
System-status-aware Adaptive Network for Online Streaming Video
Understanding

Lin Geng Foo1† Jia Gong1† Zhipeng Fan2§ Jun Liu1‡

1Singapore University of Technology and Design 2New York University
{lingeng foo,jia gong}@mymail.sutd.edu.sg, zf606@nyu.edu, jun liu@sutd.edu.sg

Abstract

Recent years have witnessed great progress in deep neu-
ral networks for real-time applications. However, most
existing works do not explicitly consider the general case
where the device’s state and the available resources fluc-
tuate over time, and none of them investigate or address
the impact of varying computational resources for online
video understanding tasks. This paper proposes a System-
status-aware Adaptive Network (SAN) that considers the
device’s real-time state to provide high-quality predictions
with low delay. Usage of our agent’s policy improves ef-
ficiency and robustness to fluctuations of the system status.
On two widely used video understanding tasks, SAN obtains
state-of-the-art performance while constantly keeping pro-
cessing delays low. Moreover, training such an agent on
various types of hardware configurations is not easy as the
labeled training data might not be available, or can be com-
putationally prohibitive. To address this challenging prob-
lem, we propose a Meta Self-supervised Adaptation (MSA)
method that adapts the agent’s policy to new hardware con-
figurations at test-time, allowing for easy deployment of the
model onto other unseen hardware platforms.

1. Introduction
Online video understanding, where certain predictions

are immediately made for each video frame by using in-
formation in the current frame and potentially past frames,
is an important task right at the intersection of video-based
research and practical vision applications (e.g., self-driving
vehicles [11], security surveillance [4], streaming services
[32], and human-computer interactions [20]). In particular,
in many of these real-world video-based applications, a fast
and timely response is often crucial to ensure high usability
and reduce potential security risk. Therefore, in many prac-
tical online applications, it is essential to ensure that the
model is working with low delay while maintaining a good
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performance, which can be challenging for many existing
deep neural networks.

Recently, much effort has been made to reduce the de-
lay of deep neural networks, including research into effi-
cient network design [16,36,44], input-aware dynamic net-
works [5,6,12,24], and latency-constrained neural architec-
tures [1, 2, 21]. However, all these works do not explicitly
consider the dynamic conditions of the hardware platform,
and assume stable computation resources are readily avail-
able. In practical scenarios, the accessible computing re-
sources of the host devices can be fluctuating and dynamic
due to the fact that multiple computationally expensive yet
important threads are running concurrently. For example,
in addition to performing vision-related tasks such as object
detection, human activity recognition, and pose estimation,
state-of-the-art robotic systems usually need to simultane-
ously perform additional tasks like simultaneous localiza-
tion and mapping (SLAM) to successfully interact with hu-
mans and the environment. Those tasks are also often com-
putationally heavy and could compete with vision tasks for
computing resources. As a result, at times when the host
device is busy with other processes, conducting inference
for each model might require significantly more time than
usual, leading to extremely long delays, which could cause
safety issues and lagging responses in many real-world ap-
plications. Therefore, the study and development of models
providing reliable yet timely responses under various hard-
ware devices and fluctuating computing resources is cru-
cially important. Unfortunately, such studies are lacking in
the field.

To achieve and maintain low delay for online video
understanding tasks under a dynamic computing resource
budget, we propose a novel System-status-aware Adaptive
Network (SAN). Different from previous works, SAN ex-
plicitly considers the system status of its host device to make
on-the-fly adjustments to its computational complexity, and
is thus capable of processing video streams effectively and
efficiently in a dynamic system environment. SAN com-
prises of two components: a) a simple yet effective dynamic
main module that offers reliable predictions under various
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network depths and input resolutions; b) a lightweight agent
that learns a dynamic system-status-aware policy used to
control the execution of the main module, which facilitates
adaptation to the fluctuating system load. With the adaptiv-
ity of the main module and the control policy generated by
the agent, our SAN can achieve good performance on the
online video understanding task while maintaining a low
delay under fluctuating system loads.

In various applications, we may need to deploy SAN
onto different hardware platforms for online video under-
standing. However, it is inconvenient to train SAN for
each hardware platform, and it might also be difficult to
find adequate storage to load the large labeled dataset on
all platforms (e.g., mobile devices). In light of these dif-
ficulties, we further propose a method for deployment-time
self-supervised agent adaptation, which we call Meta Self-
supervised Adaptation (MSA). With MSA, we can conve-
niently train a SAN model on a set of local platforms, and
perform a quick deployment-time agent adaptation on a tar-
get device, without the need for the original labeled training
data. Specifically, our proposed MSA introduces an auxil-
iary task of delay prediction together with a meta-learning
procedure, that facilitates the adaptation to the target de-
ployment device.

In summary, the main contributions of this paper are:

• We are the first to explicitly consider the fluctuating
system status of the hardware device at inference time
for online video understanding. To address this, we
propose SAN, a novel system-status-aware network
that adapts its behavior according to the video stream
and the real-time status of the host system.

• We further propose a novel Meta Self-supervised
Adaptation method MSA that alleviates the training
burden and allows our model to effectively adapt to
new host devices with potentially unclear computation
profiles at deployment time.

• We empirically demonstrate that our proposed method
achieves promising performance on the challenging
online action recognition and pose estimation tasks,
where we achieve low delays under a rapidly fluctu-
ating system load without jeopardizing the quality of
the predictions.

2. Related Work
Online Video Understanding. Recently, motivated by

the increasing real-world demand, a lot of works [5,6,29,40,
46] have attempted to improve the accuracy and efficiency
of models for online video understanding tasks, such as on-
line action recognition [23, 40, 46] and online pose estima-
tion [6, 12, 29]. Several works design efficient networks to
improve models’ efficiency for online video tasks, including

the efficient 3D CNN design [46], the Temporal Shift 2D
CNN network [23] and the Skip-Convolution [12], while
other researchers introduce adaptivity into the networks,
termed as stream-aware dynamic networks [5, 25, 29] to
further reduce the network’s computation complexity while
maintaining a good performance. For example, LiteEval
[40] dynamically chooses between a coarse model and a
fine model for each frame and MAPN [6] dynamically ac-
tivates its encoder to save computation resources. How-
ever, all these existing methods do not explicitly consider
the dynamic conditions of the hardware platform, and thus
face limitations in the face of fluctuating system condi-
tions. For example, in situations when the system is under
high computational load, the model may still select to ex-
ecute the branch with high complexity and therefore incur
significantly longer delays, which is sub-optimal for time-
sensitive applications. Compared to these methods, our pro-
posed SAN is system-status-aware and thus more robust
to computational fluctuations on the models’ host devices.
To the best of our knowledge, such a system-status-aware
adaptive network that can efficiently tackle online video un-
derstanding tasks has not been explored before.

Efficient Network Designs. There are several
paradigms for efficient deep architectures, and we list a
few here. Efficient deep models such as SqueezeNet [17]
and MobileNet [16] introduce novel computation operators
using fewer parameters, while Neural Network Quantiza-
tion [3,45] methods effectively shrink the model size of the
existing models by quantizing model parameters to isolated
values. Teacher-student models [15] are also effective in
distilling knowledge from larger models into smaller ones.
Some other latency-constrained networks [37, 42] further
conduct neural architecture search (NAS) to search for an
efficient architecture. Different from all these approaches,
our SAN explicitly accounts for the dynamic system status
that is constantly changing on the device over time, allow-
ing us to perform efficient online video understanding even
with a fluctuating system status.

Reinforcement Learning (RL). RL methods [22,27,28]
train agents to navigate environments such that the reward
is maximized. To allow pre-trained RL agents to adapt to a
new environment in fewer episodes, methods based on the
few-shot setting [7, 18] have been developed. Differently,
we aim to allow our RL agent to adapt at deployment time in
a self-supervised manner (i.e., no reward signals can be pro-
vided due to the absence of labeled video data). We intro-
duce MSA, a novel method for self-supervised deployment-
time adaptation. MSA employs an auxiliary task of de-
lay prediction, and performs meta-learning to allow the RL
agent to effectively adapt its control policy to the target
hardware platform via fine-tuning on the auxiliary task.
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3. Method
Given the live video stream V = {I1, ..., It, ...} and a

seen/unseen host device whose system status syst varies
over time, our goal is to build a model that dynamically
adjusts the computational complexity of inference based on
not only the streaming input, but also the system status to
make high-quality predictions with a low delay at each step
t. To this end, our proposed model: 1) takes into account the
available computational resources to make on-the-fly deci-
sions to dynamically adjust the computation consumption
of the model, therefore maintaining the delay at low values
while keeping the prediction’s accuracy; and 2) effectively
adapts itself to unseen devices in a self-supervised manner
while still keeping its performance during deployment.

3.1. SAN: System-status-aware Adaptive Network

For better online performance amid the host device’s
varying background computational load, we propose a
System-status-aware Adaptive Network (SAN). As shown
in Fig. 1, our SAN consists of two main components: a
lightweight agent π that decides how to process the incom-
ing frame and a dynamic main network M that processes
the frame with the specified policy generated by π.

Dynamic main network. Our dynamic main network
M flexibly produces frame-wise predictions using an ar-
chitecture determined by the policy from the agent module
π. To accomplish this without extra burden on the hard-
ware system, we design a dynamic encoder that has both
dynamic depth and dynamic resolution. Our dynamic depth
mechanism gives the encoder the option of producing out-
put features at shallower intermediate layers without having
to wait for all layers to be executed. This reduces compu-
tational cost by executing a “simpler” sub-network. On the
other hand, the dynamic resolution mechanism allows our
encoder to selectively take in input images at a lower res-
olution. Crucially, this reduces the amount of pixels to be
examined by the network, effectively reducing the amount
of convolution operations. We implement both of the afore-
mentioned mechanisms in a single network, where to enable
dynamic execution depth of the network, we add early ex-
its to the network which allow the execution to end at an
intermediate layer, while to enable dynamic resolution, we
leverage the fully convolutional network and add a dynamic
global pooling operation at the end.

Specifically, as shown in Fig. 1, our dynamic encoder
selects from m input resolutions {resi}mi=1 and n model
depths {depj}nj=1, allowing for as many as m× n different
options in total. These m × n dynamic options have dif-
ferent computation complexities and levels of performance.
For online video understanding, we construct our dynamic
encoder as a 2D CNN for handling each frame, and to model
the temporal aspect, the output features from the dynamic
encoder are fed into a Long Short Term Memory network

(LSTM) at every step. The LSTM updates its hidden state
ht based on the features of the incoming frame It and its
previous state ht−1, which is then used by the task head to
determine the final prediction ŷt for the video task follow-
ing: ŷt = M(It, rest, dept, ht−1; θ), where θ refers to the
parameters of the main network M , while rest and dept are
selected by the agent introduced next. More details of our
main dynamic network are in Sec. 4 and Supplementary.

RL-based agent. The RL-based agent π controls the
dynamic main network M by generating a frame-level pro-
cessing policy (rest, dept) at each time t, which aims to
maintain the task-related accuracy acct at high level with
low delay dt. To make decisions amid the fluctuating sys-
tem loads, our lightweight agent π should be both system-
status-aware and streaming input-aware. We model our
task as a Markov Decision Process, where the agent π takes
an action at at every step t, based on the observed state st,
and transferred to the next state st+1. Crucially, state st
includes system status information syst and input stream
information ht−1, making π both system status and stream
aware. To learn an optimal policy, we propose an RL-based
method to train our agent.

Specifically, we set the observed states of the agent as
st = [ht−1, syst, gt], where syst is the system status (e.g.,
the CPU and GPU utility) 1, ht−1 is the LSTM hidden state,
and gt refers to other useful information (i.e., the previous
step’s action at−1 and delay dt−1). Then, based on the
available resolutions {resi}mi=1 and depths {depj}nj=1, we
build the action space as {ai,j = (resi, depj)}m,n

i=1,j=1. As
shown in Fig. 1, at time t, the agent π receives ht−1, syst
and gt, and generates a probability distribution over the ac-
tion space:

Pt = [p1,1t , p1,2t , ..., pm,n
t ] = π(ht−1, syst, gt;ϕ) (1)

where pi,jt ∈ [0, 1] is the probability of the action ai,j at
time t, Pt ∈ [0, 1]m·n represents the probability distribution
over the action space, and ϕ refers to the parameters of the
agent π. Then, we take the highest probability entry in Pt

(denoted as pi∗,j∗t ), select the corresponding action at =
(resi∗, depj∗) and execute the main network accordingly.

Training of SAN. To train our main network M , we
apply the loss LM based on the specified online video-
processing task. For example, for online action recognition,
LM can be the cross-entropy loss, while for online pose es-
timation, LM can be the Mean Squared Error (MSE) loss.

To control the dynamic encoder to achieve a good accu-
racy at low delay, we apply an RL-based loss Lπ to train
our agent π. Specifically, we adopt a policy gradient loss
[38,39]. To maximize the accuracy acct while reducing the

1We also collect other system parameters (e.g., the temperature of each
processor, the memory usage and the status of I/O) via three linux utilities
[9, 10, 43] to form system status syst. More details are in Supplementary.
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Figure 1. Overview of our SAN framework, which consists of two modules: the agent module π and the dynamic main network M . For
each incoming frame It, the agent module first takes in the LSTM hidden state ht−1, system-status syst, and other useful information gt,
and then decides the input resolution rest and the depth dept of M via the policy head. After that, the main network M processes the
frame according to these decisions. By controlling the behavior of the main network M via the agent π, our SAN can output high quality
and low delay predictions in the dynamic system environment. Note that the auxiliary task head of the agent is used for fine-tuning of the
agent during deployment, calibrating the learned system-status-aware features to adapt to the unseen target device.

delay dt, we set the reward of the agent at time t as:

rt = λaccacct(at, It)−max

(
dt(at, syst)− db, 0

)
(2)

where acct(at, It) and dt(at, syst) are the accuracy and de-
lay of our main network under the action at, the current
frame It, and system status syst. λacc is the coefficient of
the accuracy term, and db is a tolerance threshold for the
delay (e.g., db = 30 ms for a rate of 30 fps), which is the
acceptable delay. The policy gradient loss Lπ is defined as:

Lπ =

T∑
t=1

−rt log(pt) (3)

where pt ∈ [0, 1] is the probability of selecting the action at
at time t.

3.2. MSA: Meta Self-supervised Adaptation

Ideally, we want to deploy SAN onto many different
hardware platforms for online video applications, requiring
us to train SAN for each of those platforms, which is la-
bor intensive, computationally prohibitive, and may also be
infeasible at times due to storage concerns (e.g., mobile de-
vices). Instead, a more practical option would be to effec-
tively fine-tune a pre-trained SAN at deployment-time on
a target device. However, during deployment, the ground-
truth labels associated with the real-time video stream are
often inaccessible. To address this issue, we introduce an
auxiliary task [13, 35] of delay prediction, where the agent
π is expected to additionally predict the actual processing
time based on the selected action (i.e., the input resolution
and execution depth of main network M ).

Our intuition is that, on a new (unseen) platform, our
agent π lacks understanding of hardware status of this plat-
form, thus we need a way for the agent to quickly under-
stand it. Hence, we introduce the auxiliary task of delay

prediction, because delay times are directly related to the
system status and the model’s computational cost. There-
fore, when the agent π is fine-tuned using delay prediction,
it will be pushed to adopt a better understanding of the host
platform’s characteristics and the costs of different options
of M on that platform. Moreover, delay times can be di-
rectly observed, and can be a convenient supervision signal
on a new platform since we do not have signals from our
main task (which requires labeled video data). Therefore,
on a new platform, we can fine-tune our agent to predict
the delay by using the observed delay times as supervision,
which will improve the agent’s understanding of the device.

Although the delay prediction task improves the quality
of the intermediate features (which are also used to select
actions), fine-tuning with it does not necessarily lead to a
better policy on the host device. Hence, to better align the
performance on the auxiliary task of delay prediction with
policy learning, we further propose a meta-optimization-
based learning framework to find a good initialization for
the agent, such that updating based on the loss of delay pre-
diction would also improve the quality of the policy. Com-
bining the auxiliary task and the meta-learning framework
allows us to train SAN on a set of local hardware platforms,
and perform only a quick deployment-time adaptation on
the target device at run-time, without requiring the actual
labeled video dataset on that target device.

Auxiliary task of delay prediction. When SAN is de-
ployed to an unseen target device, the processing times of
each action at a given system status will shift significantly
due to the drift in computing profiles. Therefore, fine-tuning
on the target device is required to adapt SAN to the new
hardware characteristics. Due to the lack of ground-truth
labels for the streaming videos at run-time, we introduce a
self-supervised auxiliary task of delay prediction for adapt-
ing SAN to unseen hardware platforms. The delay predic-
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tion task calibrates the learned system-status-aware features
for the agent module π using supervisory signals (process-
ing times) that can be generated on-the-fly with only a sim-
ple timer on the device.

Specifically, an auxiliary task head is added to the agent
π, as shown in Fig. 1. The auxiliary task head takes in the
features from the agent as well as the chosen action at, to
predict the delay time dt. To train our model on the auxil-
iary task, we apply a mean-squared-error loss between our
predictions d̂t and the observed delay dt. The auxiliary loss
Laux at step t, is thus defined as: Laux,t = (dt − d̂t)

2.
At deployment time, we fine-tune the agent π on the tar-

get device using this auxiliary task only, allowing the agent
to better understand the target device’s characteristics and
processing times. However, this does not necessarily mean
that the agent has optimized its policy output – in order
to achieve that, we further introduce a meta-optimization
method as described next.

Meta-optimization for self-supervised agent adapta-
tion. During deployment onto the target device, optimizing
the auxiliary task of delay prediction is loosely connected
to improving the actual policy. To better bind the quality of
the developed policy to the delay prediction performance,
we introduce a meta-optimization step to our agent π dur-
ing training, such that fine-tuning of the auxiliary task will
also lead to a better adaptation of the policy.

We approach this problem by simulating the fine-tuning
process using the delay prediction error on multiple target
platforms, and (meta) optimize ϕ such that the update based
on the delay prediction error leads to better adaptation of the
policy as well. This will effectively link the quality of the
policy to the delay prediction performance. Here, we adopt
a meta-learning framework to tackle the problem, treating
ϕ as the meta-parameters to meta-optimize. In this context,
we denote the auxiliary task as the meta-train task and the
agent’s policy generation as the meta-test task. Our meta-
optimization algorithm aims to learn a good initialization of
ϕ, such that when it is updated via the meta-train task, it can
achieve good performance on the meta-test task.

We assume that our SAN is first trained on a source
device Dsrc, and then adapted to the additional K target
platforms {Dk

tgt}Kk=1
2. After first training our SAN on the

source device Dsrc, we freeze the main network M , and
keep a copy of the agent’s parameters (denoted as ϕmeta,0)
to initialize the meta-learning process. In the u-th meta-
learning iteration, we first meta-train the agent for each
target device Dk

tgt using its loss on the auxiliary task and
perform a pseudo-update on the meta parameters ϕmeta,u,
which can be formalized as:

ϕk
tgt,u ← ϕmeta,u − α∇ϕmeta,u

Laux,t(ϕmeta,u, D
k
tgt) (4)

2We empirically find that we can simulate a large set of target plat-
forms by setting different utility limitations on a few selected devices, as
described in our experiments.

where ϕk
tgt refers to the parameters of the meta-trained

agent πk
tgt which is about to be deployed onto the target

device Dk
tgt, and α is the learning rate for meta-training.

Then, we check the performance of the pseudo-updated
parameters on target device by meta-testing the perfor-
mance of the pseudo-updated agent πk

tgt(:;ϕ
k
tgt,u) for the

agent’s policy generation following:

Lk
meta(ϕ

k
tgt,u) = Lπ(ϕ

k
tgt,u, D

k
tgt), (5)

where Lk
meta is the meta-testing-loss from the target hard-

ware platform Dk
tgt. Intuitively, this loss penalizes our agent

based on its performance on a target device after a short pe-
riod of fine-tuning. Hence, we update our meta parameters
ϕmeta,u in the u-th meta-learning iteration as follows:

ϕmeta,u+1 ←ϕmeta,u − β

K∑
k=1

∇ϕmeta,u
Lk
meta(ϕ

k
tgt,u),

(6)
where β is the learning rate for optimizing the meta pa-
rameters, and ϕk

tgt,u is obtained via the pseudo-update in
Eq. 4. Through updating our model with this meta-learning
scheme, our agent parameters will converge towards opti-
mal parameters ϕmeta,∗ that are able to effectively adapt to
each target device through fine-tuning via the auxiliary task.

3.3. Training and Testing

As mentioned above, we consider two scenarios: deploy-
ing our SAN on a seen or unseen device.

Model training and testing for seen device. In this sce-
nario, we evaluate SAN when it is trained and tested on
the same device, which evaluates the effectiveness of our
SAN design described in Sec. 3.1. For model training, we
first utilize the dataset’s training set to initialize our main
network M , which is controlled by a random policy (ran-
domly sampling the resolution-depth pair) to improve its
accuracy via the loss LM . Then, we train our agent π using
the loss Lπ with the parameters of the main network (M )
fixed. Lastly, we fine-tune the main network M and agent
π jointly in a fully end-to-end manner with both LM and
Lπ , allowing us to obtain a high-performance video under-
standing dynamic network controlled by an optimal system-
status-aware policy on the current local device. For evalua-
tion, we test the trained SAN on the same device, but with
an unseen system status trajectory, which evaluates both the
accuracy and the delay of our SAN.

Model meta-optimization and deployment for unseen
device. In this scenario, our SAN is pre-trained and meta-
optimized on a set of seen source devices, and we evalu-
ate its efficacy when deployed to an unseen device. This
evaluates the efficacy of our MSA design described in
Sec. 3.2. At the start of training, we first initialize and
pre-train our SAN on a seen device, following the process
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described previously. Then, during meta-optimization, we
freeze the main network M and only optimize our agent
π. During meta-optimization iterations, we randomly sam-
ple video clips from the training set for meta-training and
meta-testing. For better generalization, video clips used for
meta-training are not used for meta-testing. When deploy-
ing our SAN to an unseen target device, we first fine-tune
the agent π via the auxiliary task of delay prediction. The
adapted agent is then tested for average accuracy and de-
lay over all frames in the testing set. When comparing our
method’s average accuracy and delay with others, we com-
pute the global accuracy and delay (counting both the fine-
tuning and final testing phase) for a fair comparison.

4. Experiments
We describe our setup and results below. More analysis

and details are provided in Supplementary.
SAN’s architecture. For our dynamic encoder, we adopt

the fully-convolutional backbone ResNet50 [14] to handle
various input resolutions. We add three exit ports (i.e.,
n = 3) at the end of these specific layers of ResNet50
({conv3 x, conv4 x, conv5 x} [14]) to achieve dynamic
depth. Moreover, we specifically design a convolutional
layer for each resolution-depth pair to unify the shapes of
the encoder’s output features (details in Supplementary).
Global average pooling is performed on the unified en-
coder’s output and send to the LSTM to update its hidden
state h ∈ R2048. The output of the LSTM is fed into the task
head for online video understanding. On the other hand, our
lightweight agent π consists of three fully connected lay-
ers. We utilize three widely used monitors [43] to collect
system information, which contains the status of system’s
CPU, GPU, memory, disk, I/O and fan. For model training,
we set λacc = 2, db = 0.03, α = 1e−3 and β = 1e−5.
More details of our SAN are presented in Supplementary.

Online video task settings. We compare the perfor-
mance of our SAN with the prior methods on two widely
used online video understanding tasks: 1) Online ac-
tion recognition: We follow the previous work [30] to
use the 50Salads dataset [34], since it contains very long
videos that are suitable for online video action recognition.
Here, we consider three (i.e., m = 3) resolution candi-
dates: [112, 168, 224] and use a fully-connected layer as
the task head. We compare our method with SOTA on-
line action recognition methods, including RA [30], DDL-
STM [31], AR-Net [25], and LiteEval [40]. To test mod-
els on the same platform for a fair comparison, we use
their publicly released code (AR-Net) when available and
implement the rest (RA, DDLSTM and LiteEval) on our
own. 2) Online pose estimation: We follow the exist-
ing video pose estimation works [6, 12] to conduct our ex-
periments on the Sub-JHMDB dataset [19], a collection of
11,200 frames from 316 video clips, labeled with 15 body

Table 1. Results on 50Salads dataset for online action recognition.
Method Accuracy Max Delay Mean Delay R\T Frames
RA [30] 42.6 % 76.6 ms 33.9 ms 79.1 %
DDLSTM [31] 41.1 % 407.4 ms 110.3 ms 5.9 %
LiteEval [40] 40.3 % 110.7 ms 68.9 ms 30.4 %
AR-Net [25] 40.9 % 91.1 ms 56.2 ms 62.1%
main network
+ random policy 46.2% 80.5 ms 34.1 ms 92.1%
+ stream-aware 55.4 % 80.8 ms 40.3 ms 82.0%
+ SAN 53.8% 49.4 ms 29.9 ms 95.4%

Figure 2. A trace of models’ accuracy and delay for online video-
based action recognition (left) and pose estimation (right). In the
areas masked by the gray color, we can observe a rapid increase
of the baseline model’s delay (see the second row), which corre-
sponds to the high-load status of the system.

joints. Here, we consider three (i.e., m = 3) resolution
candidates: [128, 192, 256] and follow the work of [41] to
use 3 deconvolutional layers to build the task head for pose
estimation. Moreover, we replace LSTM with a ConvL-
STM [33] to accommodate for 2D feature maps. We com-
pare our method with the existing dynamic pose estima-
tion networks, i.e., DKD [29] and Skip-Convolution [12].
Similarly, we re-implement DKD and Skip-Convolutions as
there is no publicly available code.

Experiment settings. To build dynamic systems with
varying system status, we design multiple background pro-
cesses (i.e., matrix calculators, video compressors, and
large deep learning models) to occupy various amount of
computational resources. We can then generate dynamic
system load trajectories using these processes to simulate
dynamic system load environments. During model train-
ing, we randomly generate dynamic system trajectories in
each iteration to simulate various dynamic environments to
train our SAN. During testing, for fair comparisons, we first
generate 3 dynamic trajectories unseen in training, and then
run all the evaluation experiments on these 3 fixed trajec-
tories and report the average result. To evaluate the mod-
els’ efficiency, we measure the maximum delay and mean
delay for each model. Moreover, as the videos of both
datasets [19, 34] are at 30 fps, we consider delay time < 30
ms as real-time, and measure the percentage of such real-
time predictions (R\T Frames).
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Table 2. Results on Sub-JHMDB dataset for online pose estimation.
Method Head Sho. Elb. Wri. Hip Knee Ank. Avg Max Delay Mean Delay R\T Frames
DKD [29] 98.3 96.6 90.4 87.1 99.1 96.0 92,9 94.0 133.8 ms 47.9 ms 59.9 %
SimpleBaseline [41] 97.5 97.8 91.1 86.0 99.6 96.8 92.6 94.4 129.6 ms 45.5 ms 63.8 %
Skip-Convolution [12] 98.7 97.7 92.0 88.1 99.3 96.6 91.0 95.1 115.7 ms 51.2 ms 53.7 %
main network + random policy 97.5 95.2 91.4 93.5 77.7 86.8 72.4 86.9 130.9 ms 36.1 ms 72.9%
main network + stream-aware 99.4 98.6 97.5 98.1 93.9 94.2 90.0 95.3 126.1 ms 44.7 ms 63.7%
main network + SAN 99.1 98.7 97.3 98.2 90.1 92.5 85.0 93.4 41.2 ms 33.1 ms 81.4%

4.1. Evaluating SAN on seen devices

First, we compare our SAN with the SOTA methods for
both tasks and report the results in Tab. 1 and Tab. 2. In both
tables, we also report the performance of two baselines of
our method: main network + random policy where ac-
tions are randomly selected; and main network + stream-
aware where the agent π uses information from the input
stream without considering system status. Both baselines
are not system-status-aware.

Online action recognition. Tab. 1 presents the results on
the 50Salads dataset for online action recognition. We com-
pare our method with four SOTA methods, including two
static models (i.e., RA [30] and DDLSTM [31]) and two
efficient dynamic models (i.e., AR-Net [25] and LiteEval
[40]). Our SAN outperforms these methods on all metrics,
achieving a higher accuracy while maintaining a low mean
delay (29.9ms) and high percentage of real-time frames
(95.4%). These improvements are due to our system-status-
aware design of SAN, allowing it to make on-the-fly adapta-
tions to process a higher percentage of frames in real-time.
The two baselines are not system-status-aware and therefore
perform significantly worse on the delay-related metrics, es-
pecially on max delay (80.5ms and 80.8ms vs our 49.4ms).
Compared to the random policy, stream-aware policy sig-
nificantly improves the accuracy at the cost of reduced real-
time performance. Overall, our SAN achieves superior per-
formance and at the same time also decreases the delay.

Online pose estimation. Tab. 2 presents the results on
the Sub-JHMDB dataset for online pose estimation. We
compare our SAN with a static network SimpleBaseline
[41] and two dynamic efficient networks: DKD [29] and
Skip-Convolution [12]. As shown in Tab. 2, our main net-
work + stream-aware baseline can achieve the SOTA perfor-
mance but may still incur large delays occasionally. With
the help of our system-status-aware design, our SAN can
control the maximum and mean delay at a low level while
still maintaining high accuracy.

Qualitative analysis. We analyze the effect of the sys-
tem load dynamics and show results from test-time runs
on a laptop with a NVIDIA Geforce GTX 1080 GPU (11
GB), where 10 background processes are randomly acti-
vated. Fig. 2 presents the models’ frame-level delay and ac-
curacy along with the system status. We compare our SAN
with two baselines: main network + stream-aware and
main network + random policy. In the first row of Fig. 2,

we observe that the GPU load fluctuates over time, varying
the available computational resources for the online models.
As a result, the delay of models with random/stream-aware
policy fluctuates up to around 100ms as shown in the sec-
ond row. In contrast, by using the system-status information
to control the model, our SAN is able to stabilize the delay
and avoid large delays amid the dynamic system. Moreover,
as shown in the last row, with the help of the stream-aware
design, our SAN can still obtain a similar accuracy to the
stream-aware model. These results show the advantage of
our system-status-aware and stream-aware designs, which
can simultaneously control the real-time delay and attain
high accuracy for online video understanding tasks.

4.2. Evaluating SAN with MSA on unseen devices

Our proposed MSA is introduced to achieve effective
adaptation to the unseen host devices. Here, we compare
our MSA with three baselines: 1) Direct transfer: Directly
deploying our SAN to the unseen device. 2) Feature align-
ment: Minimizing the domain gap between the source de-
vice and target device via a domain discriminator [8, 26].
3) Self-supervised fine-tune: Using our auxiliary task (de-
lay prediction) to fine tune the model without meta opti-
mization. To further demonstrate the efficacy of MSA, we
also present the upper bound, dubbed as Fully-supervised
learning, where we directly train the agent on the target en-
vironment, which eliminates the need for adaptation.

Here, we collect three hardware platforms for training
and testing: 1) Device a: a laptop with an AMD Ryzen
Threadripper 2950X and an NVIDIA Geforce GTX 1080
GPU (11 GB). 2) Device b: a desktop with an Intel(R)
Core(TM) i9-10900 and an NVIDIA Geforce RTX 2080
GPU (12 GB). 3) Device c: a workstation with an AMD
Ryzen Threadripper 3960X and an NVIDIA Geforce RTX
3090 GPU (24 GB). We randomly sample two platforms as
the seen source devices for model initialization and meta-
optimization and use the remaining one as the unseen tar-
get device for model adaptation (e.g., Source : {a, b} →
Target : {c}). Furthermore, we augment the source plat-
forms by restricting the number of available CPU and the
highest frequencies of CPU and GPU to achieve various en-
vironments with different resource configurations for better
training. The results of policy adaptation are reported in
Tab. 3 and 4. More results on other portable devices (e.g.,
NVIDIA Jetson TX2) are presented in Supplementary.
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Table 3. Results of policy adaptation across platforms for online pose estimation. More results on other platforms are in Supplementary.

Method a+b→ c a+c→ b b+c→ a
Accuracy Mean Delay R\T Frames Accuracy Mean Delay R\T Frames Accuracy Mean Delay R\T Frames

Fully-supervised learning (Upper bound) 93.0 % 28.3 ms 87.4 % 93.1 % 24.7 ms 84.9 % 92.8 % 28.1 ms 74.5 %
Direct transfer 87.3 % 28.4 ms 82.4 % 85.7 % 25.0 ms 79.5 % 90.9 % 33.5 ms 20.4%
Feature alignment 90.8 % 29.0 ms 80.4 % 91.0 % 27.2 ms 74.6 % 91.0 % 31.8 ms 64.5 %
Our self-supervised fine-tune 91.1 % 29.8 ms 79.8 % 85.8 % 21.9 ms 84.1 % 91.5 % 29.3 ms 61.7 %
Our MSA 92.8 % 29.7 ms 86.1 % 92.9 % 25.1 ms 82.2 % 92.4 % 30.0 ms 71.9 %

Table 4. Results of policy adaptation across platforms for online action recognition.

Method a+b→ c a+c→ b b+c→ a
Accuracy Mean Delay R\T Frames Accuracy Mean Delay R\T Frames Accuracy Mean Delay R\T Frames

Fully-supervised learning (Upper bound) 53.8 % 26.3 ms 95.4 % 52.6 % 31.3 ms 93.1 % 52.1 % 31.9 ms 90.4 %
Direct transfer 41.7 % 28.1 ms 77.3 % 47.2 % 34.6 ms 84.7 % 52.0 % 41.1 ms 40.6 %
Feature alignment 50.1 % 29.8 ms 82.4 % 50.3 % 32.7 ms 88.1 % 51.7 % 37.2 ms 60.5 %
Our self-supervised fine-tune 49.1 % 26.5 ms 93.8 % 51.0 % 32.2 ms 93.1 % 50.7 % 33.7 ms 87.2 %
Our MSA 52.6 % 26.8 ms 94.1 % 52.2 % 31.6 ms 92.7 % 51.9 % 32.1 ms 90.2 %

As shown in Tab. 3 and 4, the direct transfer method fails
to maintain the high accuracy and low delay simultaneously
due to the hardware configuration shift between devices. On
the other hand, by aligning the system-status-aware features
between the source and target devices, the agent finds a sub-
optimal policy to balance the accuracy and delay. Using the
auxiliary task to fine-tune the agent without meta optimiza-
tion can achieve real-time predictions on the target device,
but it sometimes fails to maintain high accuracy. Finally,
our MSA simultaneously maintains a high ratio of real-time
predictions and accurate predictions. Furthermore, the re-
sults are close to the upper bound of actually training on
the target device, showing the effectiveness of our MSA to
generalize to unseen devices.

4.3. Ablation Study

We further analyze the characteristics of our dynamic
resolution and dynamic depth mechanism, and investigate
the performance of our agent under various delay thresh-
olds db and accuracy coefficients λacc.

First, we evaluate the impact of the dynamic resolution
and depth mechanism and perform ablation studies by al-
lowing one of them to be dynamic while fixing the other.
In Tab. 5, we observe that, by allowing for dynamic resolu-
tions or dynamic depths, our main network can reduce the
maximum and mean delay while maintaining high accuracy.
Moreover, by combining these two mechanisms, our SAN
can further reduce the mean delay and suppress the maxi-
mum delay at a lower level, with even better accuracy.

Next, we investigate the performance of our SAN under
different delay thresholds db and accuracy coefficients λacc.
As shown in Tab. 6, under different values of db, our SAN
can still significantly decrease the maximum delay while
maintaining high accuracy. Furthermore, as db increases,
SAN is allowed to have higher delays before getting penal-
ized, leading to higher accuracy while slightly degrading
delay metrics, which is what we expected. We also evaluate
different values of λacc and present the results in Tab. 6. We
observe that our SAN generally achieves good accuracy and
delay performance for different values of λacc, showing that

Table 5. Ablation results for dynamic mechanism.
Setting Avg Max Delay Mean Delay
res = 256, dep = 3 94.4 % 129.6 ms 45.5 ms
res = 256, dep = [1, 3] 92.6 % 71.4 ms 39.3 ms
res = 256, dep = [1, 2, 3] 93.3 % 63.6 ms 34.5 ms
res = [128, 256], dep = 3 91.2 % 84.0 ms 43.7 ms
res = [64, 128, 192, 256], dep = 3 91.9 % 61.9 ms 38.0 ms
Our SAN 93.4 % 41.2 ms 33.1 ms

Table 6. Ablation results for different values of db and λacc.
Setting Avg Max Delay Mean Delay
db = 10 ms 92.4 % 39.2 ms 27.7 ms

= 20 ms 92.8 % 39.4 ms 30.7 ms
= 30 ms 93.4 % 41.2 ms 33.1 ms
= 40 ms 94.0 % 43.5 ms 41.9 ms

λacc = 1 91.5 % 41.0 ms 30.8 ms
= 2 93.4 % 41.2 ms 33.1 ms
= 4 94.0 % 44.6 ms 37.1 ms

it is robust to the λacc hyperparameter. Also, when λacc in-
creases, the accuracy improves and delay slightly degrades,
as we would expect.

5. Conclusion

In this work, we tackle the efficiency problem of deep
networks on devices with computational fluctuations. To
the best of our knowledge, this is the first time this prob-
lem is being explicitly tackled for online video understand-
ing tasks. We propose SAN, a novel system-status-aware
adaptive network for low-delay online action recognition
and online pose estimation tasks with a fluctuating compu-
tation budget. A self-supervised meta optimization frame-
work (MSA) is also proposed for more effective adaptation
between hardware platforms. Experiments show that our
proposed SAN and MSA obtains SOTA performance with
low delay even under a rapidly fluctuating system load.
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