

(3)
Logits are scaled with k to normalize the variance of the
inner product as proposed by Vaswani et al. [38].

We choose the set of hypotheses Hα as a two-dimensional
grid of translations around the origin with with pixel reso-
lution qA, orientation α ∈ R and maximum distance r ∈ R.
The logits of Hα are jointly estimated by rotating B by α and
computing the cross-correlation between FA and the rotated
B. This is repeated for a discrete set of rotations α ∈ A yield-
ing the total set of evaluated hypotheses H =

⋃
α∈A Hα.

The cross-correlation is computed efficiently in the Fourier
domain by utilizing the Convolution Theorem [43] which
requires three Fast Fourier Transforms per rotation angle per
feature channel.

3.4. Loss

Each training sample contains the camera images, the
intrinsic and extrinsic parameters, a randomly chosen apriori
pose and the ground truth pose of the vehicle. We define a
normal distribution Ptrue centered on the vehicle pose with
translation and angle standard deviations σt and σα that
represents the desired model output. The loss function is
defined as the cross-entropy between the predicted and target
probabilities:

L = −
∑
h∈H

Ptrue(h) lnP (h) (4)

Using a soft rather than a one-hot target distribution al-
lows training with ground truth poses that potentially lie
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(a) Original ground truth poses.

(b) Our pseudo-labeled ground truth poses.
Figure 4. Comparison of original ground truth poses and pseudo-
labeled poses. Projected lidar points are shown in yellow for visual-
ization. Vehicle data: Argoverse V2 [45]. Map data: Bing Maps ©
2022 TomTom, © Vexcel Imaging [1].

between the discrete hypotheses. It further acts as a means
for label smoothing which prevents the network from becom-
ing over-confident [29].

4. Data
Overview. In order to build a dataset for the evaluation

of CVGL methods in cross-area and cross-vehicle settings,
we collect existing datasets from the autonomous driving
sector (Argoverse V1 [11], Argoverse V2 [45], Ford AV [6],
KITTI-360 [21], Lyft L5 [18], Nuscenes [9] and Pandaset
[49]) and gather aerial images for the vehicle’s geo-poses
from several orthophoto providers (Google Maps [3], Bing
Maps [1], DCGIS [2], MassGIS [4] and Stratmap [5]). A
detailed overview of the datasets used in this work is shown
in the supplementary material. In total, the combined dataset
contains 1.05 million ground data-frames, each consisting
of the vehicle’s ground truth pose and camera images and
intrinsic and extrinsic parameters. This corresponds with
2.55 million pairs of ground data-frames and corresponding
aerial images when counting multiple orthophoto providers.

Since subsequent frames only have a small relative offset
and multiple trajectories per dataset often follow the same
route, the number of paired data-frames does not reflect the
data’s coverage of aerial images. We measure the coverage
by grouping frames into disjoint cells of size 100m × 100m
which results in 5.1 thousand cells containing at least one
ground frame and 13.0 thousand cells when counting multi-
ple orthophoto providers.

We group frames into cells of size 1m × 1m and for each
training iteration randomly sample a cell from which the
next frame is chosen. This prevents areas with many ground
frames from being overrepresented. We resize all ground im-
ages to a minimum size of 320× 240 pixels which enables
the model to run at approximately 2-3 Hz on an RTX 6000.

Pseudo-labels. Similar to previous works [35, 39] we no-

Figure 5. Examples of the data-pruning method on the Ford AV
dataset [6]. Blue and red color represent kept and pruned frames in
the trajectory. Map data: Bing Maps © 2022 TomTom, © Vexcel
Imaging [1].

tice that the geo-poses provided by the vehicle datasets do
not accurately match the corresponding aerial images and
can have large relative offsets. To address this problem, we
utilize a pseudo-label approach to create new ground truth
poses for all datasets by using the lidar point-clouds con-
tained in the data as follows.

We manually label a small subset of the data by aligning
the vehicle’s lidar point-clouds with the corresponding aerial
images in top-down view. We train a variant of our model
on this subset where the PV2BEV transformer is replaced
with a simple geometric projection using the captured li-
dar point-cloud [13]. This model requires less data to train
while still producing accurate localization results. We pre-
dict the poses for all pairs of ground frames and orthophoto
providers. For each scene, the rigid transformations between
subsequent frames provided by the dataset and the predicted
poses and pose uncertainties are inserted into a pose graph
and optimized using a least-squares approach [14]. The rigid
transformations are factored in with high confidence and
model predictions with low confidence, such that the ran-
dom (non-systematic) error in the predictions averages out
over sufficiently long sequences. Our evaluation in Sec. 5.3
and Sec. 5.4 justifies this approach. Fig. 4 shows a quali-
tative comparison between original ground truth poses and
pseudo-labeled poses. We publish the improved poses online
to foster future research in this area.

We do not evaluate on datasets like CVUSA [46] and
CVACT [23] that are typically used in large-area CVGL since
a) they do not contain accurate ground truth poses and b) our
pseudo-label approach cannot be utilized since the datasets
do not contain lidar point-clouds or rigid transformations
between frames.

Data-pruning. The datasets contain samples that can-
not be used for cross-view matching, e.g. if the vehicle is
traveling through tunnels or under bridges or if the data is
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Table 1. Recall in percent on a subset of the first two scenes of the Ford AV dataset [6] following the evaluation protocol introduced by Shi et
al. [35]. Results of previous works on Ford AV are provided by Shi et al. [35]. The first three rows represent large-area CVGL methods that
are adapted for metric CVGL and have no dedicated method for predicting metric offsets. Initial pose is chosen in 40m × 40m around the
vehicle with up to 20◦ of rotation noise. All methods are vision-based only.

Log1 Log2
Cross- Cross- Lateral Longitudinal Lateral Longitudinal
area vehicle 1.0m 3.0m 5.0m 1.0m 3.0m 5.0m 1.0m 3.0m 5.0m 1.0m 3.0m 5.0m

CVM-Net [19] ✗ ✗ 9.1 25.7 41.3 4.8 13.2 21.9 9.8 28.6 47.1 4.2 11.8 20.3
SAFA [36] ✗ ✗ 9.3 28.7 48.0 4.3 11.8 20.1 11.2 34.1 53.4 5.0 13.4 22.9
DSM [37] ✗ ✗ 12.0 35.3 53.7 4.3 12.5 21.4 8.5 24.9 37.6 3.9 12.2 21.4

VIGOR [58] ✗ ✗ 20.3 52.5 70.4 6.2 16.1 25.8 20.9 54.9 75.7 6.0 16.9 27.0
HighlyAccurate [35] ✗ ✗ 46.1 70.4 72.9 5.3 16.4 26.9 31.2 66.5 78.8 4.8 15.3 25.8

Ours w/o vehicle frames ✗ - 15.1 51.3 72.0 5.0 15.2 24.4 11.3 37.8 62.2 4.7 15.3 26.0
Ours ✗ ✗ 96.3 99.6 99.6 76.0 95.3 96.0 88.0 99.9 100.0 58.9 93.3 93.6
Ours ✓ ✓ 77.0 96.2 97.6 24.0 67.6 76.1 73.0 96.5 97.8 25.6 61.7 69.4

out-of-date and does not correspond with recent aerial im-
ages. We design a simple data-pruning approach to remove
these samples from the datasets as follows.

We measure the difficulty of each data-frame by process-
ing it with the pseudo-labeling model and computing the
generalized variance of the predicted probability distribution
(i.e. the determinant of the covariance matrix). Easy and hard
samples correspond with low and high predicted variance.
We sort all data-frames by their difficulty and remove the
hardest 1%. Fig. 5 shows examples of pruned frames on the
Ford AV dataset. Our evaluation in Sec. 5.4 justifies this
approach.

5. Evaluation
5.1. Implementation details

We use the ConvNeXt base [25] model in the encoder for
both aerial and ground images. We train for 100K iterations
with the RectifiedAdam optimizer [22], a batch size of 1 and
a learning rate of 1.0 · 10−4 with polynomial decay. The loss
function is parametrized with σt = 0.5m and σα = 2◦.

For the cross-attention block, we use nheads = 4 heads,
sample point-pillars with z = 16 points from hmin = −5m
to hmax = 10m, and encode the PV features at stride sG = 4.
We use a spatial reduction rate of sR = 4 in the self-attention
block. Overall, nblocks = 3 refinement steps are applied to
compute the BEV with size dB = 320px at qB = 2.4 m

px and
cB = 128 channels. The matching is performed at resolution
qA = 0.3 m

px with an aerial image of size dA = 512px and
cA = 8 channels.

5.2. Per-frame evaluation

We evaluate the per-frame performance of our model on
the Ford AV dataset [6] and show results in Table 1. We
follow the protocol introduced by Shi et al. [35] of testing
only on a subset of the first two scenes to compare our
method with related approaches. The apriori pose is chosen
randomly in a 40m × 40m area around the ground truth
position with up to 20◦ of rotation noise. Since our method
works with a circular search region, we choose the smallest

circumscribing radius at
√
2 · 20m. The training is performed

in three different settings as follows.
(1) Same-area and same-vehicle: We train on the same

split as Shi et al. [35], i.e. scenes of Ford AV that are cap-
tured at a different time than the test split. Our model vastly
outperforms previous approaches and successfully localizes
> 90% of the frames within 3m to the ground-truth position
in the lateral and longitudinal directions.

(2) Cross-area and cross-vehicle: We train the model
on Argoverse V1, Argoverse V2, Lyft L5, Nuscenes and
Pandaset, but remove data from Detroit where Ford AV was
recorded. During training, the model therefore does not have
access to data from either the test region (i.e. Detroit) or the
test vehicle and corresponding camera setup (i.e. Ford AV
vehicle). Our model still outperforms previous approaches
trained in the same-area and same-vehicle setting by a large
margin.

Fig. 1 shows several examples of probability distribu-
tions predicted by our model on the Ford AV dataset under
cross-area and cross-vehicle conditions. With a search ra-
dius of 50m, we achieve a median position error over all six
trajectories of 0.87m both when the orientation is known (up
to 30◦ noise) and when no orientation information is given.
We provide more details per trajectory in the supplementary
material.

(3) Same-area and no-vehicle: We additionally train our
model without using information from the vehicle cameras,
i.e. by setting all RGB values to zero. The model therefore
only learns a prior distribution of vehicle poses w.r.t. the
aerial image since the BEV map is constant over different in-
puts. The model shows a performance similar to the previous
state-of-the-art HighlyAccurate [35] for longitudinal recall
indicating that their model might rely mainly on prior poses
w.r.t. the aerial image rather than on cross-view matching
(cf . Table 1). Fig. 6 shows a visualization of features learned
by the corresponding model.

5.3. Tracking evaluation

We choose a tracking method using a Kalman filter to
determine the trajectory of the vehicle over time [13]. Here,
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Table 2. Absolute Position Error in meters on KITTI-360 scenes

Method Camera Lidar 00 02 03 04 05 06 07 09 10 Mean
Fervers et al. [13] ✓ ✓ 0.70 0.94 0.67 0.95 0.75 1.16 0.99 0.75 2.16 0.94

Ours ✓ ✗ 0.62 0.80 1.01 0.71 0.62 0.80 0.60 0.67 2.12 0.78

(a) Model predictions with known orientation. Driving direction points up-
wards. In the first three examples the model exploits its learned knowledge
of right-hand side traffic in the training data.

(b) Model predictions with unknown orientation.

Figure 6. Aerial features predicted by a model that was trained in
a cross-area setting without ground cameras and therefore learns
only a prior distribution of vehicle poses w.r.t. the aerial image.
Features are reduced to three channels via principal component
analysis and mapped onto RGB for visualization. Vehicle data: Lyft
L5 dataset [18]. Map data: Bing Maps © 2022 TomTom, © Vexcel
Imaging [1].

an inertial measurement unit is used to produce accurate
short-term trajectories while the predictions of our model
keep the position in alignment with aerial images in the
long term. The tracker particularly benefits from the model’s
uncertainty estimates which are fed into the Kalman filter
and propagated over time.

We test our model with this tracking method on the
KITTI-360 [21] dataset and train in a cross-area and
cross-vehicle setup on all other datasets. To ensure fair com-
parison with related works, rather than measuring the error
w.r.t. our pseudo-labels we choose an evaluation approach
which is typically used for odometry methods and is able
to compensate for relative offsets between ground truth
geo-locations and aerial images [54]. We align the predicted
trajectories with the original ground truth of KITTI-360 via
a 3-DoF rigid transformation and measure the relative de-
viation of the transformed trajectories to the ground truth.
As shown in Table 2, this method has a mean position er-
ror of 0.78m over all scenes which surpasses even a recent
lidar-visual based work.

The error w.r.t. our pseudo-labels (without prior align-
ment) is 0.85m which supports the quality of our
pseudo-labeled ground truth. We further provide two videos
for the tracking results of scenes from KITTI-360 and
Ford AV in the supplementary material for a qualitative eval-
uation.

Table 3. Ablation studies tested on all scenes from Palo Alto and
San Francisco. The initial pose is chosen randomly up to 30m from
the vehicle with up to 10◦ of rotation noise. ME: Mean error in
meters. RMSE: Root mean squared error in meters.

Method modification ME RMSE
– 1.19 3.44

No deformable offsets 1.22 3.65
No ResNet blocks at stride 1 1.22 3.51

nheads = 1 1.23 3.59
No deformable offset skip connection 1.23 3.69

No data pruning 1.23 3.62
No MLPs in transformer blocks 1.23 3.52

nblocks = 1 1.24 3.76
No attention skip connection 1.24 3.77

AV → QKV attention 1.25 3.63
No Self Attention Block 1.38 4.21

No pseudo-labels 2.37 5.15
No BEV upsampling 2.63 5.87

No encoder pretraining 4.15 9.21
No vehicle images 11.95 15.20

5.4. Ablation studies

For the ablation studies, we choose a smaller model with
the nano variant of ConvNeXt [44] as encoder, a BEV map
with size dB = 192px at qB = 2.0 m

px and cB = 32 channels,
and aerial features with size dB = 256px at qA = 0.5 m

px . We
use all scenes from Palo Alto and San Francisco as test split
and train on the rest excluding KITTI-360 which does not
contain full surround view with cameras.

We remove the individual components of our method
listed in Table 3 and report the corresponding test scores to
evaluate their effect on the localization accuracy. All compo-
nents improve the performance of the model which supports
their motivation in Sec. 3 and Sec. 4.

6. Conclusion
We present a novel method for vision-based cross-view

geolocalization that allows localizing a vehicle on an aerial
image with high metric accuracy. To evaluate the method in
cross-area and cross-vehicle settings, we combine multiple
vehicle datasets with aerial images from several orthophoto
providers to train and test our method. We implement a
pseudo-label approach to improve the inaccurate ground
truth poses of these datasets, and make the improved ground
truth publicly available. Our method outperforms previous
approaches by a large margin even under more challenging
cross-area and cross-vehicle conditions. We further show
that a standard tracking framework is capable of exploiting
the soft probability distributions predicted by our model to
determine the vehicle’s trajectory over time with sub-meter
accurate poses.
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