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Abstract

We propose a Unified Pose Sequence Modeling ap-
proach to unify heterogeneous human behavior understand-
ing tasks based on pose data, e.g., action recognition, 3D
pose estimation and 3D early action prediction. A major
obstacle is that different pose-based tasks require different
output data formats. Specifically, the action recognition and
prediction tasks require class predictions as outputs, while
3D pose estimation requires a human pose output, which
limits existing methods to leverage task-specific network ar-
chitectures for each task. Hence, in this paper, we propose
a novel Unified Pose Sequence (UPS) model to unify het-
erogeneous output formats for the aforementioned tasks by
considering text-based action labels and coordinate-based
human poses as language sequences. Then, by optimiz-
ing a single auto-regressive transformer, we can obtain a
unified output sequence that can handle all the aforemen-
tioned tasks. Moreover, to avoid the interference brought by
the heterogeneity between different tasks, a dynamic rout-
ing mechanism is also proposed to empower our UPS with
the ability to learn which subsets of parameters should be
shared among different tasks. To evaluate the efficacy of
the proposed UPS, extensive experiments are conducted on
four different tasks with four popular behavior understand-
ing benchmarks.

1. Introduction

Pose sequences, which capture the movements of the hu-
man body via human joint coordinates, are well-known to
be an efficient and effective representation of human mo-
tion and behaviour [58,80]. This is mainly because pose se-
quences often provide enough information to characterize
complex motion patterns [31], while being robust against
superficial visual variations such as the background, cloth-
ing texture and illumination conditions [43,44]. At the same
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time, by using depth sensors such as the Kinect, pose data
can also be conveniently obtained in real-time to facilitate
downstream applications. Therefore, the potential of pose
sequences to tackle behaviour understanding has attracted a
lot of attention in recent years.

Notably, the usage of pose sequences has been widely
explored across many practical applications, including
human-robot interaction [1, 59], augmented reality [4, 51]
and security surveillance [18, 71]. Specifically, pose se-
quences, as informative inputs, can facilitate certain aspects
in these applications, such as action recognition [12, 44, 48,
66, 67, 86–88], 3D pose estimation [41, 45, 84, 92, 95, 96]
and early action prediction [23,35,39,77,78], making these
tasks popular and important areas of research.

However, existing methods for each task still often re-
quire task-specific architectures, e.g., hourglass networks
for pose estimation [84] and specialized GCN architectures
for action recognition [11,69], while the performing of mul-
tiple pose-based tasks with a single model is not well ex-
plored. Therefore, in order to perform multiple tasks, users
will often need to design and train multiple separate models,
which can be inconvenient and inefficient.

Hence, in this work, we seek to simplify and unify
the modeling for several popular and important pose-based
tasks: 3D action recognition, 2D action recognition, 3D
pose estimation and 3D early action prediction. This is a
challenging goal that has not been achieved before, requir-
ing a single model to cover a large scope involving 2D tasks,
3D tasks, as well as 2D to 3D lifting. By unifying these
pose-based tasks and removing the need to design and train
separate task-specific models to tackle different pose-based
tasks, we can greatly reduce the difficulty and complexity
involved in tackling these tasks. Moreover, a unified model
is also an elegant way of handling multiple tasks that brings
us one step closer in our pursuit of general purpose vision
systems [25], i.e., an efficient multi-purpose AI model akin
to the human brain.

To this end, we propose a Unified Pose Sequence (UPS)
model to unify the architecture and output format for mul-
tiple popular pose-based tasks. Our UPS is a single uni-
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fied model that simultaneously tackles multiple tasks with-
out task-specific designs or branches, i.e., with a unified
decoder. In order to unify the output formats of different
tasks (which can be very different) to be produced by a sin-
gle decoder, our UPS predicts a sequence of output tokens,
similar to language modeling tasks. Specifically, our UPS’s
decoder auto-regressively produces a sequence of output to-
kens, such that the output sequence can potentially be of
different lengths to meet the requirements of multiple tasks.
Additionally, these output tokens can be interpreted as text
embeddings, which are a powerful and general represen-
tation that can be mapped into various predictions as re-
quired. Moreover, to mitigate the potential destructive inter-
ference [60, 90] brought by the heterogeneity between dif-
ferent tasks, we propose a dynamic routing mechanism for
our UPS that facilitates parameter sharing between tasks.

In summary, our contributions are as follows:

• We propose a Unified Pose Sequence (UPS) model that
can tackle several popular pose-based tasks through a
single unified framework. UPS simultaneously tack-
les multiple tasks without task-specific designs or
branches by modeling the output as a sequence of to-
kens, enabling it to handle different output formats.

• On four popular pose-based tasks (3D action recog-
nition, 2D action recognition, 3D pose estimation and
3D early action prediction), UPS achieves good perfor-
mance that is comparable to state-of-the-art methods.

2. Related Work
Pose-based Tasks. Due to the practicality and effective-

ness of pose sequences in capturing human motion and be-
haviour [58, 80], how to better leverage upon them to per-
form various tasks has become an increasingly popular area
of research. There are a few important tasks in particu-
lar that have received a lot of attention. 2D and 3D Ac-
tion Recognition [12, 13, 20, 21, 36, 38, 44, 48, 66, 67, 88]
is where we predict the action class of the input 2D and
3D pose sequence respectively. In 3D Pose Estimation
[24, 41, 45, 84, 95, 96], we predict the 3D coordinates of
a human’s joints, with the input being either RGB images
[53, 70] or 2D poses [24, 41, 45, 84, 95, 96]. In this work,
we use 2D pose sequences as input. Besides, in 3D Early
Action Prediction [23, 27, 35, 39, 76–78], we would like to
predict the action performed by the subject, after observ-
ing only the front parts of each pose sequence. However,
these existing methods often require task-specific architec-
tures, and the performing of multiple pose-based tasks with
a single model is not well explored. Hence, in this work, we
seek a unified model to tackle these tasks simultaneously.

Sequence Modeling. Sequence modeling is an impor-
tant concept in the field of NLP, particularly for the gen-
eration of a sentence as a sequence of words [57, 73]. In

general, a Transformer is used in an auto-regressive man-
ner [57, 73], taking previous tokens as input to predict the
next token, and thus generating a sequence of tokens. Re-
cently, such sequence modeling has also been explored for
some vision-language tasks [8,14,25,75,97]. Different from
previous works, we explore the crucial challenge of unify-
ing several popular pose-based tasks. Not only do these
skeleton-based tasks often require different task-specific de-
signs to successfully tackle, they also require vastly differ-
ent output formats (e.g., video-level classification vs joint-
level coordinates) and input formats (e.g., 2D vs 3D pose).

Multi-task Learning. A related field is multi-task learn-
ing [15, 93], where models are trained to perform multi-
ple tasks simultaneously. In general, there are several ap-
proaches to multi-task learning, including multi-task ar-
chitecture designs [16, 50, 62, 94], optimization methods
[22, 90], and learning of task relationships [3, 17, 26, 79].
However, in existing works on multi-task learning, each
task still requires dedicated task-specific branches, thus ex-
tending new tasks in this setting will require additional sets
of parameters, e.g., task-specific heads. Differently, our
UPS unifies multiple skeleton-based tasks into one single
model by integrating all output formats into a language-
based format, and can conveniently handle various tasks
without needing any modification to the model architecture.

Language Models for Vision Tasks. Language models
have often been applied to facilitate vision-based tasks. For
instance, language is used as input in text-to-image gener-
ation [61, 85] and visual grounding [32, 83, 89], while lan-
guage is an output for the image captioning [9, 56] and vi-
sual question answering [2, 82] tasks. Here, we propose a
novel paradigm integrating language and pose into a unified
model to handle various pose and action tasks.

3. Method

3.1. Overview

In order to unify diverse pose-based human behavior un-
derstanding tasks (e.g., action recognition, 3D pose esti-
mation, early action prediction) with a single model, we
propose a novel Unified Pose Sequence model as shown
in Fig. 1. A major obstacle we face is that different tasks
require different output formats. For instance, the action
recognition task requires class predictions, while the 3D
pose estimation task requires 3D locations of human joints.

Therefore, to jointly represent the output sequences from
our UPS and heterogeneous ground-truth formats from dif-
ferent tasks, we utilize sequence modeling [8] to unify dif-
ferent target data formats and avoid multiple task-specific
output heads. Specifically, we tokenize the text-based class
labels and coordinate-based joint locations following the
standard language modeling setup and establish a unified
vocabulary. Then, given the UPS output token sequences,
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Figure 1. Illustration of the proposed UPS model. Our UPS consists of three major parts, i.e., a joint tokenizer, a UPS encoder and a
UPS decoder. The joint tokenizer takes a pose sequence (in coordinates format) as input and produces an input token sequence. Then, the
input token sequence is sent to the dynamic UPS encoder together with a task embedding indicating which task the UPS model is tackling.
The UPS encoder can adaptively determine which sets of parameters should be shared for different tasks, conditioned on the input task
embedding. Next, the encoded token sequence is sent to the UPS decoder to produce unified output sequence in an auto-regressive manner.
The UPS decoder will stop generating outputs if any of the three ending tokens (i.e., EOTAR, EOTPE, and EOTAP) is encountered.

we map the output token back to the task-required formats
via a vocabulary lookup. Furthermore, to mitigate the po-
tential destructive interference issue [60, 90] caused by si-
multaneously learning various heterogeneous tasks with a
single model, we include a dynamic design in our UPS en-
coder to adaptively learn which sets of parameters should
be shared by different tasks.

3.2. Unified Outputs Modeling

In this subsection, we describe in detail how we unify the
tokenization of heterogeneous target data formats for differ-
ent tasks, e.g., action classes in text format (action recogni-
tion and early action prediction) and 3D human joint lo-
cations in coordinates format (3D pose estimation) into a
unified category-joint look-up vocabulary. This allows us
to avoid designing multiple task-specific heads.

Action Token. In order to handle the heterogeneity be-
tween action classes and human joint coordinates, unlike
traditional representations, here we handle action category
labels purely in text format. Then the category labels in text
format (e.g., “walking”, “squatting down”) are sent to an
off-the-shelf language model (e.g., RoBERTa [47]) to ex-
tract text features as our action token scls ∈ Rd, where d
denotes the token size. Here we have ncls discrete action
tokens, where ncls is the total number of action categories.

Pose Token Sequence. To further unify pose sequences
(given in coordinates format), we leverage sequence model-
ing [8] to tokenize ground-truth 3D human joint locations.
Specifically, we assume that we have a target pose sequence
P TAR ∈ RN×J×V in 3D space, where N , J and V are se-
quence length, number of joints, and number of dimensions
respectively. We denote the j-th joint at the n-th frame as
pn,j , which is at the location (xn,j , yn,j , zn,j).

Next, we would like to represent each possible
(xn,j , yn,j , zn,j) coordinate as an item in the look-up vo-

cabulary. However, this can be difficult because the ground
truth coordinates are often given as real numbers, and it
can be infeasible to represent this in a look-up vocabulary
(with finite entries). Thus, we quantize each dimension
(i.e., X-dim, Y -dim and Z-dim) into nbins quantized bins.
Note that after quantization, we have 3 · nbins discrete bins
for X-dim, Y -dim and Z-dim in total.

Then, we can represent each bin by a text-prompted to-
ken extracted by the same language model used for action
token (e.g., RoBERTa [47]). Here, we take the X-dim as
an example: we describe the first location on the X-dim as
“The first horizontal coordinate” and so forth, where the last
location on the X-dim can be queried by “The {nbin-th}
horizontal coordinate”. Then we send these descriptions to
the pre-trained language model and extract 3 ·nbins discrete
joint tokens. In such a way, an arbitrary joint pn,j can be
denoted using 3 discrete tokens sXn,j , sYn,j and sZn,j ∈ Rd

along each dimension. Therefore, the target coordinate-
format pose sequence P TAR ∈ RN×J×V can be further
discretely tokenized into a pose token sequence STAR, i.e.,
{sX1,1, sY1,1, sZ1,1, . . . sXN,J , s

Y
N,J , s

Z
N,J}.

EOTs: End of Task Tokens. Another challenge we face
is that the different tasks can require output sequences of
different lengths. For example, for action recognition we
only require one output token to represent the class predic-
tion, while for 3D pose estimation we need to produce a
longer sequence of J joint coordinates. To adaptively pro-
duce the output token sequence as required while avoiding
the usage of multiple task-specific output heads, we intro-
duce end of task tokens (EOTs) to indicate when to stop the
decoding process for the UPS model. Similar to joint to-
kens, we leverage text prompts to produce these tokens, e.g.,
the description “action recognition ends here” is sent to the
pretrained language model to generate the ending token for
action recognition task EOTAR. Here we define 3 types of
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Figure 2. Illustration of the proposed unified vocabulary. To unify
heterogeneous target data formats, we leverage sequence modeling
and use text descriptions to represent (1) action category labels, (2)
joint coordinate values and (3) task-ending indicators. These text
descriptions are sent to the off-the-shelf RoBERTa [47] to extract
text features as our target tokens. Then, our unified vocabulary is
established naturally by matching each target output (across vari-
ous data formats) with the corresponding extracted target tokens.

EOTs: EOTAR, EOTPE, and EOTAP for action recognition,
3D pose estimation and early action prediction respectively.

Unified Vocabulary. We establish a unified vocabu-
lary containing all tokenized action categories, quantized
bins and EOTs as shown in Fig. 2. As we can see, the
unified vocabulary ΩVOB represents the mapping relation-
ships between original target formats and unified tokens.
The size of the vocabulary is (ncls + 3 · nbins + 3), i.e.,
ΩVOB ∈ R(ncls+3·nbins+3)×d.

Task Embedding. Another issue we face is: how does
our model know which task it is tackling, or which sequence
to output? In other words, during forward inference, when
we specify that we are tackling a certain task (out of a pool
of tasks), we expect our unified model to produce the output
sequence that we require. To tackle this issue, a straightfor-
ward option would be to always produce a long sequence
containing the output sequences for all tasks, but this is
an inefficient approach that is difficult to scale. Instead, a
more efficient and elegant approach is for our unified model
to learn to flexibly switch around different output formats,
and only produce the output sequence that corresponds to a
given task.

To achieve this, we introduce task embeddings τ as an
additional input to the model. Specifically, a task embed-
ding is introduced for each task (i.e., τm ∈ Rq is introduced
for the m-th task), and is sent as input to the model when
we require output sequences for the m-th task. The task
embeddings {τm}Mm=1 can be optimized in an end-to-end
manner. These task embeddings play an important role in
our routing mechanism, which is described in Sec. 3.4.

3.3. Unified Pose Sequence (UPS) Model

In this section, we describe the architecture of our UPS
in more detail. Our UPS architecture needs to be task-
agnostic, and thus utilizes simple components that have
been shown to be effective in pose-based tasks. As shown
in Fig. 1, the proposed UPS model comprises of 3 compo-
nents which are: a joint tokenizer, a dynamic UPS encoder
and a UPS decoder. Here, we let the original input pose se-
quences in coordinate formats be P IN ∈ RN×J×V , where
N , J and V denotes number of frames, number of human
joints, and number of dimensions.

Joint Coordinates Tokenizer. To tokenize the input
pose sequence P IN (which is in the coordinates format),
we introduce a joint coordinates tokenizer. which is com-
prised of three TCN-GCN layers [11]. The joint tokenizer
takes P IN ∈ RN×J×V as input, and produces input token
sequence SIN ∈ RN×J×d.

UPS Encoder. Our UPS encoder consists of Lencoder

stacks of SEM-TEM blocks, where each SEM-TEM block
is a SEM module followed by a TEM module (as described
in more detail below). The UPS encoder takes SIN as in-
puts and produce encoded hidden token features SEN ∈
RN×J×d. We remark that, as shown in Fig. 1, we design
a routing mechanism and send an additional task token to
the UPS encoder, to adaptively determine which subsets of
parameters should be shared for different tasks. Details of
the routing mechanism are outlined in Sec. 3.4. Below, we
describe the SEM and TEM in detail.

(1) Spatial Encoding Module (SEM). To obtain represen-
tative topology information among different human joints,
we use the GCN block [11, 44, 67] as a basic component
for our SEM. Each SEM is comprised of two basic GCN
blocks, where the input tokens X IN ∈ RN×J×d are fed
to the GCN blocks sequentially to produce tokens XLAT ∈
RN×J×d for the following TEM.

(2) Temporal Encoding Module (TEM). The TEM per-
forms includes a Multi-Head Self-Attention (MHSA) layer
followed by a 2-layer MLP. Importantly, the MHSA is
conducted between “frame-level” tokens in order to effi-
ciently encode temporal information over a long sequence
of frames. Specifically, we first reshape XLAT ∈ RN×J×d

as XLAT ∈ RN×J∗d, where we now have N “frame-level”
tokens of length J ∗d. The input XLAT is sent into the TEM,
and we encode the temporal relationships across frames, re-
sulting in an output XOUT ∈ RN×J∗d. XOUT is then re-
shaped to X ′

IN ∈ RN×J×d to be sent into the next module.
UPS Decoder. Our decoder produces the prediction of

the next token in an auto-regressive manner, while aggregat-
ing information from the input tokens as well as the partial
sequence of output tokens that have already been produced.

Here, our decoder consists of Ldecoder basic tranformer
blocks [19]. At inference, our decoder takes in the tokens
corresponding to the input and sequentially produce unified
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output tokens until the EOT token is encountered. Details
on training and testing are elaborated in Sec. 3.5.

3.4. Routing Mechanism

Our proposed UPS architecture can tackle several pop-
ular skeleton-based tasks (e.g., action recognition, 3D pose
estimation and early action prediction) with a unified model
and output format. However, the various tasks described
can require very different types of knowledge, and simul-
taneously tackling these tasks altogether can be challeng-
ing. In particular, using the exact same set of parameters
to tackle multiple different tasks can lead to destructive in-
terference [60, 90], and a lowered performance. Thus, we
further extend our UPS encoder with a dynamic routing
mechanism. Our dynamic routing mechanism allows tasks
to either share blocks of parameters or use separate sets of
parameters, depending on which one is more beneficial for
performance. This encourages knowledge sharing, while
mitigates the destructive interference issue.

Firstly, we introduce H parallel blocks in each layer of
the UPS encoder, where each of the H blocks in each layer
has the same architecture. Thus, our UPS encoder will con-
sist of a stack of L layers consisting of H blocks each. Fur-
thermore, we introduce block embeddings Bl,h ∈ Rq for
the h-th block in the l-th layer θl,h. Then, during forward
inference, a Block Selection step is conducted to select the
most suitable block.

In the Block Selection step, we make use of our task em-
bedding τ that is defined for each task, and use them to
selectively activate blocks at each layer to perform our dy-
namic routing. We note that such a design is unlike pre-
vious works [97] that use their task embeddings as input
tokens that are directly processed along with PIN in SEM
and TEM.

We compute the dot product between the task embedding
and the block embeddings to calculate scores to determine
which block to activate. Specifically, given a task embed-
ding τ , we perform the following steps at a layer l to select
the most suitable block among {θl,h}Hh=1, as follows:

sl,h = Bl,h · τ, h ∈ [1, H] (1)

ml = GumbelSoftmax({sl,h}Hh=1) (2)

where the selected block for the l-th layer is θl,ml
. In other

words, the block θl,ml
is chosen because its block embed-

ding Bl,ml
is the closest (and hence most suitable) to the

task embedding τ ∈ Rq . Importantly, this mechanism leads
to the samples of a task sharing the same route, while differ-
ent tasks can potentially share or not share the same route,
depending on the learned task and block embeddings. Note
that, as the Argmax operation is non-differentiable, we use
the Gumbel-Softmax operation [30] so that the entire model
can be trained in an end-to-end manner.

Task Embedding 𝜏

TEM

SEM

𝐵𝑙,1

TEM

SEM

TEM

SEM

𝐵𝑙,2 𝐵𝑙,𝐻

G

Input XIN

Block embeddings

Layer 𝑙Block selection

𝜃𝑙,1 𝜃𝑙,2 𝜃𝑙,𝐻

Figure 3. Task embeddings τ are learned to dynamically select the
optimal blocks to use during training. At each l-th layer of the en-
coder, there are H blocks {θl,h}Hh=1 to choose from (indicated in
beige and blue), with corresponding block embeddings {Bl,h}Hh=1

(indicated in green). To select the most suitable block, we compute
the dot products between task embedding τ and block embeddings
{Bl,h}Hh=1 and send them into the Gumbel-Softmax operator (in-
dicated by G⃝). By optimizing the embeddings τ and {Bl,h}Hh=1

during training, our dynamic routing mechanism can alleviate the
issue of destructive interference and improve the sharing of knowl-
edge.

3.5. Training and Testing.

Training Loss. We generate our ground truth sequences
using the techniques described in Sec. 3.2. We also use
the negative log-likelihood loss to optimize our sequence
prediction capabilities, following previous works [8, 14] on
language modeling. Specifically, the loss is formulated as:

L = − 1

K

K∑
k=1

logPϕ(yk|y<k, X) (3)

where K is the length of the ground truth sequence, ϕ refers
to all trainable parameters (i.e. ϕ = {θ,B, τ}), X is the
input pose sequence, yk refers to the k-th output token and
y<k refers to all output tokens before the k-th output token.
Intuitively, we are training our model ϕ to accurately predict
the next token, with only access to the inputs and previously
predicted tokens. We note that all tasks can be optimized
through this loss.

UPS Training. Here, we rotate the training among the
four different tasks with every iteration. Specifically, we
cycle through the tasks in this manner: 3D pose estimation
→ 2D action recognition → 3D early action prediction →
3D action recognition. We also train a corresponding task
embedding for each task.

Inference. After obtaining the trained UPS model, we
test the single unified model on all the tasks. For each
task, we perform model inference according to the opti-
mized routes learned by the corresponding task token.
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4. Implementation Details
We leverage RoBERTaBase [47] as the pre-trained lan-

guage model to extract word embeddings from text
prompts. For the UPS decoder vocabulary, it holds ac-
tion tokens, joint coordinate tokens, and EOT tokens, and
thus it has a size of (ncls + 3 · nbins + 3). To obtain repre-
sentative features from the human topology, a GCN-based
[11,88] tokenizer is utilized. For UPS encoder and decoder,
both of them consist of 3 stacked SEM-TEM blocks, i.e.,
Lencoder = Ldecoder = 3. In each layer of the UPS en-
coder, by setting H = 2, our dynamic design has 2 parallel
SEM-TEM blocks. For all block embeddings and task em-
beddings, we set q = 256, and randomly initialize them. All
experiments are conducted on 8 Nvidia V100 GPUs, and the
batch size is set as 1,024. We use AdamW [49] optimizer
with weight decay of 5e− 4. The initial learning rate is set
to 1e− 2 and gradually decays to 0.

5. Experiments
We conduct experiments on four tasks with the same uni-

fied model. The tasks are: 3D action recognition, 2D action
recognition, 3D pose estimation, and 3D early action pre-
diction. We experiment on NTU RGB+D 60 (NTU60) [64]
and NTU RGB+D 120 (NTU120) [42] datasets for 3D ac-
tion recognition and 3D early action prediction, Kinetics
400 [33] dataset for 2D action recognition and Human3.6M
[28] dataset for 3D pose estimation.

We conduct experiments on the following variants: (1)
UPSseparate, which is optimized separately on each task. (2)
UPS, which represents our full model; it is trained on all
tasks at the same time and then fine-tuned on each task
based on our task embedding. When we train on all tasks at
the same time, our dynamic routing mechanism is leveraged
in each layer to encourage different tasks to either share
common knowledge by selecting same set of parameters, or
to mitigate the destructive interference issue by using sepa-
rate sets of parameters.

5.1. 3D Action Recognition

In 3D action recognition, we are given a 3D pose se-
quence, and want to predict its action class.

Dataset. NTU RGB+D 60 [64] is a large dataset that
has been widely used for 3D action recognition. It consists
of about 56k RGB+D sequences from 60 activity classes.
NTU RGB+D 120 [42] is an extension of [64], and is cur-
rently the largest dataset for 3D action analysis. It is a
challenging dataset that contains more than 114k pose se-
quences across 120 activity classes. We follow the standard
evaluation protocol of previous works [42, 64] to evaluate
the Cross-Subject (xsub) and Cross-View (xview) protocols
for NTU60, and the Cross-Subject (xsub) and Cross-Setup
(xset) protocols for NTU120.

Table 1. Performance comparison (%) for 3D action recognition
on NTU RGB+D 60 and NTU RGB+D 120 datasets. We follow
the setting of [42, 64].

Methods NTU60 NTU120
xsub xview xsub xset

ST-GCN [88] 81.5 88.3 70.7 73.2
2s-AGCN [67] 88.5 95.1 82.2 84.1
Shift-GCN [12] 90.7 96.5 85.9 87.6
MS-G3D [48] 91.5 96.2 86.9 88.4
DSTA-Net [68] 91.5 96.4 86.6 89.0
CTR-GCN [11] 92.4 96.8 88.9 90.6
PoseConv3D [21] 94.1 97.1 86.9 90.3
InfoGCN [13] 93.0 97.1 89.8 91.2

UPSseparate 89.6 93.1 85.1 87.8
UPS 92.6 97.0 89.3 91.1

Table 2. Performance comparison (%) for 2D action recognition
on Kinetics 400 dataset. We follow the setting of [88] and report
Top-1 and Top-5 recognition accuracy.

Methods Top-1 (%) Top-5 (%)

ST-GCN [88] 30.7 52.8
2s-AGCN [67] 36.1 58.7
DGNN [66] 36.9 59.6
GCN-NAS [55] 37.1 60.1
MS-AAGCN [69] 37.8 61.0
Sybio-GNN [37] 37.2 58.1

UPSseparate 36.2 59.4
UPS 40.5 63.3

Results. Following previous works [13, 42, 48], we em-
ploy the Top-1 classification accuracy metric. As shown in
Tab. 1, our UPS model achieves good performance that is
comparable to the state-of-the-art, demonstrating the effi-
cacy of our method for 3D action recognition. Across all
evaluation protocols on NTU60 and NTU120, we observe
that by sharing one single model, UPS achieves better per-
formances compared to UPSseparate. This demonstrates the
efficacy of our method in incorporating diverse tasks into
one model.

5.2. 2D Action Recognition

The 2D skeleton action recognition task is where we pre-
dict the action class of a 2D pose sequence.

Dataset. Kinetics 400 [33] is a widely used dataset that
contains 400 action classes. It consists of more than 306k
video clips. Following previous works [88], we extract 2D
pose sequences using the OpenPose [6] toolbox. We follow
the train-test split of previous works [37, 67, 88].

Results. Following previous works [88], we employ
the Top-1 and Top-5 accuracy metrics. Note that, to unify
the input formats for our joint tokenizer, for 2D skele-
tons we manually pad the third axis (Z-dim) with all ze-
ros. As shown in Tab. 2, even when trained separately, our
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Table 3. MPJPE results (mm) for 3D pose estimation on Human3.6M. We follow the evaluation setting of [65].

Methods Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Pavllo et al. [54] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Lin et al. [40] 42.5 44.8 42.6 44.2 48.5 57.1 42.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 46.6
Cai et al. [5] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Xu et al. [81] 37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6
Wang et al. [74] 41.3 43.9 44.0 42.2 48.0 57.1 42.2 43.2 57.3 61.3 47.0 43.5 47.0 32.6 31.8 45.6
Liu et al. [46] 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
Zeng et al. [91] 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8
Zheng et al. [96] 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Chen et al. [7] 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
Shan et al. [65] 38.4 42.1 39.8 40.2 45.2 48.9 40.4 38.3 53.8 57.3 43.9 41.6 42.2 29.3 29.3 42.1
UPSseparate 39.4 44.2 38.0 42.5 43.6 52.5 40.9 49.2 53.6 70.5 43.5 45.3 48.1 30.0 31.9 44.9
UPS 37.5 39.2 36.9 40.6 39.3 46.8 39.0 41.7 50.6 63.5 40.4 37.8 44.2 26.7 29.1 40.8

Table 4. P-MPJPE results (mm) for 3D pose estimation on Human3.6M. We follow the evaluation setting of [65].

Methods Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Liu et al. [40] 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8
Pavllo et al. [54] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Cai et al. [5] 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Xu et al. [81] 31.0 34.8 34.7 34.4 36.2 43.9 31.6 33.5 42.3 49.0 37.1 33.0 39.1 26.9 31.9 36.2
Liu et al. [46] 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6
Wang et al. [74] 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 35.5
Chen et al. [7] 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6
Zheng et al. [96] 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
Shan et al. [65] 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
UPSseparate 32.4 35.6 31.4 35.3 34.3 40.7 32.9 38.7 44.6 54.1 36.9 33.5 40.6 25.9 28.0 36.3
UPS 30.3 32.2 30.8 33.1 31.1 35.2 30.3 32.1 39.4 49.6 32.9 29.2 33.9 21.6 24.5 32.5

UPSseparate obtains good recognition accuracy. For instance,
as compared to Sybio-GNN [37], our basic UPSseparate
achieves a 1.3% higher Top-5 recognition accuracy. By uni-
fying all tasks together, our full unified UPS model outper-
forms UPSseparate by a large margin, and achieves state-of-
the-art performance compared to all previous approaches on
both Top-1 and Top-5 accuracy. This suggests that by in-
tegrating different heterogeneous tasks together, our UPS
model can take advantage of each task to further benefit the
learning process for 2D skeleton-based action recognition.

5.3. 3D Pose Estimation

In 3D pose estimation, we take 2D pose sequences as
inputs and predict the corresponding 3D joint coordinates.

Dataset. Human3.6M [28] contains 3.6 million human
poses, and is one of the largest motion capture datasets. In
this dataset, skeleton data of the subjects performing vari-
ous activities are captured via motion capture. We follow
the train-test split of prior works [5, 54, 65], and use 5 sub-
jects for training and 2 subjects for testing. Following pre-
vious works [5, 46, 54, 65, 96], we use CPN [10] to extract
2D keypoints, and train our model on the detected 2D pose
sequences.

Results. Following previous works [5,65,91,96], we re-
port the mean per joint position error (MPJPE) and the Pro-
crustes MPJPE (P-MPJPE) for each action. MPJPE calcu-
lates the average Euclidean distance between the predicted
joint positions and the ground truth positions. P-MPJPE
computes the predicted results after the predicted 3D poses
are aligned to the ground truth via a rigid transformation.
As shown in Tab. 3 and Tab. 4, our UPS model achieves
good performance on both metrics, and obtains lower error
as compared to the separately-trained UPSseparate, demon-

Table 5. Performance comparison (%) of 3D early action pre-
diction on NTU60 dataset. We follow the evaluation setting of
[39, 52, 78].

Methods Observation Ratios on NTU60
...20%... ...40%... ...60%...

Jain et al. [29] 7.07 18.98 44.55
Ke et al. [34] 8.34 26.97 56.78
Weng et al. [78] 35.56 54.63 67.08
Aliakbarian et al. [63] 27.41 59.26 72.43
Wang et al. [77] 35.85 58.45 73.86
Pang et al. [52] 33.30 56.94 74.50
Tran et al. [72] 24.60 57.70 76.90
Ke et al. [35] 32.12 63.82 77.02
Li et al. [39] 42.39 72.24 82.99
Foo et al. [23] 53.98 74.34 85.03

UPSseparate 50.11 69.84 82.59
UPS 53.25 75.06 85.35

Table 6. Performance comparison (%) of 3D early action predic-
tion on NTU120 dataset. We follow the previous work [23] and
evaluate our UPS using xsub protocol.

Methods Observation Ratios on NTU120
...20%... ...40%... ...60%...

Foo et al. [23] 31.73 45.67 67.08

UPSseparate 30.46 45.91 66.76
UPS 33.35 48.12 69.95

strating the efficacy of our method for 3D pose estimation.

5.4. Early Action Prediction

In early action prediction, our goal is to correctly predict
action classes before the action are fully executed.

Dataset. We use the NTU RGB+D 60 [64] and NTU
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RGB+D 120 [42] datasets. We follow the existing works
[23, 35, 39] and evaluate our UPS on xsub protocol .

Results. We evaluate the prediction performance of our
UPS when only 20%, 40% and 60% of frames are observed,
and the results are shown in Tab. 5. Our UPS achieves
promising prediction results compared to other state-of-the-
art approaches. It is noteworthy that all the existing ap-
proaches are specifically designed for early action predic-
tion task while our UPS is able to tackle different tasks at
the same time.

6. Ablation Study
To show the efficacy of our proposed UPS, we conduct

extensive ablation experiments on three tasks, i.e., 3D ac-
tion recognition, 3D early action prediction and 3D pose
estimation. For 3D action recognition and 3D early action
prediction, we conduct experiments on the xsub protocol of
NTU RGB+D 120 dataset and report Top-1 accuracy. As
for 3D pose estimation, the ablation experiments are con-
ducted on the Human 3.6M dataset (using CPN to extract
2D pose) and we report the MPJPE metric.

Impact of depth of UPS encoder. We conduct ablation
studies on the impact of UPS encoder’s depth (Lencoder) in
Tab. 7. We find that, when we increase the depth above 3,
the performance does not improve further for all three tasks.

Impact of number of blocks in a layer (H). In Tab. 8
we ablate the decision regarding our setting of H . We find
that, when we increase the H above 2, to 5, the results do
not improve further. We also note that setting H = 2 pro-
vides a significantly improved performance from H = 1,
which is equivalent to not having dynamic routing.

Impact of Routing Mechanism. We evaluate the effi-
cacy of our proposed routing mechanism qualitatively and
quantitatively. The qualitative visualization is shown in
Fig. 4, which show that our tasks can share blocks or use
separate blocks in each layer. As we can see, different tasks
tend to share different blocks in different layers. The pose
estimation and action prediction tasks tend to share the same
block in the earlier two layers. However, for the last two
layers, the action recognition and action prediction tasks
tend to share parameters. This is possibly because the action
recognition and action prediction tasks both require action
classes as outputs. We also quantitatively evaluate the im-
pact of the dynamic routing mechanism in Tab. 9. We find
that our UPS consistently outperforms the variant without
dynamic routing (UPS w/o DR), which demonstrates the ef-
ficacy of the dynamic routing mechanism.

7. Conclusion
In this paper, we propose a novel Unified Pose Sequence

Modeling approach to unify three different pose-based hu-
man behavior understanding tasks, which are action recog-

Table 7. Evaluation of depth of UPS encoder.

Depth Action Pose Early Action Prediction ↑
Recognition ↑ Estimation ↓ ...20%... ...40%... ...60%...

1 88.0 42.0 52.05 74.14 84.29
3 89.3 40.8 53.25 75.06 85.35
5 89.2 40.8 53.21 75.07 85.22

Table 8. Evaluation of number of blocks in each layer.

Blocks Action Pose Early Action Prediction ↑
Recognition ↑ Estimation ↓ ...20%... ...40%... ...60%...

1 88.6 41.7 51.80 73.26 83.92
2 89.3 40.8 53.25 75.06 85.35
5 89.1 40.9 53.24 75.07 85.33

Table 9. Evaluation of dynamic routing (DR) mechanism.

Setting Action Pose Early Action Prediction ↑
Recognition ↑ Estimation ↓ ...20%... ...40%... ...60%...

UPS w/o DR 87.0 42.8 53.02 73.47 84.15
UPS 89.3 40.8 53.25 75.06 85.35

Block2Block1

Action
Prediction

Block2Block1

Block2Block1

Action
Recognition

Block2Block1

Block2Block1

Block2Block1

Pose
Estimation

Block2Block1

Block2Block1

Block2Block1

Layer1:

Layer2:

Layer3:

Figure 4. Qualitative visualization of block selection. Overall,
there are three layers in the UPS encoder, and each layer has two
blocks. Here, for each task, we indicate the selected blocks in each
layer with a red box. We can see that the action recognition and the
action prediction tend to share blocks in the later layers, i.e., the
last two layers, while the pose estimation and the action prediction
tend to share blocks in the earlier two layers.

nition, 3D pose estimation and early action prediction. We
leverage sequence modeling and text prompts to unify text-
based activity categories and coordinate-based human joints
into one single model. We also propose a dynamic routing
mechanism to encourage different tasks to share common
knowledge and avoid unwanted interference by adaptively
sharing different subsets of parameters.
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