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Figure 1. We propose VIVE3D, a novel method that creates a powerful personalized 3D-aware generator using a low number of selected
images of a target person. Given a new video of that person, we can faithfully modify several facial attributes as well as the camera
viewpoint of the head crop. Finally, we seamlessly composite the edited face with the source frame in a temporally and spatially consistent
manner, while retaining a plausible composition with the static components of the frame outside of the generator’s region. The dotted
squares in the center frame denote the reference regions for the three different camera poses in the column below.

Abstract
We introduce VIVE3D, a novel approach that extends the

capabilities of image-based 3D GANs to video editing and
is able to represent the input video in an identity-preserving
and temporally consistent way. We propose two new build-
ing blocks. First, we introduce a novel GAN inversion tech-
nique specifically tailored to 3D GANs by jointly embedding
multiple frames and optimizing for the camera parameters.
Second, besides traditional semantic face edits (e.g. for age
and expression), we are the first to demonstrate edits that
show novel views of the head enabled by the inherent prop-
erties of 3D GANs and our optical flow-guided compositing
technique to combine the head with the background video.
Our experiments demonstrate that VIVE3D generates high-
fidelity face edits at consistent quality from a range of cam-
era viewpoints which are composited with the original video
in a temporally and spatially consistent manner.

*This work was conducted during an internship at Meta RL Research.

1. Introduction

Semantic image editing has been an active research topic
for the past few years. Previous work [21] uses Generative
Adversarial Networks (GANs) to produce high-fidelity re-
sults in the image space. The most popular backbone is
StyleGAN [26–29] as it generates high-resolution domain-
specific images while providing a disentangled latent space
that can be utilized for editing operations. To edit real pho-
tographs, there are typically two steps: The first step maps
the input image to the latent space of a pre-trained gener-
ator. This is usually accomplished either through encoder-
based embedding or through optimization, such that gen-
erator can accurately reconstruct the image from the latent
code [53]. The second step is semantic image manipula-
tion, where one latent input representation is mapped to an-
other to obtain a certain attribute edit, (e.g. changing age,
facial expression, glasses, or hairstyle). While existing ap-
proaches produce impressive results on single images, ex-
tending them to videos is far from straightforward. Among
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the challenges that arise are: (1) people tend to move their
heads freely in videos (instead of assuming frontal image
inputs), (2) the inversion of multiple frames should be coor-
dinated, (3) the inverted face and edits need to be temporally
consistent and (4) the compositing of the edited face with
the original frame must maintain boundary consistency.

A recent set of approaches has focused on 3D-aware
GANs where a 2D face generator is combined with a neural
renderer. Given a latent code, a 2D image and the under-
lying 3D geometry are generated, thus allowing for some
camera movement while rendering the head of the person.

In this paper, we tackle the problem of viewpoint-
independent face editing in videos. The edited face is ren-
dered from novel views in a temporally-consistent man-
ner. Specifically, we use a 3D-aware GAN in the tempo-
ral domain and apply facial image editing techniques per
frame that are temporally smooth regardless of the ren-
dered view. Compared with other GAN-based video edit-
ing approaches [5, 48], our method is the first to perform
viewpoint-independent video editing while showing the full
upper body of the person in the video with high fidelity.

VIVE3D takes a video of a person captured from a
monocular camera as input. The captured person can move
freely across time, talk, and make facial expressions while
their body can be visible. Unlike all prior work that learns
a generator and performs edits on the exact same video, we
disentangle these steps. Hence the output of our approach
can be a different video of the same person or the same
video. In both cases, the face has undergone one or more
attribute edits and is rendered from a novel view. To ac-
complish this challenging task, we introduce several novel
components, each addressing one challenge of the problem
at hand. Specifically, we first propose a simple yet effec-
tive technique to create a personalized generator by invert-
ing multiple frames at the same time. The simultaneous
inversion of N frames exposes the generator to a variety
of facial poses and expressions, which results in a larger ca-
pacity that we can then utilize. Our generator can generalize
to new unseen videos of the same identity where the per-
son might be wearing a different shirt, a result not demon-
strated in the literature so far. In addition, we propose to
optimize the camera pose of the 3D-aware GAN during in-
version to obtain an accurate estimate which angle the face
was captured from. Finally, we introduce an optical flow-
based compositing method to properly place the novel view
of the edited face back into the original frame while ensur-
ing that the end result is temporally and spatially consistent.
Our experimental work provides a wide range of qualita-
tive and quantitative results to demonstrate that VIVE3D
accomplishes semantic video editing with changing camera
poses in a faithful way. In summary, our contributions are:

• A new 3D GAN inversion technique that jointly embeds
multiple images while optimizing for their camera poses.

• A complete attribute editing framework and an optical
flow-based compositing technique to replace the edited
face in the original video.

• VIVE3D is the first 3D GAN-based video editing method
and the first that can change the camera pose of the face.

2. Related Work
GAN Inversion. GANs are a powerful tool for seman-
tic editing. Most editing techniques are tailored to Style-
GAN, the state-of-the-art of 2D GANs [26–29]. Several
editing techniques [10, 18, 19, 25, 34] build upon Style-
GAN as it uses an intermediate disentangled latent space,
usually referred to as w-space. Before editing, a latent
space representation of the input image has to be recov-
ered using a process typically referred to as Inversion or
Projection [1, 2, 12, 50]. Refer to [52] for a survey of in-
version techniques. In contrast to optimization-based in-
version techniques, learning-based approaches attempt to
obtain faster latent space correspondences by training en-
coders [4, 36, 47]. In order to retain the generalization abil-
ity of the w-space while providing a high-quality inversion,
Pivotal Tuning [37] has successfully shown that trained gen-
erators can overfit to target images while still maintaining a
navigable latent space. Recent works study 3D GAN inver-
sion [30, 31], attempting to infer a 3D representation for a
reference image.
GAN-based Latent Space Editing. Once an appropriate
latent space representation of an input image has been re-
covered, semantic edits can be applied by navigating the
latent space manifold surrounding the inverted latent code.
Unsupervised techniques attempt to find interesting edits
without labeled data [22, 24, 41, 49]. InterfaceGAN [39, 40]
is a simple and robust supervised technique that is highly
recommended for practical applications, and as such we
also employ it in our work. While there is a plethora of
other techniques [3, 11, 44, 45, 55, 59] the development of
related latent space manipulations itself is not the focus of
our work. Another line of work is text-based editing which
gained immense popularity during the last year [20, 35].
3D-aware GANs. Recent GAN papers attempt to discover
3D information from large collections of 2D images us-
ing Neural Radiance Fields (NeRFs) as shape representa-
tions [8, 9, 14, 23, 33, 38, 58]. While most of these papers
share similar architectural ideas, EG3D [9] has emerged as
a popular basis for follow-up work (e.g. integration of a seg-
mentation branch [43]). We chose to build upon EG3D, but
our work is also applicable to other generators with a simi-
lar latent space. For more information on 3D GAN architec-
tures, we refer the interested reader to a recent survey [51].
Video Synthesis and Editing. One branch of work at-
tempts to leverage 2D GANs to generate video sequences
[17, 42, 46, 57]. These ideas can be extended to create 3D
videos [6], which also rely on 3D NeRFs.
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Figure 2. VIVE3D Pipeline. To create an edited video, we first need to create a personalized generator by jointly inverting selected faces
and fine-tuning a pre-trained generator. We then invert the cropped face regions from a source video (which could be the same or a different
video) into our personalized generator and recover the latent codes and camera poses for each target frame. We are able to perform semantic
editing on the inverted stack of latent codes using previously discovered latent space directions and we can freely change the camera path
around the face region. In order to composite the face with the source frame in a consistent fashion, we use optical flow to correct the
position of the inset within the frame, which allows us to composite the result in a seamless and temporally consistent fashion.

GAN-based Video Editing. GAN-based video editing is
the core topic of this paper. Duong et al. [15] employ deep
reinforcement learning for automatic face aging. Latent-
Transformer [55] encodes frames into the StyleGAN la-
tent space using an encoder. They train a transformer to
do attribute editing on single frames and blend the result
with Poisson blending. The main competitor to our work is
Stitch it in Time (StiiT) [48], which crops the faces from a
video, edits them with 2D GAN techniques, and merges the
edited result back to the video with some blending. How-
ever, StiiT does not learn a 3D model of the human head,
overfits to a particular video, and is unable to provide edits
to the viewpoint of the human head. Recently, VideoEdit-
GAN (VEG) [54] attempted to improve the temporal consis-
tency of StiiT by running a two-step optimization approach
focused on localized temporal coherence. Alaluf et al. [5]
use StyleGAN3 for video editing, to leverage its inherent
alignment capabilities and reduce texture sticking artifacts.
Since this is an active area of research, all these techniques
are concurrent work to our method, yet we do provide com-
parisons to showcase the benefits of our proposed approach.

3. Method
In this section, we introduce the key components of

VIVE3D to perform frame-by-frame video editing while al-
lowing for rendering the edited face from new views. We
leverage a 3D-aware generator that infers 3D geometry and
camera positions while being trained solely on 2D images.
We build a personalized 3D-aware generator by performing
joint inversion on multiple frames and then use it to perform
attribute editing, apply camera viewpoint changes, and fi-
nally composite the edited face rendered from a new view
back into the original frame. An overview of our proposed

approach is depicted in Fig. 2 while the personalized gener-
ator architecture is shown in Fig. 3.

3.1. Personalized 3D-Aware Generator

Face Selection and Cropping. To create a personalized
3D-aware GAN model, we start by processing a short range
from the input video where N frames are selected such that
they cover a range of orientations and facial expressions of
the target person. We detect the facial keypoints within
these frames using an off-the-shelf facial keypoint detec-
tor [7] and use them to determine the face bounding box
within the frame. This is achieved by calculating a rigid
transformation from the facial keypoints in the frame to
the facial keypoints in a generated example image, thereby
aligning the keypoints at the center of the crop in the same
way as the generator’s original training data. We pick a spe-
cific field of view for cropping the faces and optimizing the
generator, but the field of view remains a flexible parameter
that can be adapted during any later stage in the pipeline.
Simultaneous Inversion. We propose to perform multiple
inversions simultaneously. EG3D has two major compo-
nents in its generator. The first component uses a mapping
network to map random vectors into a semantically mean-
ingful space, called w-space. Vectors in this space control a
3D neural field that defines a 3D representation that is ren-
dered using volumetric rendering. The second component
is a 2D upsampler that performs a 4× super-resolution on
the original output. We invert all selected faces simultane-
ously into the w-space following a strategy similar to [37]
that we discuss in detail below.

In order to find a representation in w-space, we define a
“global” wID aiming at capturing the global identity fea-
tures of the target person, and a “local” offset vector on
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Figure 3. Personalized Generator. First, we run a joint inver-
sion on N selected target faces, where we optimize a shared target
person latent wID and an offset on for each face. This ensures
the inversions share information about the target. Simultaneously,
we jointly optimize for the camera pose cn. We then fine-tune the
generator to ensure it captures the fine details of the target identity.
Note that the “default” latent (left column) implicitly captures the
identity of the target person without being explicitly optimized.

for each input expression Fn that encodes the differences
of each individual facial expression and position from the
default wID. The length of each on is regularized using an
LL2 loss, aiming to keep the difference as small as possi-
ble, and capturing all similarities between the input images
within the default person latent wID. We use a combination
of a perceptual loss LLPIPS and a pixel loss LL1 for the inver-
sion. Note that during this stage, we calculate these losses
on the raw output Graw(wID + on) of the EG3D neural ren-
derer at 128×128 resolution because we observed that it
yields sharper result quality rather than evaluating the loss
at the output of the super-resolution network. We down-
sample our target images to the same resolution D128(Fn)
to compare. To ensure that we can faithfully capture the tar-
get person’s identity and expression, we use BiSeNet [56] to
obtain a segmentation Sexp(Fn) of the facial regions encod-
ing the expression (eyes, mouth, eyebrows, and nose) and
add an additional feature loss on this area to encourage con-
sistent facial expressions (e.g. closed eyes). To obtain the
inversion, in each optimization step, we sum up the losses
for each face image Fn, therefore jointly optimizing all tar-

gets simultaneously, yielding a total loss Linv.

Linv =
∑N

n=0 λLPIPS LLPIPS(Graw(wID + on),D128(Fn))+

λL1 LL1(Graw(wID + on),D128(Fn))+

λseg LLPIPS(Sexp(G(wID + on)),Sexp(Fn))+

λreg LL2(on)

Due to the 3D awareness of the EG3D generator, the qual-
ity of the inversion into the latent space is highly sensitive
to the camera parameter settings. Hence, in addition to op-
timizing for wID and on, we propose to also allow the in-
version to optimize for the camera parameters cn (yawn and
pitchn) for each input expression Fn, which reliably esti-
mates the camera position that the face is captured from.

A key advantage of this joint optimization is that the fa-
cial characteristics of the person preserve their high fidelity
even when seen from novel views. When inverting a single
image of a side-facing person into the EG3D latent space,
exploring other viewpoints of the inverted latent can lead to
significant distortions. Often, unseen features (e.g. hidden
ears) can be blurry or distorted, and the identity no longer
resembles the input from a different viewpoint. The joint
inversion, however, ensures that the different views are em-
bedded closely enough in latent space such that even unseen
views yield consistently identity-preserving outputs.
Generator Fine-tuning. We propose a variant of Pivotal
Tuning [37] to jointly fine-tune the weights of the generator
GEG3D on all input faces Fn, while keeping the detected wID,
on and camera poses cn fixed. Here, we do not allow the
weights of the upsampler of the generator to be updated as
we want to preserve the generalization capabilities of the
super-resolution network and prevent it from overfitting to
our target images. During this fine-tuning stage, we employ
perceptual and pixel losses described as follows:

Ltune =
∑N

n=0 λLPIPS LLPIPS(GID(wID + on),Fn)+

λL1 LL1(GID(wID + on),Fn)

Finally, we obtain a personalized EG3D generator GID, fine-
tuned to a set of facial expressions of the target person. We
verify that the fine-tuned generator indeed provides a good
generalized latent space for the target person even though
it was inverted and tuned based on a low number of frames
by exploring the person created by the “global” latent code,
which was not explicitly fine-tuned for, as well as through a
latent space walk in the fine-tuned latent space.

3.2. Frame-by-frame Video Inversion

With the personalized 3D-aware generator in hand, we
are now given a video of the same person as input which can
be different from the one the generator was trained on. To
process our new target video, we extract the facial keypoints
from each frame f to determine the location of the box to in-
dicate the face crop within the frame. In order to stabilize
the crop over time, which supports the temporal coherence
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Figure 4. InterfaceGAN edits. We show InterfaceGAN editing
directions discovered in the latent space by applying them on our
personalized generator. The attribute edits are consistent in 3D.

of the inversion, we perform a Gaussian smoothing on the
extracted facial keypoints along the temporal axis after ex-
traction. However, it is important to not over-smooth, be-
cause fast motions in the video would yield distorted key-
point locations, deteriorating the inversion quality.

We then perform a frame-by-frame inversion of the ex-
tracted face regions Ff into the space of the fine-tuned
generator GID. Like before, we optimize for an offset of

for each input frame Ff , as well as regularizing the off-
set length. After inverting the first frame, each consecutive
frame Ff+1 is inverted starting from the previous inversion
and only needs a low number (∼50) of optimization steps.

Lvid = λLPIPS LLPIPS(GID(wID + of ),Ff )+

λL1 LL1(GID(wID + of ),Ff ) + λreg LL2(of )

This inversion yields a stack of offsets of from the identity
latent wID as well as camera parameters cf (yawf , pitchf ) en-
coding the expression and camera position for each frame.

3.3. Attribute Editing and Novel View Synthesis

Since EG3D is built on top of StyleGAN2, we can lever-
age existing latent space editing techniques in order to dis-
cover semantic editing directions in the latent space of
EG3D. As a proof of concept, we implemented Interface-
GAN [40] to find meaningful latent space direction vectors.
We re-trained classifiers on the CelebA dataset for several
facial attributes such as age, smile, gender, glasses, beard,
and hair color and use these classifiers to classify the ref-
erence outputs of a set of randomized latent codes from
our generator. Finally, we used an SVM to recover editing
boundaries from these classified latent codes, which allows
us to perform attribute editing in the EG3D latent space, as
shown in Fig. 4. For a given latent space direction wdir, we
apply an edit as a linear combination of the person latent
wID with the direction, multiplied by an empirically cho-
sen weight αdir, which can be positive or negative. For our
video sequence, we use the edited person latent wID

′ as the
new identity to which we apply our video offsets of .

wID
′ = wID + αdir ×wdir

(b) (d) (e)(c)(a) 

EDIT ROTATE

Figure 5. Border Composition. We calculate the composition
border based on face segmentations of the target image (a) and the
edited inset (c). We unite the masks and dilate the resulting joint
mask to obtain a boundary around the face regions (d) that should
be optimized, which allows us to create the final composition (e).

In addition, we explore our temporal stack of latent encod-
ings from novel views, diverging from the input views the
inversion discovered. This allows us, to generate frontal-
ized videos of the person by fixing the camera position or to
define arbitrary camera trajectories around the subject.

3.4. Compositing with Source Video

After editing the inverted video, we want to recompos-
ite the edited faces back with the source frames such that
the edited video is temporally and spatially consistent. We
accomplish this by running an optimization to ensure that
the boundaries between the compositing of the edited face
and the background of the source frame are smooth. Since
cluttered video backgrounds are hard to reproduce consis-
tently and without artifacts – especially for novel views –
we define a compositing boundary region in a similar man-
ner to [48]. To accomplish this, we need an accurate seg-
mentation of the face and hair for both the original frame
as well as the edited face. Hence, we use BiSeNet [56], a
semantic segmentation technique, that accurately provides
such face semantics. We use the semantic regions for both
the original and edited face to form a union of their respec-
tive masks, obtaining a boundary region around the relevant
face region, as illustrated in Fig. 5. We run a small number
of optimization steps, optimizing for the boundary region of
the edited image to appear as close as possible to the bound-
ary region of the input frame while retaining the appearance
of the edit. Finally, we use an affine transformation to re-
insert the cropped face region back into the original frame
and we alpha blend along the optimized boundary region to
seamlessly composite the edit with the source frame.

3.4.1 Flow-based View Adjustment

During the process of re-inserting the edited face Fedit back
into the source frame S, a major challenge arises when the
camera pose has been modified and the face is rendered
from a novel view. This is because the face is oriented
within the bounding box based on the facial keypoints as
described in Sec. 3.1 while upon a camera pose change, the
face pivots around the keypoints. When, for instance, at-
tempting to replace a face viewed at an angle with a frontal-
ized face while retaining the original crop boundary of the
inset, the keypoints are still roughly in the same location,
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Figure 6. View adjustment. After cropping (a) and inverting (b) a
face, we perform face editing (c) and change the camera viewpoint
to an unseen angle (d). When replacing the face in the original
frame with this edit, it yields poor quality (bottom center) even for
small angular changes, because the rotated face is in the wrong
location with respect to the body. We address this by estimating
the optical flow (e) between the face crop and the edit and use the
flow direction to correct the location of the reference face based
on the prospective inset (f). This allows us to composite the edited
face into the frame in a natural-looking fashion (bottom right).

yet the mass of the head, and crucially, the neck is shifted
according to the face rotation, as seen in Fig. 6, which re-
sults in the inset being disconnected from the rest of the
body even when using a boundary stitching technique.

To alleviate this problem, we introduce a simple yet ef-
fective technique to reposition the reference face region
within the source frame. We discover the optimal position
of the updated inset with respect to the source frame by es-
timating the optical flow between the face segmentation in
the source frame S and the face segmentation in the inset
region Fedit after camera rotation. We convert the images to
grayscale and use Farnebäck optical flow [16] to evaluate a
dense flow field of the displacement between the edited and
target faces. The optical flow is defined as a 2D displace-
ment vector field d with the displacement vector at image
position (x, y) given by d(x, y) = (u(x, y), v(x, y)) where
the correspondence between the two images Ff and Fedit is:

Fedit(x+ u(x, y), y + v(x, y)) = Ff (x, y).

We then compute vector magnitudes ∥d∥ =
√
u2 + v2 and

directions ϕ = atan2(v, u), respectively. After eliminating
all vectors with a magnitude smaller than a threshold ϵ, we
create a histogram of all remaining directions. We define
a dominant displacement vector ddom from the median di-
rection of the histogram bin with the largest count and the
maximum vector length within that histogram bin. This en-
sures that erroneous flow directions from features that are
present within one of the two images but not the other are
not contributing to the final output.

The displacement vector ddom is reprojected from inset
space into frame space and is used to correct the location
of the reference face crop. To ensure a smooth transition
between adjacent frames, we perform temporal Gaussian
smoothing of the recovered displacement vectors. We then

Table 1. Video Quality Metrics. We compare the quality of our
inversion with StiiT using reconstruction metrics on a subset of
the VoxCeleb dataset. We also evaluate the Fréchet Inception Dis-
tance (FID) of inversion and edits with respect to the source video.

Reconstruction Quality Editing Quality
PSNR ↑ SSIM ↑ FID ↓

METHOD INVERSION INVERSION AGE EDIT ANGLE EDIT

StiiT 38.0134 0.9798 6.8329 15.8021 19.0371
VIVE3D 38.1259 0.9704 4.9852 9.3410 8.9953

apply our inset optimization using the updated reference ar-
eas and obtain a significantly more faithful result, allowing
for large camera changes with natural-looking results.

4. Experiments
We conduct a wide range of quantitative and qualitative

comparisons to demonstrate the key contributions of our
work along with ablation studies against baselines and sim-
plified variants where proposed modules are removed. We
showcase that VIVE3D is on par with StiiT in terms of re-
construction quality while it also greatly outperforms prior
work in editing quality and identity preservation. However,
a key novelty afforded by VIVE3D is the ability to render
the edited face from novel viewpoints within the existing
frame, a task for which comparisons are hard due to the ab-
sence of ground truth. We showcase this with qualitative
results and videos provided in the supplementary material.

4.1. Quantitative Evaluation

We establish comparisons with StiiT [48], the key com-
petitor to our work in the field of GAN video editing,
and with VEG [54] for which many components (e.g. their
stitching technique) are identical to StiiT, so we only com-
pare facial similarity metrics. Please see the supplementary
material for a detailed description of the comparison setup
between our method and the competitors.
Inversion Quality. We provide a quantitative comparison
of our inversion quality by measuring the reconstruction
quality with respect to the input video in Table 1. We evalu-
ate PSNR and SSIM for our method and for StiiT on a set of
16 videos from the VoxCeleb [32] dataset, inverting the face
region and recompositing it with the source video without
edits. Both methods perform well on the reconstruction of
the input signal and the final reconstruction quality of our
technique is on par with StiiT.
Image Quality. To evaluate the image quality produced
by the respective techniques, we compute the Fréchet In-
ception Distance (FID), which is a commonly used quality
metric for GANs. To obtain the FID for each video, we
compare the set of all frames of the inverted video, as well
as selected edits, with all frames of the source video. Our
method is able to score very good FID scores overall (see
Table 1 right), confirming the quality of our results.
Face Fidelity. We calculate the fidelity of our inversion
and edits based on a facial similarity metric, ArcFace [13],
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Table 2. Face Similarity Metrics. We evaluate the identity preser-
vation of inversion and edits based on the cosine similarity of Arc-
Face features extracted from generated face crops with respect to
the face crops of the source video. To evaluate coherence over
time, we measure the dissimilarity between consecutive frames.

METHOD Similarity to Source ↑ Temporal Difference ↓

Inversion
e4e 0.6923 6.2851
StiiT 0.9261 1.2361
VIVE3D 0.9203 1.0444

Age Editing
StiiT 0.7891 1.4126
VEG 0.6004 1.7159
VIVE3D 0.8381 1.2257

Angle Editing
StiiT 0.6695 1.3102
VEG 0.4955 1.4502
VIVE3D 0.8694 1.2761

which extracts a 512-D feature vector capturing facial char-
acteristics from a face region. We compute the metrics
based on the respective face crops of the final inset region,
scaled to 512×512px, for our method, e4e encoding, StiiT,
and VEG in Table 2 and average across a set of 16 videos
from the VoxCeleb [32] dataset. The facial similarity is eval-
uated both with respect to the input video (frame-by-frame)
as well as temporally by calculating the dissimilarity of ad-
jacent frames in order to survey the temporal coherence of
facial characteristics. In all cases, we use the cosine simi-
larity between the extracted ArcFace deep features. We ob-
serve that the quality of the inversion is good for both StiiT
and VIVE3D, both significantly improving upon e4e encod-
ing. VEG uses the same PTI-based inversion as StiiT and is
therefore not listed. For latent space editing, our proposed
VIVE3D leads the competition. VEG exhibits good tempo-
ral coherence, however, the edits contain artifacts, resulting
in a deterioration in the similarity to the source video. Addi-
tionally, our technique reconstructs the facial identity faith-
fully even for angle edits, a task in which StiiT and VEG fail
to produce plausible results due to their methods’ inability
to accommodate changes in the head rotation.
Resource Usage. We compare runtimes and memory re-
quirements for the default pipeline of related methods and
our method, respectively, in Table 3. We split each method,
wherever applicable, into precomputation, main method,
and postprocessing steps and used the hyperparameter set-
tings according to the authors’ suggestions. Note that the
precomputation step in our method has to only be run once
per identity and can then be applied to multiple videos. All
experiments are performed on an example video consisting
of 200 frames at a resolution of 1920×1080px, using a sin-
gle NVIDIA A100 GPU with 40GB memory.

Table 3. Timings and Memory Requirements. We provide run-
times and Memory requirements for ours and competing methods.

METHOD Total Precompute Main Postprocess GPU
StiiT 58m 53s 28m 21s 30m 19s — 22GB
VEG 159m 54s 107m 9s 34m 41s 18m 3s 19GB

VIVE3D 35m 43s 6m 58s 14m 54s 13m 51s 21GB

Table 4. Ablation Study. We demonstrate the effect of removing
various components of our pipeline on several quality and recon-
struction metrics. We measure the face similarity using the cosine
similarity of ArcFace features of the generated face crop, and the
reconstruction metrics at the target video resolution.

Ablation Type Face Similarity ↑ PSNR ↑ SSIM ↑
VIVE3D, full 0.9101 35.5367 0.9763
no generator fine-tuning 0.7191 33.1202 0.9616
no flow correction 0.8198 24.8845 0.9350
no regularization 0.8007 25.6537 0.9162
single input for inversion 0.7382 25.1950 0.9137

Ablation Study. We quantitatively verify the effectiveness
of different architecture choices we made, as shown in Ta-
ble 4. We compare several metrics with respect to the source
video for our default implementation, and the ablation ex-
periments, respectively. We run four experiments on a set
of 5 videos: (1) VIVE3D without generator fine-tuning, (2)
VIVE3D without flow-based adjustment, (3) VIVE3D with-
out the joint wID latent and offset regularization, (4) using
only a single input face for the generator inversion and fine-
tuning, which in practice is almost identical to only frame-
by-frame inversion in EG3D without any personalized gen-
erator. We demonstrate that all experiments deteriorate the
facial fidelity as well as the reconstruction quality.

4.2. Qualitative Evaluation

Semantic Edits. First, we demonstrate that the quality of
semantic edits using VIVE3D, adapting well-established la-
tent space editing techniques for 3D GANs, is on par with
the editing quality of StiiT, as shown in Fig. 7. Note that
while both approaches discover latent space directions us-
ing InterfaceGAN [40], the latent spaces and discovered di-
rections are dissimilar, yet both plausible.
Synthesizing novel views. We show that VIVE3D can
accommodate changes in the camera view with natural-
looking results for a wide range of views regardless of the
input face orientation, as shown in Fig. 8. This is nontrivial

(a)  VIVE3D (b)  StiiT (c)  VIVE3D (d)  StiiTSOURCE

Figure 7. Comparisons with StiiT on attribute editing. We show
an example of our method and StiiT editing the subject’s age in
the video frame (center column). Both methods yield plausible but
distinctly different results. Our results (columns (a), age=–1.4 and
(c), age=+2.3) vs StiiT (columns (b), age=–8 and (d), age=+12).
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Figure 8. Changing camera poses. Our method can freely alter
the camera pose and composite the result back with the source
frame by fixing the divergence between the source and target pose
using our optical flow correction strategy. The generated results
look natural despite the static body pose.

(a)  VIVE3D (b)  StiiT (c)  VIVE3D (d)  StiiTSOURCE

Figure 9. Comparisons with StiiT on viewpoint changes.
VIVE3D ((a) and (c)) produces plausible results for both positive
and negative yaw changes, whereas StiiT ((b) and (d)) is unable to
create natural compositions of the edit with the target frame.

as we need to ensure that the person’s identity is consis-
tent from multiple viewpoints while the body in the source
frame also defines a rigid constraint to which the head align-
ment must be adjusted to. While StiiT produces good re-
sults for attribute edits, it cannot composite images with
angular changes, despite the fact that a limited head pose
change can be achieved by applying latent space manipula-
tions. In Fig. 9, we show a comparison where StiiT is un-
able to generate a reasonable composition, whereas we can
achieve natural-looking results for a similar head rotation.
Compositing with challenging boundaries. When parts
of the head or hair are visible both inside and outside the
face bounding box then compositing the edited frame back
into the original input is a challenging task. In most cases,
we address these scenarios by adjusting our camera param-

Figure 10. Spatial Consistency. VIVE3D composites images
with challenging boundaries such as long hair (right), yielding
faithful hair color change results. For hard boundary cases, such
as matching with a static piece of hair outside the boundary crop
(left), it plausibly connects the contents of the two images.

Figure 11. Limitations. VIVE3D inherits some limitations from
the frameworks we rely on. EG3D cannot capture extreme poses
well (left). Large angle changes cannot be composited naturally
with the static body in the source frame. For extreme edits (gender
edits that change the hair structure (right)), it is difficult to yield
temporally consistent results, both due to the entanglement of the
latent space editing and the challenges of frame compositing.

eters (e.g., choosing a wider field of view for our generator)
but some configurations can still be challenging, especially
when different textures need to be matched. We show in
Fig. 10 that our technique attempts to produce plausible in-
set optimizations even for such instances.
Limitations. Changing the camera parameters for the
head in videos with fast motion or discontinuities results
in artifacts because the flow estimation becomes unstable.
Furthermore, we inherit the shortcomings of EG3D (see
Fig. 11): stronger entanglement of attribute edits compared
to StyleGAN2, extreme camera poses are not captured in
the training set, and texture sticking. Finally, since the video
outside the face region is immovable, the range of possible
changes is constricted to plausible compositions.

5. Conclusion
In this paper, we introduced VIVE3D, a novel frame-

work that uses prior information encoded in 3D GANs for
video editing. Our edits are identity-preserving and tem-
porally consistent. While we enable standard semantic ed-
its, such as age, or expressions, a distinguishing feature of
our work is that we facilitate edits that alter the view of the
head. This capability is not available in any 2D GAN-based
prior work. The key building blocks of our work are a new
embedding algorithm that jointly embeds multiple frames
and optimizes for camera pose as well as flow-guided video
compositing. In future work, we aim to extend our frame-
work to include a 3D GAN for head details and another 3D
GAN for the body. We also plan to investigate performance
speedups by replacing various optimizations with encoders.

4453



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2StyleGAN: How to embed images into the StyleGAN
latent space? In ICCV, 2019. 2

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2StyleGAN++: How to edit the embedded images? In
CVPR, 2020. 2

[3] Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka.
StyleFlow: Attribute-conditioned exploration of StyleGAN-
generated images using conditional continuous normalizing
flows. ToG, 2021. 2

[4] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:
A residual-based stylegan encoder via iterative refinement.
In CVPR, 2021. 2

[5] Yuval Alaluf, Or Patashnik, Zongze Wu, Asif Zamir, Eli
Shechtman, Dani Lischinski, and Daniel Cohen-Or. Third
time’s the charm? Image and video editing with StyleGAN3.
In ECCV Workshops, 2022. 2, 3

[6] Sherwin Bahmani, Jeong Joon Park, Despoina Paschali-
dou, Hao Tang, Gordon Wetzstein, Leonidas Guibas, Luc
Van Gool, and Radu Timofte. 3D-aware video generation.
arXiv preprint arXiv:2206.14797, 2022. 2

[7] Adrian Bulat and Georgios Tzimiropoulos. How far are we
from solving the 2D & 3D face alignment problem? (and a
dataset of 230,000 3D facial landmarks). In ICCV, 2017. 3

[8] Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc
Van Gool. Pix2NeRF: Unsupervised conditional p-GAN for
single image to neural radiance fields translation. In CVPR,
2022. 2

[9] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In CVPR, 2022. 2

[10] Bindita Chaudhuri, Nikolaos Sarafianos, Linda Shapiro, and
Tony Tung. Semi-supervised synthesis of high-resolution ed-
itable textures for 3D humans. In CVPR, 2021. 2

[11] Anton Cherepkov, Andrey Voynov, and Artem Babenko.
Navigating the GAN parameter space for semantic image
editing. In CVPR, 2021. 2

[12] Antonia Creswell and Anil Anthony Bharath. Inverting the
generator of a generative adversarial network. IEEE trans-
actions on neural networks and learning systems, 2018. 2

[13] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. ArcFace: Additive angular margin loss for deep
face recognition. In CVPR, 2019. 6

[14] Yu Deng, Jiaolong Yang, Jianfeng Xiang, and Xin Tong.
GRAM: Generative radiance manifolds for 3D-aware image
generation. In CVPR, 2022. 2

[15] Chi Nhan Duong, Khoa Luu, Kha Gia Quach, Nghia
Nguyen, Eric Patterson, Tien D Bui, and Ngan Le. Auto-
matic face aging in videos via deep reinforcement learning.
In CVPR, 2019. 3
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