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Abstract

Many defenses against adversarial attacks (e.g. robust
classifiers, randomization, or image purification) use coun-
termeasures put to work only after the attack has been
crafted. We adopt a different perspective to introduce A5

(Adversarial Augmentation Against Adversarial Attacks), a
novel framework including the first certified preemptive de-
fense against adversarial attacks. The main idea is to craft a
defensive perturbation to guarantee that any attack (up to a
given magnitude) towards the input in hand will fail. To this
aim, we leverage existing automatic perturbation analysis
tools for neural networks. We study the conditions to apply
A5 effectively, analyze the importance of the robustness of
the to-be-defended classifier, and inspect the appearance of
the robustified images. We show effective on-the-fly defen-
sive augmentation with a robustifier network that ignores
the ground truth label, and demonstrate the benefits of ro-
bustifier and classifier co-training. In our tests, A5 con-
sistently beats state of the art certified defenses on MNIST,
CIFAR10, FashionMNIST and Tinyimagenet. We also show
how to apply A5 to create certifiably robust physical ob-
jects. Our code at https://github.com/NVlabs/
A5 allows experimenting on a wide range of scenarios be-
yond the man-in-the-middle attack tested here, including the
case of physical attacks.

1. Introduction
Since Deep Neural Networks (DNNs) have been found

vulnerable to adversarial attacks [11, 30], researchers stud-
ied various protection strategies [4, 12, 20, 42, 43]. For in-
stance, adversarial training [11,30] generates attacks while
asking a DNN for the correct output in training; it is simple,
partially effective and widely adopted. Certified methods
(e.g., IBP [12], CROWN [43], CROWN-IBP [42]) do a step
more by estimating correct (although often pessimistic) out-
put bounds (Fig. 1, a) used for training. Adversarial train-
ing regularizes the classification landscape against the at-
tacks (Fig. 1, b), but high protection often produces a loss in
clean accuracy. Other partially effective defenses are based

on randomness [35, 35] or removal of the adversarial sig-
nal [13,18,27,40], by moving the input back to the space of
natural (non-attacked) data before classification (Fig. 1, c).

All the aforementioned strategies activate the defense
mechanism only after the attack has been crafted. How-
ever, when dealing with adversarial attacks, the first actor
to move has a significant advantage. For instance, perturb-
ing an image can avoid online person identification and pre-
serve privacy [6, 19, 26]. Acting first is particularly suitable
against Man in the Middle (MitM) attacks that may practi-

(a) certified bounds (b) adversarial training

(c) image purification (d) A5

Figure 1. (a) An input x ∈ y∗ is correctly classified. The grey box
(certified bounds [12, 42, 43]) shows that, under an attack δxA,
||δxA||∞ < ϵA, misclassification ((x + δxA) ∈ y0) is possible.
(b) Adversarial training [4, 20] creates robust DNNs with regular
classification landscapes: misclassification is less likely. (c) Im-
age purification [27, 40] moves the attacked input x + δxA by
δxP back to correct classification. (d) A5 preemptively moves
x into a non attackable position. The original CIFAR10 image
classified as airplane (69.8% confidence) can be misclassified un-
der attack (ship, 100% confidence). Once robustified through A5

(right), misclassification does not occur anymore.
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v A vector vj Vector j-th element
C Classifier R Robustifier

x Data δxA Attacking perturbation
δxD Defensive perturbation x+ δxA Data under attack

x+ δxD Robustified data x+ δxD + δxA Robustified data under attack
ϵD Defense magnitude, ||δxD||p < ϵD ϵRA Attack magnitude, ||δxA||p < ϵRA while training R
ϵA Attack magnitude ||δxA||p < ϵA while testing ϵCA Attack magnitude, ||δxA||p < ϵCA while training C

Table 1. Notation for data x, that are the inputs of the classifier C. We adopt an equivalent notation for physical objects w.

cally arise in automotive [32], audio processing [13,22,38],
or while communicating with a remote machine [39]. Our
idea spouses this reasoning line: we investigate a novel way
to augment the data to preemptively certify that it cannot
be attacked (Fig. 1, d). This fits in a recent research area
that up to now has received less attention than adversar-
ial training. Researchers explored image and real object
augmentation to guarantee a high recognition rate in pres-
ence of noise or geometric distortions, but not in adversar-
ial scenarios [24]. Encryption schemes coupled with deep
learning [1, 28] or watermarking [16] only partially protect
against MitM attacks. The few existing preemptive robusti-
fication methods [23] include a procedure [17] that first runs
a classifier on clean data and achieves preemptive robustifi-
cation against MitM attacks through iterative optimization;
these are partially effective and do not provide any certifica-
tion. Our novel framework encompasses most of the afore-
mentioned cases while also introducing for the first time the
concept of certified robustification. More in detail, our man-
ifold contributions are:

(i) We introduce A5 (Adversarial Augmentation Against
Adversarial Attacks), a comprehensive framework for
preemptive augmentation to make data and physical
objects certifiably robust against MitM adversarial at-
tacks. As far as we know, this is the first time certified
defense is achieved in this way. Since we provide cer-
tified robustness, we guarantee protection against any
form of white, grey or black box attack.

(ii) We test different flavours of A5 on standard datasets.
By doing so, we study the connection between the ro-
bustness of the legacy classifier, the magnitude of the
defensive augmentation, and the protection level de-
livered by A5. We show A5 achieving state-of-the-art
certified protection against MitM attacks by training
a robustifier DNN coupled with the legacy classifier,
and even better results for co-training of the robustifier
and classifier. We perform a critical, visual inspection
of the robustified images to answer an interesting theo-
retical question (how does a non-attackable image look
like?) and potentially provide directions for the acqui-
sition of inherently robust images.

(iii) Using Optical Character Recognition (OCR) as an ex-

ample, we show the application of A5 for the design of
certifiably robust physical objects, which extends [24]
to the case of certified defense against MitM attacks.

(iv) We share our code at https://github.com/
NVlabs/A5, to allow replicating our results or test-
ing A5 in scenarios not considered here, for instance
on other datasets or for protection against physical ad-
versarial attack (e.g., adversarial patches).

2. Related Work and Background

We identify three main philosophies for the development
of defenses against adversarial attacks. They are not mutu-
ally exclusive and can be adopted together.

The first approach aims at creating DNNs that are robust
to adversarial attacks: e.g., in adversarial training, attacks
are generated while training the DNN that should process
them correctly [4, 11, 20]. This regularizes the classifica-
tion landscape and makes attacks less effective (Fig. 1, b).
Adversarial training is simple but has one drawback: as at-
tack generation is computationally demanding (even after
speed up [25]), attacks are randomly sampled and cannot
cover the entire input space, thus impacting the final accu-
racy. Certified defense [12, 42, 43] can be seen as a state
of the art refined form of adversarial training: robustness
is obtained by propagating through the DNN an input in-
terval that encompass all the attacks with magnitude up to
ϵCA. The corresponding set of output bounds allows esti-
mating the worst case scenario and derive the training cost
function (e.g., worst case entropy [12, 42]). Research fo-
cuses on finding bounds that are both tight and compu-
tationally light. IBP [12] computes (and backwards) the
bounds at the cost of an additional forward and backward
pass. Since the bounds are loose at the beginning of train-
ing, a complex schedule is required to guarantee stability
and convergence. Linear relaxation [43] delivers tighter
bounds leveraging the correlation between different lay-
ers to linearly propagate signal and bounds, when possi-
ble, and eventually put in linear relation the input interval
and output bounds. CROWN [43] bounds are often tighter
than IBP, but at an impractical computational cost for large
DNNs. Among the attempts to speed up CROWN [33, 37],
CROWN-IBP [42] strikes the right balance of computa-
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tional complexity and tightness. It is implemented in the
auto LiRPA1 library [36, 37] adopted here. One limitation
of adversarial training, certified methods, and A5 as well, is
the trade-off between clean and certified (worst case under-
attack) accuracy: increasing the latter leads to a decrease
in the former [4, 12, 20, 42]. Among the architecture so-
lutions against adversarial attacks, we also mention the re-
cent development of ℓ∞-dist neurons that are inherently ro-
bust [41], and could be leveraged by A5 as well in future.

The second defense philosophy is based on active coun-
termeasures taken after the attack is crafted. Image pu-
rification [18, 27, 40] projects an attacked image onto the
manifold of natural images through a generative model
(Fig. 1, c). It is less effective than adversarial train-
ing [7], but does not make any assumption on the classi-
fier. Other forms of signal pre-processing have been pro-
posed in the field of audio processing and automatic speech
recognition, where MitM physical attacks can be easily im-
plemented [22, 38] and partially defeated by randomized
smoothing, DefenseGAN, variational autoencoder (VAE),
and Parallel WaveGAN vocoder [13]. Both certified de-
fenses and pre-processing methods do not assume any spe-
cific attack form, but the latter are less effective in white
box scenarios [2,31]. Randomization can also be used after
the attack, e.g. by changing resolution or padding an im-
age [35], or by picking random experts in a mixture, that is
proved to be more robust than deterministic DNNs [21].

A5 belongs to a third class of methods, that put in place
countermeasures before the attack (Fig. 1, d). The roots
of A5 lie in two ideas that have been only partially inves-
tigated so far. The first is that, in adversarial scenarios,
the first actor to move has a significant advantage. This
rule is already leveraged for online privacy, where a pre-
emptive adversarial attack prevents the identification of the
framed subject [6, 19]. Since adversarial attacks often gen-
eralize to many classifiers, this ploy is particularly effec-
tive [26]. Preemptive protection is also a natural form of
defense against MitM attacks that can be easily created in
contexts like automotive [32], speech and audio process-
ing [13, 22, 38], or anytime the capturing device communi-
cates with a server [39]. Encryption [1, 28] and watermark-
ing [16] coupled with deep learning work against MitM
attacks, but do not achieve full protection, are not certi-
fied, require the key to be hidden (grey box scenario) and
may significantly alter the appearance of the image. Blind-
preprocessing [23] applies a tanh transform, normalization,
quantization and thermometer encoding to achieve partial
and uncertified defense. The closest algorithm to A5 is pre-
emptive robustification [17]: given an image x and a clas-
sifier C that can be fine-tuned, it computes y0 = C(x) and
randomly samples attacks δxA against x+δxD to find a de-
fensive perturbation δxD, such that (x+ δxD + δxA) ∈ y0

1Automatic Linear Relaxation based Perturbation Analysis

(correct classification under attack). Since A5 uses certified
bounds, it results in simpler training and higher protection,
and does not require running C first, as our robustifier DNN
generalizes to all the inputs. The second idea behind A5

comes from physical adversarial examples, i.e., 3d physical
objects [3] or 2d patches [5] that consistently fool a DNN
under a wide range of viewing conditions. Reverting the at-
tacker and defender roles, the complementary cost function
leads to the creation of unadversarial examples: patches or
textures that, once applied to a real 3d object, reinforce (in-
stead of degrading) the DNN desired behaviour [24]. How-
ever, these are not designed to be inherently robust to adver-
sarial attacks. We exploit the idea in A5 in all those situa-
tions where system designers control, to some extent, the in-
puts fed to the DNN (e.g. in OCR, robotic systems or during
the design of the road infrastructure). We show as an exam-
ple the use of A5 to design certifiably protected characters
for OCR, something unexplored both in [17] and [24].

3. Method
Threat models We summarize our notation in Table 1,
whereas Fig. 2 illustrates the full A5 framework includ-
ing trainable DNNs in blue, training algorithms in green,
physical objects w, and acquired data x. MitM attacks are
crafted while transmitting data from the acquisition device
to the classifier C, while physical attacks (not tested here)
are crafted onto physical objects w, before data acquisition.
A5 can be used in a scenario where the attacker has full ac-
cess to the C: since it uses certified bounds, it is agnostic to
the specific nature of the attack. In other words, we certify
protection for any δxA, ||δxA|| < ϵA and the attacker can
use any white-, grey- or black-box attacking algorithm. We
assume that A5 can run in a protected environment, not ac-
cessible to the attacker, to perform robustification (light blue
rectangles in Fig. 2). More details and limitations of our
threat model are discussed in the Supplementary, whereas
here we first introduce useful definitions and then provide
several recipes for the use of A5 in different scenarios.

Definitions For a classifier C and input x, y = C(x) is
the logit vector output by C. Under attack, we have:

y + δy = C(x+ δxA), ||δxA||p < ϵA, (1)

where ϵA is the magnitude of the attack δxA in p-norm and
δy is the logit perturbation. Linear relaxation [43] estimates
the lower (yl) and upper (yu) bounds of y + δy, for in-
stance using IBP [12], CROWN [43], CROWN-IBP [42],
or a combination of them. The margin for the class j is
the difference between the lower bound of the ground truth
class j∗ and the upper bound of j, while it is zero by defi-
nition for j∗. More formally, for M classes the elements of
the margin vector m = [m0,m1, ...,mM−1] are: mj∗ = 0
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Figure 2. Schematic representation of the full A5 framework. It allows the robust augmentation of both physical objects w and acquired
data x to make them certifiably robust against MitM and physical (not tested here) adversarial attacks.

and mj = yl
j∗ − yu

j , ∀j ̸= j∗. The confidence is obtained
by applying softmax to m:

pj(x) = e−mj/

M−1∑
k=0

e−mk , (2)

and thus the worst case cross entropy E(x) is:

E(x) = −
M−1∑
j=0

ŷj log(pj(x)), (3)

where ŷj is the one-hot-encoding of j∗. To formally intro-
duce A5, we first give the following definitions:

Definition 1 (ϵA-robustness). Given an input x and a clas-
sifier C, we say that x is ϵA-robust with respect to C in
norm p if ∀δxA, ||δxA||p < ϵA, C(x+ δxA) generates the
correct classification output.

Definition 2 (robustification). For a given input x and clas-
sifier C, robustification is the process of finding a defensive
augmentation δxD, ||δxD||p < ϵD, such that x + δxD is
ϵA-robust with respect to C in norm p.

We compute certified CROWN-IBP bounds through
auto LiRPA [37] and optimize E(x + δxD) to find pre-
emptive, defensive perturbations δxD that make x + δxD

ϵA-robust, following the training recipes provided here. We
also show how to find defensive perturbations δwD for
physical objects w using the same approach.

Offline robustification with ground truth (A5/O):
Consider a legacy classifier C that has been certifiably
trained (e.g. through CROWN-IBP [42]) against attacks of
magnitude ϵCA. Given an input x and its class j∗, we want
to find a defensive perturbation δxD, ||δxD||p < ϵD, such
that x+ δxD is ϵRA-robust with respect to C in p-norm. Our
solution to this problem is A5/Offline (or A5/O).

To force ||δxD||p < ϵD, we parameterize δxD via a vec-
tor z to which we apply an element-wise sigmoid:

δxD = δxD(z) = [δxD(z)0, . . . , δxD(z)K−1] (4)
δxD(z)j = 2ϵD[1/(1 + e−zj )− 0.5], (5)

where K is the number of elements in x. This is a robust
classification problem where z is the only unknown. For
any x, we minimize the worst case cross entropy:

z = argminz̃ E[x+ δxD(z̃)], (6)

using RMSProp. Notice that the magnitude of the attack
used during robustification (ϵRA) and that adopted to train C
(ϵCA) can be different. Furthermore, similarly to adversarial
training and certified methods, these can also be different
from the target attack magnitude, ϵA.

A5/O is similar in spirit to preemptive image robustifi-
cation [17], but does not need C to run on the clean input
before robustification. Although A5/O could be used in a
similar way to robustify x accordingly to the class C(x),
running C first and then iteratively solving the optimization
problem in Eq. 6 makes it hardly usable in practice. There-
fore, it does not directly serve any practical purpose, but it
helps answering important theoretical questions (e.g., under
which conditions can we robustify x? What does a robus-
tified image looks like?) and establishing a baseline with
known ground truth and no computational constraints.

Online robustification with robustifier R, legacy C
(A5/R): We introduce a second recipe, A5/R, where we
train a robustifier DNN R that takes in input x, no ground
truth label, and outputs z, from which a defensive pertur-
bation δxD, ||δxD||p < ϵD, is computed as in Eq. 5. We
assume again that a robust legacy C is given and we train
R to make each x + δxD in the training dataset ϵRA-robust
with respect to C in p-norm. More formally, the weights θR

of R are found by minimization of the average worst case
entropy on the training dataset E(θR), defined as:

z = R(x|θR), E(θR) = (1/N)
∑
x

E[x+ δxD(z)], (7)

where N is the dataset size. Unlike preemptive robustifica-
tion [17], R does not iteratively solve a complex optimiza-
tion problem, neither we need running C before R. There-
fore, we can use A5/R to protect x against MitM adversar-
ial attacks on-the-fly, ignoring its class, soon after its acqui-
sition, and before its transmission to C (see A5/R in Sup-
plementary). Furthermore, since R is trained for a specific
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C, it can be deployed on the field (e.g., into the firmware of
the acquisition devices) without changing (and thus main-
taining the legacy of) the classifier infrastructure.

Online robustification with robustifier R, retrained C
(A5/RC): The A5/RC recipe is equivalent to A5/R, but
it leverages the co-adaptation of C and R by joint training
(see A5/RC in Supplementary). The cost function is again
the average worst case entropy E(θC ,θR), defined now as:

z = R(x|θR), y = C(x+ δxD|θC), (8)

E(θC ,θR) = (1/N)
∑
x

E[x+ δxD(z)], (9)

where θC are the parameters of C. Training R and C
from scratch is often unstable and requires careful tuning to
achieve convergence (likewise robust classifiers [12, 42]).
Therefore, we first train R with A5/C and then fine tune
R and C together. During the tuning phase, we can use
random input augmentation to prevent overfitting (see Sec-
tion 4 and Supplementary for details). Differently from
A5/R, A5/RC does not preserve the legacy classifier C,
but it achieves the same scope (with more effectiveness) in
terms of protection against MitM attacks.

Offline physical robustification with (A5/PC) and with-
out (A5/P ) retraining C, with ground truth: This
recipe aims at producing physical objects that are certifi-
ably robust against MitM attacks (see A5/P , A5/PC in
Supplementary). Similarly to unadversarial objects [24], we
assume that the system creator can design the entire infras-
tructure and the attacker cannot interfere in this phase. The
problem is formally defined for A5/PC as:

x+ δxD = A(w + δwD), ||δwD)|| < ϵD, (10)

E(θC , δwD) = (1/N)
∑
x

E(x+ δxD) (11)

where w is the object appearance, whereas x = A(w) is the
data acquisition model (e.g., image formation). N is here
the number of random samples generated as x + δxD =
A(w+ δwD); it is important noticing in fact that the acqui-
sition process is not deterministic: as an exemplary case we
mention OCR, where w is the shape of a character, while A
may include random perspective transformations, contrast
and brightness changes, noise addition and blurring, that
may occur on a real camera. The defensive perturbation
δwD represents a change in the physical character appear-
ance w that decreases the success rate of an attack towards
the acquired image x (therefore after framing the character
with A) and the classifier C.

In A5/P we change the character shapes and use the
legacy classifier C; in A5/PC we also train C while es-
timating the robust characters w + δw. In both cases C

ϵA ϵCA = 0.0 ϵCA = 0.1 ϵCA = 0.2 ϵCA = 0.3 ϵCA = 0.4

0.1 — — 1.17 [—, 2.24] [42] — —
0.1 0.81 [89.02, 100.00] 0.92 [2.00, 5.41] 1.32 [2.14, 2.60] 1.44 [2.33, 2.63] 2.42 [3.36, 3.41]

0.3 — — — 1.82 [—, 7.02] [42] —
0.3 0.69 [100.00, 100.00] 0.94 [98.41, 100.00] 1.30 [99.62, 100.00] 1.41 [7.06, 9.98] 2.58 [7.03, 7.68]

Table 2. Error on clean data and (within brackets) under autoat-
tack [8, 9] and certified, for MNIST classifiers trained by us with
CROWN-IBP [42], under attack ϵA = {0.1, 0.3}; we also show
the metrics reported in [42]. A 100% certified error rate identifies
DNNs that are not protected against attacks.

ϵRA = ϵA ϵD ϵCA = 0.0 ϵCA = 0.1 ϵCA = 0.2 ϵCA = 0.3 ϵCA = 0.4

0.1 0.05 0.79 [87.09, 100.00] 0.82 [1.51, 2.89] 1.22 [1.64, 1.86] 1.34 [1.76, 1.87] 2.38 [2.91, 2.92]
0.1 0.10 0.79 [86.51, 100.00] 0.72 [1.21, 1.92] 1.15 [1.43, 1.49] 1.34 [1.50, 1.58] 2.41 [2.71, 2.74]
0.1 0.20 0.89 [86.40, 100.00] 0.56 [0.78, 1.04] 1.13 [1.18, 1.21] 1.35 [1.37, 1.38] 2.40 [2.55, 2.55]
0.1 0.30 0.93 [86.44, 100.00] 0.51 [0.57, 0.70] 1.14 [1.16, 1.17] 1.34 [1.37, 1.37] 2.38 [2.52, 2.52]
0.1 0.40 0.99 [85.93, 100.00] 0.52 [0.53, 0.60] 1.14 [1.16, 1.16] 1.35 [1.38, 1.38] 2.44 [2.51, 2.51]

0.3 0.05 0.71 [100.00, 100.00] 0.93 [97.18, 100.00] 1.34 [99.17, 100.00] 1.35 [5.16, 6.97] 2.55 [6.00, 6.42]
0.3 0.10 0.72 [100.00, 100.00] 0.88 [95.32, 100.00] 1.36 [98.58, 100.00] 1.33 [4.12, 5.19] 2.49 [5.54, 5.85]
0.3 0.20 0.72 [100.00, 100.00] 0.88 [90.62, 100.00] 1.41 [96.21, 100.00] 1.32 [3.21, 3.77] 2.35 [5.02, 5.22]
0.3 0.30 0.73 [100.00, 100.00] 0.89 [86.28, 100.00] 1.41 [94.18, 100.00] 1.31 [2.91, 3.40] 2.32 [4.66, 4.81]
0.3 0.40 0.81 [100.00, 100.00] 0.85 [83.49, 100.00] 1.42 [92.63, 100.00] 1.32 [2.74, 3.20] 2.28 [4.16, 4.29]

Table 3. Error on clean data and (within brackets) under autoat-
tack [8, 9] and certified, for MNIST, A5/O, under attack ϵA =
{0.1, 0.3}. During training we use ϵRA = ϵA.

ϵRA = ϵA ϵD ϵCA = 0.0 ϵCA = 0.1 ϵCA = 0.2 ϵCA = 0.3 ϵCA = 0.4

0.1 0.05 0.82 [85.50, 100.00] 0.95 [1.71, 3.58] 1.30 [1.82, 2.02] 1.40 [1.86, 2.03] 2.43 [2.96, 2.97]
0.1 0.10 0.81 [82.87, 100.00] 1.00 [1.48, 2.54] 1.19 [1.62, 1.73] 1.40 [1.68, 1.74] 2.38 [2.77, 2.79]
0.1 0.20 0.88 [78.48, 100.00] 0.93 [1.33, 1.77] 1.20 [1.42, 1.52] 1.31 [1.53, 1.59] 2.26 [2.55, 2.57]
0.1 0.30 0.99 [75.89, 100.00] 0.91 [1.16, 1.54] 1.14 [1.31, 1.36] 1.26 [1.43, 1.47] 2.20 [2.42, 2.43]
0.1 0.40 1.04 [75.69, 100.00] 0.87 [1.05, 1.35] 1.14 [1.27, 1.33] 1.24 [1.43, 1.46] 2.22 [2.41, 2.43]

0.3 0.05 0.69 [100.00, 100.00] 0.94 [96.93, 100.00] 1.33 [99.11, 100.00] 1.41 [5.13, 6.91] 2.58 [5.77, 6.09]
0.3 0.10 0.71 [100.00, 100.00] 0.91 [95.09, 100.00] 1.33 [98.47, 100.00] 1.38 [3.86, 4.81] 2.55 [4.71, 4.83]
0.3 0.20 0.72 [100.00, 100.00] 0.92 [90.13, 100.00] 1.37 [96.08, 100.00] 1.41 [2.26, 2.63] 2.55 [3.33, 3.40]
0.3 0.30 0.75 [100.00, 100.00] 0.93 [85.54, 100.00] 1.35 [93.36, 100.00] 1.32 [1.86, 1.99] 2.37 [2.86, 2.88]
0.3 0.40 0.83 [100.00, 100.00] 0.96 [82.48, 100.00] 1.36 [92.15, 100.00] 1.29 [1.69, 1.83] 2.35 [2.67, 2.69]

Table 4. Error on clean data and (within brackets) under autoat-
tack [8, 9] and certified, for MNIST, A5/R, under attack ϵA =
{0.1, 0.3}. During training we use ϵRA = ϵA.

is previously trained to be robust, e.g., through CROWN-
IBP [42]. The A5/P and A5/PC recipes find application
in all those situations where the developer can design the
entire infrastructure; beyond OCR, other examples are road
sign or robotic tool design and classification.

4. Results and discussion
We test A5/O, A5/R, and A5/RC on MNIST [10], CI-

FAR10 [14], FashionMNIST [34], and Tinyimageenet [15],
that have been widely used to establish significant mile-
stones in the adversarial defense field. Training schedules
and DNN architectures are given in the Supplementary. In
all cases we use a p = ∞ norm for the attack and defense.
Our intention is to show the improvement achieved by A5

over traditional, certified methods like CROWN-IBP. The
reader should anyway keep in mind that the direct compari-
son of A5 and CROWN-IBP is partially unfair, as CROWN-
IBP does not apply any preemptive defense.

We first use CROWN-IBP to train five certifiably ro-
bust MNIST classifiers with varying levels of robustness,
for training attacks ϵCA = 0.0 (unprotected C) and ϵCA =
{0.1, 0.2, 0.3, 0.4}. Their clean and certified errors are re-
ported in Table 2, for attacks ϵA = {0.1, 0.3}. We also
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ϵRA = ϵA ϵD ϵCA = 0.0 ϵCA = 0.1 ϵCA = 0.2 ϵCA = 0.3 ϵCA = 0.4

0.1 0.05 88.66 [88.66, 88.66] 1.00 [1.38, 2.35] 1.16 [1.61, 2.46] 1.14 [1.54, 2.29] 1.37 [1.72, 2.33]
0.1 0.10 88.66 [88.66, 88.66] 0.77 [0.95, 1.40] 0.99 [1.16, 1.56] 0.86 [1.03, 1.42] 1.13 [1.31, 1.72]
0.1 0.20 88.66 [88.66, 88.66] 0.69 [0.80, 1.05] 0.84 [0.94, 1.25] 0.96 [1.07, 1.33] 0.88 [1.10, 1.54]
0.1 0.30 88.66 [88.66, 88.66] 0.64 [0.70, 1.02] 0.91 [0.99, 1.16] 0.79 [0.88, 1.21] 1.00 [1.12, 1.43]
0.1 0.40 88.66 [88.66, 88.66] 0.61 [0.68, 0.88] 0.93 [0.99, 1.18] 0.69 [0.76, 1.10] 1.00 [1.03, 1.30]

0.3 0.05 88.66 [88.66, 88.66] 88.66 [88.66, 88.66] 2.57 [8.35, 10.86] 3.42 [9.51, 11.72] 8.00 [18.05, 19.77]
0.3 0.10 88.66 [88.66, 88.66] 88.66 [88.66, 88.66] 2.07 [5.66, 7.56] 2.35 [6.18, 8.07] 2.35 [6.31, 7.93]
0.3 0.20 88.66 [88.66, 88.66] 1.68 [3.11, 4.79] 1.40 [2.42, 3.62] 1.28 [2.82, 4.01] 1.88 [3.53, 4.90]
0.3 0.30 88.66 [88.66, 88.66] 0.84 [0.96, 1.38] 1.00 [1.14, 1.36] 0.94 [1.15, 1.59] 1.07 [1.39, 1.90]
0.3 0.40 88.66 [88.66, 88.66] 0.72 [0.80, 1.03] 0.75 [0.82, 1.06] 0.91 [1.14, 1.68] 0.87 [1.14, 1.50]

Table 5. Error on clean data and (within brackets) under au-
toattack [8, 9] and certified, for MNIST, A5/RC, under attack
ϵA = {0.1, 0.3}. During training we use ϵRA = ϵA, and data
augmentation.

report the error rates estimated with autoattack [8, 9], an
automatic toll based on an ensemble of four attacks to eval-
uate the practical DNN robustness. These error rates are in
the same ballpark of those reported in the CROWN-IBP pa-
per [42]: they represent the baseline for the analysis of the
different A5 recipes considered here.

For each C we run A5/O on the MNIST test set, for
defense magnitudes ϵD = {0.05, 0.1, 0.2, 0.3, 0.4}. Dur-
ing the optimization of the entropy in Eq. 6, we use attacks
ϵRA = {0.1, 0.3}, not necessarily equal to ϵCA. Table 3 re-
ports the clean, autoattack, and certified errors for a test-
ing attack ϵA = ϵRA. When C is not robust (ϵCA = 0.0),
A5/O does not reduce the certified error2, otherwise it gen-
erally overcomes the base CROWN-IBP classifier, as shown
by comparing against the error rates in Table 2. As a rule
of thumb, the best clean / certified error trade off is often
achieved for ϵRA = ϵCA = ϵA. Results also improve, as ex-
pected, for larger defenses ϵD, when A5/O beat CROWN-
IBP by a significant margin on clean and certified errors.
However, A5/O does not work well when the legacy C is
trained with a large ϵCA, possibly because of its initial low
clean accuracy. The results are consistent with our inter-
pretation of the effects of adversarial training and robusti-
fication on the classification landscape (Fig. 1): training C
with a large ϵCA creates classification valleys wide enough
to accommodate x+ δxD + δxA, rendering the adversarial
attacks ineffective. A5 moves any x towards the centers of
the valleys; a large ϵD allows moving them more easily. Too
large ϵCA remain however detrimental for the clean accuracy.

Table 4 reports results for A5/R, demonstrating that
training a DNN robustifier R for on-the-fly, certified robus-
tification, ignoring the ground truth, is feasible. Likewise
A5/O, A5/R beats the base CROWN-IBP classifier by a
significant margin. Sometimes A5/O does better by lever-
aging the knowledge of the ground truth class, whereas the
regular robustification signal generated by A5/R is more
effective in other cases.

Our last MNIST experiment investigates A5/RC that
does not preserve the legacy C like A5/R, but achieves bet-

2Coherently with [24], the worst case cross entropy improves, but not
enough to affect the ranking of the classified classes under attack.

ϵCA ϵD ϵRA = 4/255 ϵRA = 8/255 ϵRA = 16/255

8/255 4/255 52.75 [63.47, 64.09] 53.34 [62.42, 62.79] 53.75 [64.92, 65.49]
8/255 8/255 51.06 [60.04, 60.73] 52.36 [59.24, 59.58] 53.16 [63.50, 64.03]
8/255 16/255 48.72 [54.89, 55.25] 50.60 [55.22, 55.38] 52.23 [60.79, 61.14]
8/255 32/255 45.68 [49.51, 49.74] 48.06 [50.86, 50.94] 50.99 [57.37, 57.61]

Table 6. Error on clean data and (within brackets) under au-
toattack [8, 9] and certified, for CIFAR10, A5/O, under attack
ϵA = 8/255. During training we use different ϵRA and ϵD . The ro-
bust classifier trained with CROWN-IBP has clean [and certified]
errors equal to 54.02 [66.94] or 45.47 [69.55], depending on the
CROWN-IBP training configuration [42].

ϵCA ϵD ϵRA = 4/255 ϵRA = 8/255 ϵRA = 16/255

8/255 0/255 54.60 [66.34, 67.11] 54.60 [66.34, 67.11] 54.60 [66.31, 67.11]

8/255 4/255 53.73 [64.07, 64.57] 54.12 [63.32, 63.74] 54.37 [63.58, 64.03]
8/255 8/255 52.91 [62.59, 63.12] 53.24 [61.38, 61.93] 54.54 [60.85, 61.16]
8/255 16/255 51.58 [60.40, 61.02] 51.95 [59.21, 59.67] 54.44 [59.87, 60.11]
8/255 32/255 50.91 [57.26, 57.75] 51.70 [56.91, 57.43] 54.05 [58.39, 58.73]

Table 7. Error on clean data and (within brackets) under au-
toattack [8, 9] and certified, for CIFAR10, A5/R, under attack
ϵA = 8/255. During training we use different ϵRA and ϵD . The
robustifier R in the first row uses ϵD = 0 and thus it does not pro-
vide any form of defense — the error reported here is equivalent
to that of a robust classifier trained with CROWN-IBP [42].

ϵCA ϵD ϵRA = 4/255 ϵRA = 8/255 ϵRA = 16/255

8/255 0/255 50.24 [69.17, 73.65] 58.63 [69.25, 70.63] 74.28 [77.82, 77.91]

8/255 4/255 46.76 [63.03, 70.99] 54.05 [62.80, 64.44] 67.59 [71.20, 71.32]
8/255 8/255 41.24 [54.01, 64.31] 50.74 [56.63, 59.49] 65.96 [67.63, 67.78]
8/255 16/255 36.96 [42.45, 52.90] 39.15 [41.33, 44.22] 58.17 [58.67, 58.85]
8/255 32/255 35.26 [37.13, 42.76] 41.59 [43.01, 45.55] 42.25 [43.02, 44.08]

Table 8. Error on clean data and (within brackets) under au-
toattack [8, 9] and certified, for CIFAR10, A5/RC, under attack
ϵA = 8/255. During training we use different ϵRA and ϵD . The ro-
bustifier R in the first row uses ϵD = 0 and thus it does not provide
any form of defense, whereas the corresponding robust CROWN-
IBP classifier is fine tuned using ϵCA = ϵR during training.

ter clean accuracy and protection (Table 5). In the Supple-
mentary we discuss the role of data augmentation to achieve
this result. Interestingly, the best results are obtained when
C is initially trained for ϵCA ≤ ϵA, probably because C has
an initial high clean accuracy and subsequently co-adapts
with R to also guarantee a small certified error.

Fig. 3 shows examples of robustification on MNIST. At
visual inspection, A5/O, A5/R, and A5/RC act similarly
on these images: they add contrast and enhance the high
frequency features (i.e., edges) of the digits. The few fail-
ure cases are often pictures that look ambiguous even to a
human observer (right panels in Fig. 3).

We perform tests on CIFAR10 and compare A5 against
a state of the art CROWN-IBP classifiers C, trained with
ϵCA = 8.8/255, that we also adopt as legacy C for A5.
To test the effect of the magnitude of the attack used for
robustification (with A5/O) or for training R (for A5/R,
A5/RC), we use ϵRA = {4/255, 8/255, 16/255} that are
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Figure 3. Successful and failed robustifications for A5/O, A5/R, and A5/RC, for MNIST (ϵA = ϵCA = ϵRA = ϵD = 0.3) and CIFAR10
(ϵA = 8.8/255, ϵCA = 8/255, ϵRA = 4/255, and ϵD = 32/255). Each triplet shows the original (left) and robustified (center) images;
the rightmost panel is the defensive augmentation. All the A5 recipes consistently increase the contrast and the high frequency content
on MNIST, where failure cases are ambiguous even for a human observer. For CIFAR10, A5/O leverage isolated pixel changes, whereas
A5/R and A5/RC consistently increase the color contrast and saturation, similarly to results in literature [17].

Figure 4. The first, second and third row show respectively the robustified (w + δwD), nominal (w) and robustification (δwD) sets of 62
letters considered for testing A5/PC. The last row show examples of the robustified letters after framing them, x+δxD = A(w+δwD).

smaller, equal or greater than ϵCA. Results in Table 6 are
consistent with those measured for MNIST: A5/O signifi-

cantly improves the clean and certified error rates over the
base CROWN-IBP classifier. Training R through A5/R
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Algo Error [certified error]
Vanilla 0.89% [100.00%]

CROWN-IBP 3.85% [13.85%]
A5/P 3.08% [11.84%]
A5/PC 0.73% [4.20%]

Table 9. Error and certified error for the classification of the 62
characters in Fig. 4, for ϵA = 0.1 and different algorithms. A5/P
changes the physical shape of the letters to achieve robustness after
framing them; A5/PC also trains the associated classifier.

produces a smaller improvement, still sufficient to beat the
CROWN-IBP classifier by a significant margin (Table 7).
The value of ϵRA has a significant impact on the final re-
sult: if too large (ϵRA > ϵA), the clean accuracy is penalized,
because A5 looks for very large plateaus in the classifica-
tion landscape, that are hard or impossible to find. In other
words, we observe for A5 a trade-off between the clean and
certified accuracy, likewise adversarial training and certified
methods. Best results on CIFAR10 are achieved again by
A5/RC, when ϵRA is equal or slightly smaller than ϵA = ϵCA.
The improvements in clean and certified error are in this
case in the impressive range of 19% and 24% respectively
(Table 8). We also notice here that the theoretical certified
error rates measured with auto LiRPA [37] in A5 and those
measured experimentally by autoattack [8, 9] are close for
A5, whose working point at convergence may favor the con-
sistency between these two estimates.

Also for CIFAR10 we perform a visual inspection of
defensive augmentation (Fig. 3). A5/O exploits a slight
contrast increase and modifies isolated pixels: likewise ad-
versarial attacks with small p norm (up to single pixel at-
tacks [29]), the same seems possible when crafting defen-
sive perturbations. Preemptive robustification [17] shows a
similar pattern (see their Fig. 6): non natural textures and
enhanced color saturation emerge in their images for large
defensive perturbations. The robust images crafted by R
in A5/R or A5/RC, however, are different: they gener-
ally show increased contrast and color saturation, without
the textures generated by A5/O and [17]. We speculate that
these textures may be associated with the iterative optimiza-
tion in A5/O and [17], that may both suffer some form of
obfuscated gradient [2]; a more regular defense is instead
generated by R without resorting to any iterative process.

Additional results on FashionMNIST and Tinyimagenet,
overall consistent with the ones presented here and show-
ing the quantitative advantages provided by A5 on these
datasets, are reported in the Supplementary. These exper-
iments highlight two important facts. The first one is that
the integration of the design philosophy of A5 with that of
other recent ideas in the field of adversarial defense (like
the ℓ∞-dist neurons that implement 1-Lipschitz functions
and are inherently robust to adversarial attacks) may lead to

even bigger improvements in terms of certified robustness.
The second is that the integration of different defense strate-
gies may indeed be strictly needed to guarantee further pro-
gresses, as scaling to very large dataset remains problematic
even for a preemptive robustification algorithms like A5.

Finally, for A5/P and A5/PC, we test the classification
of an alphabet of 62 characters (Fig. 4), after random ro-
tation, shift, perspective distortion, noise addition, blurring
and color jittering (details in Supplementary), that simulate
the scanning of a document for OCR. Table 9 shows the
clean and certified errors for: a vanilla, non robust classi-
fier; a CROWN-IBP classifier; A5/P ; and A5/PC. A5

achieves again a significant improvement both on clean and
certified errors: A5/PC has better (0.73%) accuracy of the
vanilla C (0.89%) and can be attacked in only 4.20% of the
cases. This results is obtained with a slight modification of
the shape of the prototype characters shown in Fig. 4.

5. Discussion and conclusion

We introduce A5, the first framework that leverages ad-
versarial augmentation to preemptively modify the input of
a DNN or a physical object, to make it certifiable robust
against adversarial attacks. A5 is not simply complemen-
tary to other defense methods: its tights with them are strict
and they can be used together to achieve higher robustness.
For instance, one of the limitations we found is that A5/R
requires a somehow robust initial classifier C. Co-training
R and a poorly robust C easily compensates for the ini-
tially low robustness of C and boosts its high clean accu-
racy while also achieving state of the art results in terms of
certified accuracy; finding the optimal initial robustness of
C remains an open question though.

Here we do not investigate all the possible A5 recipes:
in its most general implementation (A5/PRC) the physical
objects, R and C could all be optimized at the same time.
This opportunity can be explored through the released code
at https://github.com/NVlabs/A5. This will also
serve answering other questions that do not find space here:
for instance, we do not know if robustification generalizes
to other classifiers as adversarial attacks do, how A5 works
in norms other than p = ∞, and how much it can further
improve if coupled with state-of-the-art solutions like the
recently proposed ℓ∞-dist neurons [41].

Different A5 recipes find applications in scenarios where
the user can control the acquisition device, equip it with R
and guarantee its protection (e.g., image acquisition on a
phone before server communication) or while designing the
infrastructure (e.g., robust road signs creation); it may be
not suitable for more general adversarial scenarios. Overall,
we believe that the practical deployment of robust systems
may benefit from (or even require) methods for both robust
classifiers and preemptive robustification.
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