
Learning Semantic Relationship among Instances for Image-Text Matching

Zheren Fu1, Zhendong Mao1,2,* , Yan Song1, Yongdong Zhang1,2

1University of Science and Technology of China, Hefei, China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China

fzr@mail.ustc.edu.cn, {zdmao, songyan, zhyd73}@ustc.edu.cn

Abstract

Image-text matching, a bridge connecting image and
language, is an important task, which generally learns a
holistic cross-modal embedding to achieve a high-quality
semantic alignment between the two modalities. How-
ever, previous studies only focus on capturing fragment-
level relation within a sample from a particular modal-
ity, e.g., salient regions in an image or text words in a
sentence, where they usually pay less attention to captur-
ing instance-level interactions among samples and modal-
ities, e.g., multiple images and texts. In this paper, we
argue that sample relations could help learn subtle dif-
ferences for hard negative instances, and thus transfer
shared knowledge for infrequent samples should be promis-
ing in obtaining better holistic embeddings. Therefore,
we propose a novel hierarchical relation modeling frame-
work (HREM), which explicitly capture both fragment-
and instance-level relations to learn discriminative and ro-
bust cross-modal embeddings. Extensive experiments on
Flickr30K and MS-COCO show our proposed method out-
performs the state-of-the-art ones by 4%-10% in terms of
rSum. Our code is available at https://github.com/
CrossmodalGroup/HREM .

1. Introduction

Image-text matching bridges the semantic gap between
visual and textual modalities and is a fundamental task for
various multi-modal learning applications, such as cross-
modal retrieval [22] and text-to-image synthesis [17]. The
critical challenge is accurately and efficiently learning
cross-modal embeddings and their similarities for images
and texts, to achieve a high-quality semantic alignment.
In general, existing image-text matching methods can be
classified into two paradigms. The first embedding-based
matching [4, 10, 20, 35] separately encodes the whole im-
ages and texts into a holistic embedding space, then globally
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Figure 1. Illustration of our motivation. Sample relation modeling
improves the holistic representation of cross-modal learning. Col-
ors and shapes indicate different modalities and image-text pairs,
respectively. Orange elements mark effective interactions: (a) The
pipeline of the previous and our work, we add the cross-modal re-
lation interaction between samples. (b) For the identical theme of
“surfer with surfboard”, specific behaviors exist subtle differences,
like “hold/squat/ride on the surfboard” and “stare/break/wipe out
the wave”. Our method distinguishes these hard negative samples
from semantic ambiguities. (c) For similar themes under “man
play a ball”, corresponding behaviors usually are semantic simi-
lar, like ”play the hockey/cricket/polo” all need to “hit the ball”
with “sticks/bats”. Our method improves learning embeddings on
these infrequent samples with semantic scarcities for themselves.

measures the semantic similarity of the two modalities. The
second score-based matching [3,7,19,27] applies the cross-
modal interaction between visual and textual local features,
then learns a cumulative similarity score.

Recently, embedding-based methods have served as the
mainstream solution owing to both accuracy and efficiency
in image-text matching, which contains two steps as shown
in Fig. 1 (a): (1) Capturing the intra-modal relation be-
tween visual fragments (e.g., regional features) or textual
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fragments (e.g., word features) independently, then enhanc-
ing the semantic representation of local features. (2) Ag-
gregating relation-enhanced local features of two modalities
into the holistic embedding space. For the first step, most
use the graph neural network [5, 20, 21] or attention mod-
ule [35, 45, 46] to capture semantic relations and enhance
the local features of two modalities, respectively. Some
work further exploits the spatial relation [45] for visual re-
gions or grammatical relation [28] for textual words. For
the second step, they design pooling functions [4] or se-
quence encoders [21] to aggregate local features and get
holistic embeddings. Existing embedding-based methods
follow the principle of separately encoding images and texts
by two branches as Fig. 1 (a). In each branch, these meth-
ods only focus on the fragment-level relation modeling and
local features interaction within one sample, e.g., the region
features inside one image (or the word features inside one
text). In this way, the instance-level relation modeling and
global embeddings interaction among different samples and
modalities, e.g., holistic embeddings of multiple images and
texts, are entirely overlooked.

Consequently, existing embedding-based methods di-
rectly use global embeddings to compute loss function, e.g.,
hard negative triplet loss [10] on random mini-batch, which
is insufficient to exploit the manifold structure of holistic
embedding space [39]. First, they fail to learn subtle seman-
tic discrepancies among different samples (e.g., similar be-
haviors with an identical theme as shown in Fig. 1 (b)), then
can not distinguish hard negative samples with semantic
ambiguities because of the heterogeneity of visual and tex-
tual semantics. Second, they are unable to transfer shared
knowledge from diverse samples (e.g., different samples
that contain similar behaviors with similar themes as shown
in Fig. 1 (c)), then can not effectively learn on these infre-
quent samples with semantic scarcities. Therefore, it is ex-
pected that a framework should precisely capture the sample
relationship to learn better cross-modal embeddings, while
does not break the principle of embedding-based methods,
i.e., independently encodes embeddings without modality
interaction at the inference stage.

In doing so, we propose a Hierarchical RElation
Modeling framework (HREM) that, for the first time to
our knowledge, explicitly captures both fragment-level and
instance-level relations to learn holistic embeddings jointly.
Therefore, HREM learns not only contextual semantics
among intra-modal fragments to enhance local features, but
also the associated semantics among inter-modal instances
to distinguish hard negative samples and improve learning
on infrequent samples. As illustrated in Fig. 1 (a) and
Fig. 2, we propose a novel step (i.e., the “stage-three”)
to exactly capture the semantic relationship of cross-modal
samples. First, we propose a novel cross-embedding as-
sociation graph, which explicitly identifies the connection

relation and learns the relevance relation between batch
samples with fragment-level semantic matching. Next, we
propose two relation interaction mechanisms, which ex-
plore inter-modal and intra-modal relations synchronously
or asynchronously with our improved attention modules to
obtain enhanced embeddings. Consequently, HREM only
needs to capture the instance-level relation for training, then
encode multi-modal embeddings independently at the in-
ference stage, to achieve high accuracy and efficiency for
image-text matching.

To summarize, the major contributions are as follows:
(1) We propose a hierarchical relation modeling framework
(HREM) for image-text matching. To the best of our knowl-
edge, this is the first work that explicitly captures both
fragment-level relations within modality and instance-level
relations across modalities. (2) We propose a novel cross-
embedding association graph by identifying the connection
relation and learning the relevance relation. (3) We propose
two relation interaction mechanisms to learn the relation-
enhanced embeddings. (4) HREM outperforms all state-of-
the-art methods for image-text retrieval on two widely used
benchmarks, Flickr30K and MS-COCO, by 4%-10% rSum.

2. Related Work

2.1. Image-Text Matching

According to how the cross-modal interaction is im-
plemented, image-text matching methods are divided into
two categories, embedding-based and score-based match-
ing. Embedding-based. It independently encodes im-
ages and sentences into a holistic embedding space by two
branches, where the semantic similarity is calculated by co-
sine similarity [10]. Existing work usually utilizes the GCN
[20, 44] or self-attention layer [45, 46] to capture semantic
relations between fragments inside one sample and enhance
contextual semantics of local features, then propose a par-
ticular aggregator to learn global embeddings. For exam-
ple, VSRN [20] proposes a semantic reasoning network to
learn local visual features with key scene concepts. CVSE
[43] proposes a consensus-aware module to integrate com-
monsense knowledge into local features for two modalities.
GPO [4] presents a generalized pooling function to project
local features into the global embedding. MV [24] proposes
a multi-view encoder to learn multiple embeddings for one
image and models intra-class variations.

Score-based. It conducts fine-grained cross-modal in-
teraction and semantic alignment between local fragments,
then calculates a cumulative similarity score. [3, 7, 19, 51].
For example, SCAN [19] proposes an attention mechanism
for cross-modal interaction between visual and textual frag-
ments. IMRAM [3] proposes an iterative network for multi-
ple steps of cross-modal interaction. NAAF [51] measures
the similarity and dissimilarity degrees via two matching
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Figure 2. Overview of our hierarchical relation modeling framework (HREM). Given N image-text pairs (N = 3 in this Figure), we first
capture the fragment-level relations and learn the relation-enhanced local features for each image or text independently, then aggregate
local features by pooling operation to get global embeddings {vi,ui}Ni=1. Next, we propose a novel cross-embedding association graph
to capture instance-level relations by identifying the connection relation and learning the relevance relation between samples. Finally, we
propose two cross-modal relation interaction mechanisms to get relation-enhanced embeddings and compute the final loss function.

mechanisms to infer the overall similarity jointly.
Nonetheless, existing embedding-based methods only

capture the relation between local fragments within each
sample, In addition, we explore the relation across different
samples and modalities to learn better holistic embeddings.

2.2. Sample Relationship Learning

Among data scarcity and diversity, sample relations have
been explicitly explored for representation enhancement
[23, 49]. A simple way is to generate input as new samples
from existing samples [13], such as mix-up [49], and cut-
mix [48]. Some work designs the delicate objective function
for output, such as various metric learning losses [12, 14].
Another way is using the knowledge distillation between
samples, such as transferring invariant knowledge for zero-
shot learning [32] and domain generalization [33]. Re-
cently, some methods focus on the view of batch interaction
[8, 9, 16]. IBC [39] constructs a fully connected graph for
mini-batch samples and classifies each sample employing
a message passing network. HIST [25] constructs a hyper-
graph to formulate higher-order relations between samples.
However, these methods study the primary vision task, e.g.,
classification. We capture the sample relationship for cross-
modal learning and bridge semantic discrepancies between
visual and textual modalities.

3. The Proposed Method
The overview of HREM is depicted in Fig. 2. We first

introduce feature extraction in Sec. 3.1 and fragment-level
relation modeling in Sec. 3.2. Then we introduce instance-
level relation modeling in Sec. 3.3. Finally, we describe the

optimization in Sec. 3.4 and discussion in Sec. 3.5.

3.1. Feature Extraction

Visual Representation. Given an image I , we use the
bottom-up-attention network [1] to extract the salient re-
gions by the Faster-RCNN [37] and get the region features
by the pre-trained ResNet-101 [15]. Then we add a fully-
connect (FC) layer to map each region to a d-dimensional
local feature. We denote as R = {r1, · · · , rnr} ∈ Rnr×d,
which is the visual fragments and local features for the im-
age I , nr is the number of region features.

Textual Representation. Given a sentence T , we use
the sequence models, bi-directional gated recurrent unit (Bi-
GRU) [38], or pre-trained BERT [6] to extract the set of
word features. We also add an FC layer to keep the same di-
mension with images. We denote as C = {c1, · · · , cnc} ∈
Rnc×d, which is the textual fragments and local features for
the text, nc is the number of word features.

3.2. Fragment-level Relation Modeling

To capture contextual information between fragments
and enhance local features of two modalities introduced by
Sec. 3.1, we propose fragment-level relation modeling for
visual regions and textual words, respectively.

Visual Regions. We construct a semantic relation graph
between visual regions within one image, and propose the
relation interaction module to learn the contextual seman-
tics for region features. The graph nodes are region fea-
tures R, and edges are their semantic relation. Specifi-
cally, we use the graph attention network [42], e.g., self-
attention layer [41], to capture the semantic relation and
learn relation-enhanced local features. It first maps original
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features to queries and key-value pairs, then use a weighted
sum of the values as outputs, where the weighting depends
on scaled dot-product between queries and keys:

Att (Q,K,V ) = softmax

(
QKT

√
dk

)
V , (1)

where Att is called the scaled dot-product attention [29], dk
is the dimension of input features. In this case, we build up a
fully-connected graph, and the semantic relation is implic-
itly expressed in the attention weight. After initial region
features R = {r1, · · · , rnr

} ∈ Rnr×d pass through the
self-attention layer with the feed-forward network to learn
contextual information, we obtain the relation-enhanced re-
gion features RV =

{
rV1 , · · · , rVnr

}
∈ Rnr×d.

Finally, we aggregate initial and enhanced region fea-
tures to get the global visual embedding v ∈ Rd, by using
the maximum pooling and average pooling, with the param-
eter β to control the ratio of two representations.

v = β ·MaxPool(R) + (1− β) ·AvgPool(RV ), (2)

Textual Words. Similarly, we construct a semantic rela-
tion graph between textual words within one sentence, and
use the relation interaction module to enhance contextual
information for the word features. The nodes are word fea-
tures C = {c1, · · · , cnc} ∈ Rnc×d and the edges are their
semantic relation. We also use the self-attention layer to
implement, hence we get relation-enhanced word features
CU =

{
cU1 , · · · , cUnc

}
∈ Rnc×d, then aggregate them to

get the global textual embedding u ∈ Rd, like Eq. (2).

u = β ·MaxPool(C) + (1− β) ·AvgPool(CU ), (3)

3.3. Instance-level Relation Modeling

We propose the instance-level relation modeling for mul-
tiple images and texts to learn better cross-modal embed-
dings obtained by Sec. 3.2. Given N image-text pairs and
their embeddings {vi,ui}Ni=1, we propose a novel cross-
embedding association graph G(V, E), where the nodes are
the embeddings V = {v1, ...,vN ,u1 ...,uN} ∈ R2N×d,
the edges E are pairwise semantic relations.

3.3.1 Cross-Embedding Association Graph

The critical challenge is how to construct the pairwise re-
lation accurately. Without loss of generality, we divide the
relation into two parts: connection and relevance.

We use the matrix A ∈ R2N×2N to represent the con-
nection relation, i.e., whether exists an associated edge be-
tween nodes. We use the matrix S ∈ R2N×2N to rep-
resent the relevance relation, i.e., the degree of semantic
association between nodes. Further, we divide these ma-
trices into two patterns and four blocks: intra-modal rela-

tion (Image-to-Image I I , Text-to-Text T T ) and inter-
modal relation (Image-to-Text I T , Text-to-Image T I),
the shape of each block is equal to RN×N .

A =

[
AI I AI T

AT I AT T

]
, S =

[
SI I SI T

ST I ST T

]
, (4)

Connection Relation Identifying. The simple idea is
to build a fully connected graph like Sec. 3.2 and previous
work [5,45] that elements of A are all 1, However, the fully-
connection easily likely leads to over-smoothing and noisy
association [39] for nodes. We need to identify the effective
connection and filter out unassociated semantics.

Therefore, we construct the neighbor space of embed-
ding to identify the connection relation. If two embedding
nodes are close, their semantic information usually over-
laps, they probably have a semantic connection [25].

(AI I)ij = 1 if vj ∈ Nintra (vi) else 0,

(AT T )ij = 1 if uj ∈ Nintra (ui) else 0,
(5)

where Nintra is the neighbor space of embeddings for intra-
modal connection. We select the first τN (τ is range from
0 to 1) nearest single-modal samples ranked by the embed-
ding similarity to construct Nintra in Eq. (5). Correspond-
ingly, we define Ninter for inter-modal connection:

(AI T )ij = 1 if uj ∈ Ninter (vi) else 0,

(AT I)ij = 1 if vj ∈ Ninter (ui) else 0,
(6)

Since the heterogeneity between visual and textual se-
mantics, directly using global embeddings is insufficient
to identify the inter-modal connection relation. Follow-
ing score-based methods [19, 40], we use the fine-grained
matching of fragments and local features to measure the
inter-modal neighbor space. As shown in Fig. 3, given an
image-text pair and its region-word similarity matrix. We
first pick up the most matching textual word (or visual re-
gion) for each region (or each word), then average these
matched scores to express the overall matching values p.

pI T =
1

nr

nr∑
m=1

max
n∈[1,nc]

(
rTmcn

)
,

pT I =
1

nc

nc∑
m=1

max
n∈[1,nr]

(
cTmrn

)
,

(7)

where we select the first τN nearest cross-modal samples
ranked by the fragment-level matching values Eq. (7) to
construct the inter-modal neighbor space Ninter in Eq (6).

Relevance Relation Learning. The relevance relation is
the degree of semantic association between two connected
nodes. Existing work [16, 39] uses the global embedding
similarity to approximate, which is insufficient to bridge the
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Figure 3. Graph construction of inter-modal relation with
fragment-level matching. For every image-text pair, we use cor-
responding modules to get connection relation aI→T (aT→I ) and
relevance relation sI→T (sT→I ), which are elements of connec-
tion matrix AI→T (AT→I ) and relevance matrix SI→T (ST→I ).

semantic discrepancy between visual and textual space [19].
In contrast, we explicitly learn the cross-modal relevance re-
lation. As shown in Fig. 3, we employ fine-grained match-
ing like Eq. (7). After picking up the max matching of
row-wise and column-wise, we select the top-K scores and
concatenate them as the matching vectors q.

qI T = TopK({ max
n∈[1,nc]

(
rTmcn

)
}nr
m=1),

qT I = TopK({ max
n∈[1,nr]

(
cTmrn

)
}nc
m=1),

(8)

where q ∈ RK , then we use an MLP and add the overall
matching values to learn the inter-modal relevance (scalar).

sI T = MLP (qI T ) + pI T ,

sT I = MLP (qT I) + pT I ,
(9)

For different image-text pairs, we compute the corre-
sponding relevance values, which are the elements of the
inter-modal relevance matrix SI T and ST I . As for the
intra-modal relevance relation, we can use the global em-
beddings to compute the relevance matrix.

(ST T )ij = e−
∥vi−vj∥2

2
σ , (SI I)ij = e−

∥ui−uj∥2
2

σ , (10)
where σ is a positive scalar to control the relevance values
(σ=1 for simplicity). Besides, we add a relevance regular-
ization loss to ensure the learned inter-modal relevance ma-
trix does not crash during training [18].

Lreg = Lkl (SI T ,S
g
I T ) + Lkl (ST I ,S

g
T I) , (11)

where Lkl is the KL-divergence loss with softmax function,

(SI T )
g
ij = e−

∥vi−uj∥2
2

σ , (ST I)
g
ij = e−

∥ui−vj∥2
2

σ are com-
puted by the global embeddings like Eq. (10). We hope the
learned inter-modal relevance relation is close to the seman-
tic relation of global embeddings.
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Figure 4. Two relation interaction mechanisms based on how to
explore the inter-modal and intra-modal relations. The connection
matrix A and the relevance matrix S are applied to the attention
modules wholly or separately, as Eq. (12).

3.3.2 Relation Interaction Mechanisms

After constructing our cross-embedding association graph
in Sec. 3.3.1, we design two relation interaction mecha-
nisms to capture the semantic relations between images and
texts, where the embeddings are updated by the information
interaction process, as shown in Fig. 4.

Fusion Mechanism. We concatenate the visual and
textual embeddings as input, as shown in Fig. 4b. The
inter-modal and intra-modal relation interactions are con-
ducted synchronously. The embeddings first pass through
the multi-head self-attention module for attention diversity.
Besides, we adopt the feed-forward network module for
relation reasoning, which a multi-layer perceptron imple-
ments [41]. It is similar to the fragment-level interaction
modules in Sec. 3.2. We also add the residual connec-
tion [15] and layer normalization [2] after them.

The connection matrix A is an attention mask matrix
for the attention module, where the zero positions are not
allowed to attend while the non-zero positions will be un-
changed [41]. The relevance matrix S is an extra attention
weight matrix as the explicit relation modeling, we use λ to
balance S with the original attention weight matrix. There-
fore, we revise the basic attention formula Eq. (1) to:

Att(QKV ;A,S) = softmax
s.t. mask(A)

(
QKT

√
dk

+ λS

)
V ,

(12)
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Figure 5. The comparison between accuracy and speed for cross-
modal retrieval. We perform all methods (Region+ BiGRU based)
on the whole Flickr30K test-set with one RTX3090 GPU.

Standalone Mechanism. As shown in Fig. 4a, the
visual and textual embeddings are sent into two branches
and get relation interaction. The embeddings first get inter-
modal relation interaction by the multi-head cross-attention
module, where Q and K,V come from two modalities.
Then they get intra-modal relation interaction by the multi-
head self-attention module, where Q,K,V come from the
same modality. Finally, the enhanced embeddings are out-
put by following the feed-forward network module.

The connection matrix A and relevance matrix S first
are divided into pre-defined four blocks as Eq. (4), then
each block is applied to corresponding modules as Eq. (12).
Specifically, the inter-modal relation parts perform on the
first cross-attention module, and the intra-modal relation
parts act on the second self-attention module.

After the L layers of the relation interaction mecha-
nism, we get the final relation-enhanced embeddings of two
modalities, {v1, ...,vN} and {u1 ...,uN}.

3.4. Optimization

Neighbor Batch Sampling. To ensure effective relation
interaction in Sec. 3.3, we propose a neighbor sampling to
replace random sampling for batches at the later training.
We use the k-means clustering [30] on visual embeddings,
then randomly choose P clusters and select K images from
each cluster, batch size N = P ×K. Finally, we select one
positive text for each image to get N image-text pairs.

Objective Function. We use the triplet loss [10], the
similarity score is the cosine similarity between visual em-
bedding v and textual embedding u, s(v,u) = v⊤u

∥v∥·∥u∥ .

L = [α−s(v,u)+s(v,u−)]++[α−s(v,u)+s(v−,u)]+,
(13)

where α represents a margin parameter, [x]+ = max(x, 0).
(v,u) is a positive image-text pair, and (v,u−), (v−,u)
are negative image-text pairs in the batch. We use the
distance-weighted sampling [31] for hard negative mining.

We not only use the relation-enhanced embeddings to
compute matching loss as Eq. (13), but also add the ini-

Table 1. Comparisons of image-text retrieval on MS-COCO 5K
test-set. Region represents using region features [1] for images.
BiGRU [38] and BERT [6] represent using their word features for
texts. E and S indicate embedding-based and score-based meth-
ods, respectively. ∗ shows the ensemble results of two models.

Type Method
MS-COCO 5K

IMG → TEXT TEXT → IMG rSumR@1 R@5 R@10 R@1 R@5 R@10
Region + BiGRU

S
IMRAM∗

2020 [3] 53.7 83.2 91.0 39.7 69.1 79.8 416.5
UARDA∗

2022 [50] 56.2 83.8 91.3 40.6 69.5 80.9 422.3
NAAF∗

2022 [51] 58.9 85.2 92.0 42.5 70.9 81.4 430.9

E

GPO2021 [4] 56.6 83.6 91.4 39.3 69.9 81.1 421.9
CGMN2022 [5] 53.4 81.3 89.6 41.2 71.9 82.4 419.8
MV2022 [24] 56.7 84.1 91.4 40.3 70.6 81.6 424.6
HREM (Standalone) 58.4 85.5 92.4 39.8 70.5 81.0 427.6
HREM (Fusion) 58.9 85.3 92.1 40.0 70.6 81.2 428.1
HREM (Full)∗ 60.6 86.4 92.5 41.3 71.9 82.4 435.1

Region + BERT

S
SSAMT2021 [11] 57.7 84.2 90.8 40.8 70.5 80.5 424.5
DIME∗

2021 [36] 59.3 85.4 91.9 43.1 73.0 83.1 435.8
DCPA2022 [40] 53.5 82.4 90.2 40.4 71.0 82.0 419.5

E

DSRAN∗
2021 [45] 55.3 83.5 90.9 41.7 72.7 82.8 426.9

GPO2021 [4] 58.3 85.3 92.3 42.4 72.7 83.2 434.3
VSRN++2022 [21] 54.7 82.9 90.9 42.0 72.2 82.7 425.4
HREM (Standalone) 61.8 87.0 93.2 44.0 73.7 83.4 443.1
HREM (Fusion) 62.3 87.6 93.4 43.9 73.6 83.3 444.1
HREM (Full)∗ 64.0 88.5 93.7 45.4 75.1 84.3 450.9

tial embeddings for matching loss to keep the embedding
consistency, since we need to encode embeddings directly
without sample interaction at the inference stage.

Lcross = L(v,u)+[L(v,u) + L(v,u) + L(v,u)] , (14)

Finally, we combine the cross-embedding matching loss
Eq. (14) with the relevance regularization loss Eq. (11).

3.5. Discussion

Inference Stage. Since we may not have the batch
data in the actual application, our framework can encode
the cross-modal embeddings without sample interaction at
the inference stage. The instance-level relation modeling
is only for training. Intuitively, when we train the embed-
ding encoding network and the sample interaction network
together with the end-to-end manner and the consistent loss
in Sec. 3.4, the encoding network will also be improved
with the helpful supervision of embedding interaction.

Time Complexity. Two matching methods have dif-
ferent time complexity in cross-modal retrieval. Given N
image-text pairs, separate encoding makes the time com-
plexity of embedding-based methods to be O(2N), while
cross-modal interaction makes score-based to be O(N2).
Given one query and the set to be retrieved N samples, the
time complexity of query retrieval is O(1) for embedding-
based, but is O(N) for score-based. Hence score-based
methods usually sacrifice the retrieval speed for the perfor-
mance boost. However, our method can achieve both highly
accurate and efficient retrieval, as shown in Fig. 5.
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Table 2. Comparisons of image-text retrieval performances on Flickr30K and MS-COCO 1K test-set. Region represents using Faster-
RCNN [37] to extract region features [1] for images. BiGRU [38] and BERT [6] represent using them to extract word features for texts.
We list the existing state-of-the-art embedding-based image-text matching methods. ∗ indicates the ensemble results of two models.

Method
Flickr30K 1K MS-COCO 1K

IMG → TEXT TEXT → IMG rSum IMG → TEXT TEXT → IMG rSumR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
Region + BiGRU
VSRN∗

2019 [20] 71.3 90.6 96.0 54.7 81.8 88.2 482.6 76.2 94.8 98.2 62.8 89.7 95.1 516.8
CVSE2020 [43] 73.5 92.1 95.8 52.9 80.4 87.8 482.4 74.8 95.1 98.3 59.9 89.4 95.2 512.7
GPO2021 [4] 76.5 94.2 97.7 56.4 83.4 89.9 498.1 78.5 96.0 98.7 61.7 90.3 95.6 520.8
MV2022 [24] 79.0 94.9 97.7 59.1 84.6 90.6 505.8 78.7 95.7 98.7 62.7 90.4 95.7 521.9
HREM (Fusion) 79.5 94.3 97.4 59.3 85.1 91.2 506.8 80.0 96.0 98.7 62.7 90.1 95.4 522.8
HREM (Full)∗ 81.4 96.5 98.5 60.9 85.6 91.3 514.3 81.2 96.5 98.9 63.7 90.7 96.0 527.1
Region + BERT
CAMERA∗

2020 [35] 78.0 95.1 97.9 60.3 85.9 91.7 508.9 77.5 96.3 98.8 63.4 90.9 95.8 522.7
DSRAN∗

2021 [45] 77.8 95.1 97.6 59.2 86.0 91.9 507.6 78.3 95.7 98.4 64.5 90.8 95.8 523.5
GPO2021 [4] 81.7 95.4 97.6 61.4 85.9 91.5 513.5 79.7 96.4 98.9 64.8 91.4 96.3 527.5
VSRN++2022 [21] 79.2 94.6 97.5 60.6 85.6 91.4 508.9 77.9 96.0 98.5 64.1 91.0 96.1 523.6
HREM (Fusion) 83.3 96.0 98.1 63.5 87.1 92.4 520.4 81.1 96.6 98.9 66.1 91.6 96.5 530.7
HREM (Full)∗ 84.0 96.1 98.6 64.4 88.0 93.1 524.2 82.9 96.9 99.0 67.1 92.0 96.6 534.6

4. Experiments
4.1. Experimental Setup

Datasets & Metrics. We choose the typical Flickr30K
[47] and MS-COCO [26] datasets, where each image is as-
sociated with five texts. Flickr30K contains 29,000, 1,000,
and 1,014 training, testing, and validation images, respec-
tively. MS-COCO contains 82,738, 5,000, and 5,000 train-
ing, testing, and validation images, respectively. The results
of MS-COCO are tested on averaging over 5-folds of 1K
test images and on the entire 5K test images. Following [4],
We evaluate performances by the metric, R@K and rSum.

Implementation Details. The embedding dimension
d = 1024 as previous work [4]. We use the pre-extracted
region features [1] for images, and we use the BiGRU [38]
with GloVe [34] or BERT-base [6] to extract textual fea-
tures. The batch size N = 128 for Flickr30K and N = 256
for MS-COCO. The layer of interaction mechanism L = 1,
the hyper-parameters as β = 0.8, τ = 0.5, λ = 1.5,
K = 10, and the margin of triplet loss α = 0.2.

4.2. Comparison with State-of-the-art Methods

We follow the standard evaluation protocols [51] on two
datasets. We first perform two proposed interaction mecha-
nisms individually, then report the ensemble results.

On Flickr30K. Quantitative results on Flickr30K 1K
test-set are shown in Tab. 2, where our proposed method
outperforms all state-of-the-art embedding-based image-
text matching methods [20, 21, 24, 35, 45] with impressive
margins for the R@K and rSum. Furthermore, our method
has the coincident superiority on different textual encoders
[6, 38] and still gets the best on the ensemble results.

On MS-COCO. Performances on MS-COCO 1K and

(c) 𝜏(b) 𝐾(a) 𝜆

Figure 6. Effect of hyper-parameters. (a) The weight of relevance
matrix λ for Eq. (12), (b) The number of local matching K for Eq.
(8), (c) The threshold of neighbor space τ for Eq. (5, 6).

Figure 7. The curve of triplet loss with of hard negative mining.
The loss values are computed by enhanced and initial embeddings,
which are the first and second item of Eq. (14), respectively.

5K test-set are shown in Tab. 1 and Tab. 2. Our method per-
forms best compared with existing state-of-the-art methods
[4, 35, 45] on the 1K test set. Furthermore, on the more ex-
tensive database of 5K test set, our method outperforms pre-
vious work [21, 50, 51] with larger performance gaps, both
embedding-based and score-based methods, which shows
the superiority of our method more convincingly.

4.3. Ablation Study & Robustness Analysis

By default, we perform the experiments on our frame-
work of fusion mechanism with Region+BERT settings.
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Table 3. Comparison of different module ablation for our frame-
work. ‘✓’ means retaining it (or otherwise removing it).

(a) The ablation study of hierarchical relation modeling on Flickr30K

Fragment-level Instance-level IMG → TEXT TEXT → IMG
Visual Textual Intra-modal Inter-modal R@1 R@5 R@1 T R@5

✓ ✓ 81.5 94.9 62.3 86.2
✓ ✓ ✓ 81.8 95.1 62.4 86.2

✓ ✓ ✓ 83.1 95.9 63.2 87.0
✓ ✓ 80.1 94.8 60.9 85.3
✓ ✓ ✓ 80.5 94.7 61.2 85.2
✓ ✓ ✓ 82.2 95.5 62.6 86.4
✓ ✓ ✓ ✓ 83.3 96.0 63.5 87.1

(b) The ablation study of instance-level relation modeling on Flickr30K

Methods IMG → TEXT TEXT → IMG
R@1 R@5 R@1 T R@5

w/o connection matrix A 81.4 95.1 61.5 86.3
w/o relevance matrix S 81.7 95.3 61.9 86.5
w/o consistency Lcross 81.6 95.6 61.8 86.7
w/o regularization Lreg 82.8 95.8 62.9 86.9

w/o neighbor batch sampling 82.8 95.9 63.1 87.0
HREM 83.3 96.0 63.5 87.1

Hyper-parameters. Fig. 6 shows the effect of three
critical parameters, which demonstrates the significance of
capturing sample relations and the effectiveness of our pro-
posed modules. λ is the attention coefficient for the rele-
vance matrix, thus it should be large enough to provide ex-
tra fine-grained supervision, K is related to the number of
words in variable sentences, thus it cannot be too large to
adapt short texts. τ represents the ratio of connected sam-
ples in the batch, it will not be meaningful if close to 0 or
1. Finally, the performances are relatively stable when all
parameter values change in a proper range, our method is
insensitive to hyper-parameter selection.

Hierarchical Relation. To better verify the effective-
ness of hierarchical relation modeling, we provide the abla-
tion study in Tab. 3a. It shows that both instance-level and
fragment-level relation modeling help improve the learning
of cross-modal embeddings. First, capturing the instance-
level relation, especially the inter-modal relation, is more
critical than the intra-modal and fragment-level relation.
Besides, capturing fragment-level relations for the textual
modality seems redundant. We believe that word features
have already learned contextual semantics by the textual en-
coders, e.g., BiGRU [38] and BERT [6]. However, explor-
ing the semantic relations for region features are meaningful
as previous work [20, 21, 46]. Finally, modeling all hierar-
chical relations is also essential for the optimal result.

Instance-level Relation. Tab. 3b shows the ablation of
our instance-level relation modeling. First, the connection
and relevance matrices are significant in explicitly capturing
the cross-modal relation. And the cross-embedding match-
ing loss Lcross is indispensable to keep the embedding con-
sistency at the inference stage. Besides, the regularization

Table 4. R@1 comparison on hard samples with semantic ambi-
guity and infrequent samples with semantic scarcity in different
proportions, selected by the percentile rank of average embedding
similarity between themselves and other samples in the dataset.
‘"’ means training with sample relation modeling.

Samples Percentile Sample Flickr30K MS-COCO 5K
Type Rank Interaction I → T T → I I → T T → I

Hard

5% 74.6 32.0 36.4 8.5
" 76.0 34.8 40.4 9.2

10% 72.0 38.8 39.2 12.3
" 75.0 40.4 44.6 13.6

20% 74.5 45.1 43.6 18.5
" 78.0 47.1 49.3 19.5

Infrequent

5% 79.2 38.4 50.8 16.7
" 84.0 40.8 59.2 19.4

10% 78.0 41.2 53.0 19.8
" 81.2 43.6 61.0 22.6

20% 75.0 46.6 54.8 23.9
" 82.0 48.4 61.0 26.2

loss Lreg can ensure the training stability to improve per-
formances. Finally, the neighbor batch sampling adapts to
mine more potential connected samples from mini-batch.

Special Samples. Tab. 4 shows the performance com-
parison of hard samples with semantic ambiguity and in-
frequent samples with semantic scarcity in the test set (hard
and infrequent samples will get high average similarity with
other negative samples in datasets). We find our method can
improve these special samples significantly. Fig. 7 shows
the curve of triplet loss with hard negative mining, the val-
ues of enhanced embeddings are lower than the initial, prov-
ing the capacity for recognizing hard samples.

Retrieval Speed. We show the trade-off between per-
formance and computation for cross-modal retrieval in Fig.
5. Although our method belongs to the embedding-based
image-text matching methods [4,20], achieves both high ac-
curacy and efficiency, and is more than 10 times faster than
the latest score-based methods [7, 19, 51] on Flickr30K.

5. Conclusion
This paper proposes a novel hierarchical relation model-

ing framework (HREM) for image-text matching. HREM
not only captures fragment-level relations within the single
modality and sample, but also effectively exploits instance-
level relations across different modalities and samples to
learn better holistic embeddings. Based on our design,
HREM encodes embedding without interaction on sample
or modality at the inference stage, thus achieving high effi-
ciency on cross-modal retrieval. Extensive experiments on
two benchmarks show the superiority of our method.

6. Acknowledgements
This work is supported by the National Natural Science

Foundation of China under Grant 62222212, 62121002.

15166



References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6077–
6086, 2018. 3, 6, 7

[2] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
normalization. ArXiv, abs/1607.06450, 2016. 5

[3] Hui Chen, Guiguang Ding, Xudong Liu, Zijia Lin, Ji Liu,
and Jungong Han. Imram: Iterative matching with recur-
rent attention memory for cross-modal image-text retrieval.
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 12652–12660, 2020. 1, 2,
6

[4] Jiacheng Chen, Hexiang Hu, Hao Wu, Yuning Jiang, and
Chang Lian Wang. Learning the best pooling strategy for
visual semantic embedding. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
15784–15793, 2021. 1, 2, 6, 7, 8

[5] Yuhao Cheng, Xiaoguang Zhu, Jiuchao Qian, Fei Wen, and
Peilin Liu. Cross-modal graph matching network for image-
text retrieval. ACM Trans. Multimedia Comput. Commun.
Appl., 18(4), mar 2022. 2, 4, 6

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. ArXiv, abs/1810.04805,
2019. 3, 6, 7, 8

[7] Haiwen Diao, Ying Zhang, Lingyun Ma, and Huchuan Lu.
Similarity reasoning and filtration for image-text matching.
ArXiv, abs/2101.01368, 2021. 1, 2, 8

[8] Ismail Elezi, Jenny Seidenschwarz, Laurin Wagner, Sebas-
tiano Vascon, Alessandro Torcinovich, Marcello Pelillo, and
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