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Abstract

Few-shot font generation (FFG), aiming at generating
font images with a few samples, is an emerging topic in re-
cent years due to the academic and commercial values. Typ-
ically, the FFG approaches follow the style-content disen-
tanglement paradigm, which transfers the target font styles
to characters by combining the content representations of
source characters and the style codes of reference samples.
Most existing methods attempt to increase font generation
ability via exploring powerful style representations, which
may be a sub-optimal solution for the FFG task due to the
lack of modeling spatial transformation in transferring font
styles. In this paper, we model font generation as a continu-
ous transformation process from the source character image
to the target font image via the creation and dissipation of
font pixels, and embed the corresponding transformations
into a neural transformation field. With the estimated trans-
formation path, the neural transformation field generates a
set of intermediate transformation results via the sampling
process, and a font rendering formula is developed to ac-
cumulate them into the target font image. Extensive exper-
iments show that our method achieves state-of-the-art per-
formance on few-shot font generation task, which demon-
strates the effectiveness of our proposed model. Our imple-
mentation is available at: https://github.com/fubinfb/NTF.

1. Introduction
Generating a new stylized font with a few reference sam-

ples, referred as the few-shot font generation (FFG) task,
has received considerable attentions due to the academic,
commercial, and artistic values, especially for some glyph-
rich scripts such as Chinese and Korean. In recent years,
the style-content disentanglement paradigm has become the
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Figure 1. The motivation of this paper: (a). The differences of
font styles mainly come from the shape deformation and transfor-
mation of the source font, such as the thickness of strokes and the
writing pattern of glyphs. (b). We regard font generation as a con-
tinuous transformation process from the source font to target font
via the creation and dissipation of font pixels.

most popular solution for FFG task, which decouples the
stylized font images into the font-specific style codes and
the character-specific content features. Therefore, the target
stylized font will be generated from the carefully-designed
decoder via the combination of the style codes from the
reference samples and the content embeddings from the s-
tandard glyphs. Based on the style representations, exist-
ing approaches can be roughly divided into two categories.
Early approaches mainly model font style information as
global statistic features, and thus utilize the universal style
representations to embed such information. Witnessing the
fine-grained structure variations and local correlations (such
as stoken and component) in font styles, recent approaches
further develop component-wise or fine-grained localized
style representations to boost FFG performance. Howev-
er, as shown in Fig. 1, the differences between font styles
mainly come from the shape deformation and transforma-
tion on the source glyph. Based on this observation, pre-
vious approaches may be the sub-optimal solution for FFG
task due to the lack of modeling spatial transformation in
font generation process.

Inspired by recent advances in Neural Radiance Field
(NeRF) [23] in 3D view synthesis, we attempt to embed
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Figure 2. (a). The methodology of NeRF. (b). We embed the desired transformations of font generation into the neural transformation
field. The style estimator Eθ predicts the locations θ of each font style, and the font generation process can be viewed as a transformation
process of font pixels from the original point to this location. (c). As each NeRF only corresponds to a specific scene, it is impracticable
for the FFG task. Thus we generalize our NTF to model the transformations for all characters by introducing the structure embedding
(extracted by a structure encoder Ec) of characters. (d). Finally, considering the localized characteristic of font style, we further generalize
our NTF into the localized style representation.

the desired spatial transformations in a neural transforma-
tion field, and thus the font generation process can be refor-
mulated as the accumulation of a set of intermediate trans-
formation results along a specific path. The methodology
of NeRF is presented in Fig. 2 (a). The NeRF constructs
a neural radiance field to represent a specific 3D scene as
a 5D function, whose inputs are the location and view di-
rection while outputs are the emitted color together with the
volume density. An MLP network is utilized to approximate
this function, where the scene information is embedded in-
to the parameters via the optimization process. To generate
a novel view, the color of each pixel is rendered along the
color ray passing through the scene via volume rendering
technique [22].

Motivated by the above method, instead of directly pre-
dicting the pixel-level deformation offsets, we model the
font generation as a continuous transformation process via
the creation intensity ϕ and dissipation rate τ of font pix-
els, and embed such transformations into a neural transfor-
mation filed. To make the description clearly, we use the
universal-representation-based font generation to introduce
our method. As shown in Fig. 2 (c), the neural transfor-
mation field (NTF) is constructed to model the font trans-
formation process based on the structure embeddings of
source characters. Each location in NTF represents a spe-

cific structure-related transformation and the path from the
original point to this location corresponding to the trans-
formation process from the source font to the target font.
Each font style has a specific location relating to the desired
transformations for generating font images in NTF, and we
utilize an estimator to estimate this location. With the esti-
mated location and the corresponding transformation path,
NTF generates a set of intermediate transformations via the
sampling process, and a font rendering formula is develope-
d to accumulate them into the target font image. Since the
font styles contain many fine-grained structures and local
correlations, the localized style representation shows sig-
nificant advantages over the universal style representation.
Therefore, as shown in Fig. 2 (d), we generalize our NT-
F into the localized style representations and conduct ex-
tensive experiments to evaluate our model. Experimental
results show that our model achieves new state-of-the-art
performance in few-shot font generation tasks, both in the
seen fonts with unseen contents testing and unseen fonts
with unseen contents testing, which demonstrate the supe-
rior generation performance of our proposed method.

In summary, our contribution is threefold in this paper:
1). We regard font generation as a continuous transfor-

mation process via the creation and dissipation of font pix-
els along the transformation path, and embed such transfor-
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mations into the neural transformation field (NTF).
2). A differentiable font rendering procedure is devel-

oped to accumulate the intermediate transformations into
the target font image.

3). Experimental results show that our method outper-
forms the state-of-the-art methods in the few-shot font gen-
eration task, which demonstrate the effectiveness of our pro-
posed method.

2. Related Works
In this section, we briefly review the recent progresses

in font generation and the development of neural radiance
field (NeRF).

2.1. Font Generation

Font generation aims to generate stylized font images
from reference samples. Since this task can be viewed as
the mapping from the source domain to the target domain,
several methods [6, 33, 34] utilize the image-to-image (I2I)
translation models [7, 15, 15, 19, 41] to transfer font from
source style to target style. Zi2zi [33] and Rewrite [34] are
implemented on pix2pix [15] frameworks and optimized in
a supervised manner with style labels. DC-font [16] utilizes
a feature reconstruction network to embed style information
for font synthesis. Moreover, although designed for the I2I
task, FUNIT [19] has been modified to perform font gener-
ation due to its generalization ability for unseen styles.

In recent years, generating font images with few samples
has received more attention. Most few-shot font generation
(FFG) methods focus on the style-content disentanglemen-
t paradigm, which transfers the target font styles by com-
bining the content representations of source characters with
the style codes of reference samples. Existing approach-
es can be roughly divided into two categories, the univer-
sal representations [2, 11, 40] and localized representation-
s [4, 18, 20, 26, 27, 32, 36]. Early approaches mainly model
font style information as global statistic features, and thus
utilize the universal style representations to embed such
information. For example, EMD [40] and AGISNet [11]
combine the style vector of reference samples and content
vector of source characters to generate the target font im-
ages. Witnessing the fine-grained structure deformable and
local correlations in font styles, recent approaches further
develop localized style representations to boost FFG per-
formance. DM-Font [4] utilizes the compositional script
to decompose each glyph into several predefined compo-
nents, and generates the target font with component-wise
features. LF-Font [26] simplifies component-wise styles to
the localized style representation by a product of compo-
nent factor and style factor via a factorization strategy. S-
ince DM-Font and LF-Font both require component labels
at test time, MX-Font [27] generalizes the above method-
s by employing multiple encoders to learn different local

concepts via weak supervision from the component classifi-
er. CG-GAN [18] employs a component-wise discriminator
to supervise font generator in a fine-grained manner. [32]
utilizes a cross-attention mechanism to aggregate style fea-
tures into the fine-grained style representation.

2.2. Neural Radiation Field

Recently, neural radiance field (NeRF) [23] has become
a prevalent method for novel view synthesis with rapid
progress, which represents a scene with a neural network
via mapping a position and view direction to the emitted
color and volume density. Many following works attempt
to extend NeRF to the dynamic scene [21,30,37], fast train-
ing and rendering [8, 12, 31] and scene editing [3, 24, 38].
Besides the scene reconstruction and view synthesis, many
follow-up works generalize NeRF to various tasks. Some
papers [1, 5, 9, 10] employ NeRF to generate editable facial
images. For example, RigNeRF [1] construct a deforma-
tion field guided by a 3D morphable face model to enable
full control of head pose and facial expressions. StyleSD-
F [25] combines a Signed Distance Fields (SDF) volume
renderer and a 2D style-transfer network to synthesis high-
quality facial images. Another promising application of N-
eRF method is to model human movement and reconstruc-
t dynamic human bodies from video. For example, Ani-
matable NeRF [29] employs NeRF to embed 3D static hu-
man bodies and utilizes a deformation field to model body
movement by transforming observation-space points to the
canonical space. HumanNeRF [35] represents a moving
person with a canonical appearance pose warped to an ob-
served pose, modeled by a canonical appearance field and a
motion field.

Inspired by the appealing quality of NeRF [23] and its
good flexibility with large follow-up extensions, in this pa-
per, we attempt to construct a neural transformation field to
embed the desired transformations, and thus reformulate the
font generation process as the accumulation of a set of in-
termediate transformation results along a specific estimated
path.

3. Methodology
In this section, we provide a detailed description of

our proposed method, including the Neural Transformation
Field (NTF) for font generation (in Sec. 3.1), the Font Ren-
dering with NTF (in Sec. 3.2), the overall framework (in
Sec. 3.3), and optimization process (in Sec. 3.4).

3.1. Representing Font Generation as the Transfor-
mation Process of Font Pixels in NTF

In this paper, we regard font generation as the creation
and dissipation processes of font pixels with respect to the
source font, and thus reformulate the font style transfer as a
continuous transformation process in neural transformation
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Figure 3. The overall framework of our proposed model, which consists of a style estimator Eθ , a structure encoder Ec, a neural transfor-
mation field (NTF), and a discriminatorD. Following the previous methods [4,19,26,27], we employ a multi-head projection discriminator
in our framework, which is not plotted in this figure.

field (NTF). As shown in Fig. 2 (c), we utilize a style es-
timator Eθ to express each font style as a 3D location θ in
NTF, and define the source font as the original point. Based
on this definition, the path from the original point to the lo-
cation θ stands for a set of desired transformations from the
source font to the target font, and the final font image can
be expressed as the accumulation of such transformations
(creation and dissipation of font pixels) along this path. In
this paper, we formulate this accumulation process as a font
rendering process, which will be introduced in Sec. 3.2.

As each radiance field only corresponds to a specific
scene in NeRF, it is an impracticable solution for the font
generation task, thus we generalize our NTF to model the
spatial transformation for all characters by introducing the
structure embedding Fc of characters in Fig. 2 (c). The
inputs of NTF are the 3D location θ together with the struc-
ture embeddingFc of the source character, while the outputs
are the creation intensity ϕ and transformation rate τ at this
location. In practice, we utilize a convolution neural net-
work (CNN) as the style estimator Eθ to project font styles
of reference samples into the locations θ, and implement a
CNN-based encoder to embed the character-specific struc-
ture information of source characters as the conditions for
NTF. We approximate this NTF function as a CNN network
FΘ:

(ϕ, τ) = FΘ (θ|Fc) (1)

where ϕ and τ denote the creation intensity and dissipation
rate of the font pixels at location θ conditioned on the struc-
ture embedding Fc, respectively. The creation intensity ϕ
and dissipation rate τ are the transformation parameters for
font generation, which will be accumulated into final font

images in the following section. The NTF will learn the
desired transformations of font generation task via the op-
timization process (in Sec. 3.3) from the training samples,
and embed such knowledge into its weight Θ.

As discussed in previous sections, since the font styles
contain many fine-grained structures and local correlations,
the localized style representation shows significant advan-
tages over the universal style representation in FFG task.
Therefore, as shown in Fig. 2 (d), we further generalize our
NTF into the localized style representation, termed as NTF-
Loc, to track the transformation process and generate the
final font images.

3.2. Font Rendering with Neural Transformation
Field

To generate the font image, we need to collect the inter-
mediate transformation results and formulate the font gen-
eration as a font rendering process in neural transformation
field.

The transformations of different font styles can be di-
vided into two categories, the font pixel generation process
and dissipation process, respectively. Based on this obser-
vation, we introduce two quantities, the creation intensity
ϕ and dissipation rate τ namely, to model above transfor-
mations. The creation intensity ϕ represents the non-font
pixel changing to font pixel or the font pixel enhancing its
intensity. In contrast, the dissipation rate τ represents a font
pixel weakening its intensity with the rate τ at the location
ω. The transformed intensity at location ω can be expressed
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as the following differential equation:

dI(ω)

dω
= ϕ(ω)τ(ω)− τ(ω)I(ω). (2)

The first term models the creation process while the sec-
ond term models the dissipation process of font pixels. The
solution to this differential equation is:

I(θ) =

∫ θ

0

ϕ(ω)τ(ω)T (ω)dω. (3)

This equation is the font rendering formula in NTF, and
T (ω) represents the accumulated transformations along the
path from the location ω to θ, which can be expressed as

T (ω) = exp

(
−
∫ θ

ω

τ(x)dx

)
. (4)

Based on Eq. 3, generating a stylized font image at the
location θ requires estimating this integral from the original
point to θ in our neural transformation field. In practice, we
estimate this continuous integral numerically. The interval
from the original point to location θ is partitioned into N
evenly-spaced segments with the length ξ = 1

N θ, and we
draw one sample in each segment i at the location θi = iξ.
Therefore, the integral in Eq. 3 can be approximated by [22]

I =

N∑
i=1

Ti (1− exp (−τiξ))ϕi, (5)

and Ti can be expressed as

Ti = exp

− N∑
j=i+1

τiξ

 , (6)

where ξ is the length of each segment i.

3.3. Overall Framework

The overall architecture of our proposed model is shown
in Fig. 3, which consists of a style estimator Eθ, a struc-
ture encoder Ec, a neural transformation field (NTF), and
a discriminator D. Given a style image Is ∈ RH×W×1 as
the reference image and a source image Ic ∈ RH×W×1,
the estimator Eθ estimates the 3D location θ from the refer-
ence image while the structure encoder network Ec embeds
the structure information Fc ∈ Rh×w×c from the source
character. Then we generate N sampling points θ1, · · · , θN
from the path 0 to θ and combine each sampled location θi
with the structure embedding Fc as the inputs for NTF. S-
ince the current results are not dependent on the outputs of
previous steps in the NTF function (Eq. 1), we parallelly
calculate NTF function with respect to the different loca-
tions. Finally, we collect the predicted creation intensity ϕi

and dissipation rate τi at all sampled locations θi, and utilize
Eq. 5 to generate font images. As we discussed before, in
this paper, we provide two NTF structures for the universal
style representation θ ∈ R1×1×3 and localized style repre-
sentation θ ∈ Rh×w×3, termed as NTF-Uni (Fig. 3 (b)) and
NTF-Loc (Fig. 3 (c)), respectively.

NTF for Universal Style Representation: For the uni-
versal style representation, the global location θi ∈ R1×1×3

together with the structure embedding Fc ∈ Rh×w×c will
be utilized to calculate the predicted creation intensity ϕi
and dissipation rate τi. We adopt AdaIN mechanism [14,17]
to fuse the location θi ∈ R1×1×3 and the structure embed-
ding Fc ∈ Rh×w×c at several intermediate layers of NTF,
which can be expressed as

Fout,m = γm

(
Fin,m − µ(Fin,m)

σ(Fin,m)

)
+ βm (7)

where the location θi ∈ R1×1×3 will be first projected to
the scale γm and bias βm for AdaIN operation via full-
connected layers, and then they are utilized to separately
normalize each input feature map fin,m via Eq. 7. The
details architecture of NTF-Uni is shown in Fig. 3 (b),
which employs 3 residual blocks, 3 up-sampling blocks,
and 3 AdaIN fusion blocks to generate the feature F ∈
RH×W×32. Finally, two convolution heads are utilized to
predict creation intensity ϕi ∈ RH×W×1 and dissipation
rate τi ∈ RH×W×1.

NTF for Localized Style Representation: For the lo-
calized style representation, the estimated location θi ∈
Rh×w×3 has the same size in space dimension with the
structure embedding Fc ∈ Rh×w×c, thus we directly con-
catenate θi with Fc as the inputs of NTF to predict creation
intensity ϕi and dissipation rate τi. As shown in Fig. 3
(c), the architecture of NTF-Loc is modified from NTF-Uni
by removing the AdaIN fusion blocks. Finally, two pre-
diction heads are utilized to generate the creation intensity
ϕi ∈ RH×W×1 and dissipation rate τi ∈ RH×W×1.

3.4. Optimization Process

As shown in Eq. 1 and Eq. 5, the font generation process
of our proposed model is naturally differentiable, thus we
formulate the optimization process in an end-to-end man-
ner. We utilize the following loss functions to optimize our
model:

Reconstruction loss: We adapt an L1 loss as the recon-
struction loss between the generated font image ỹ and the
ground truth image y to learn the desired transformation for
our model. We also utilize L1 loss to optimize network to
reconstruct the source image Ic at the original point in NTF.
Therefore, the reconstruction loss can be expressed as

Lrec = E [||y − ỹ||1 + ||Ic − ỹ0||1] . (8)
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where ỹ0 denotes the generated font image at the original
point.

Adversarial loss: To synthesize the realistic image, we
adapt the widely-used adversarial loss to make our model
learn to generate indistinguishable images from real sam-
ples. Following the previous methods [4, 19, 26, 27], we
employ a multi-head projection discriminator in our frame-
work, and calculate the adversarial loss according to:

LDadv = −E(y,s,c)∼pdata
max (0,−1 +Ds,c(y))

−E(ỹ,s,c)∼pgen max (0,−1−Ds,c(ỹ))

LGadv = −E(ỹ,s,c)∼pgenDs,c(ỹ) (9)

where ỹ is the generated font image, c and s are the corre-
sponding content and style labels, respectively.

Overall objective loss: We optimize our model under
all losses mentioned above:

min
G

max
D

λadv(L
D
adv + LGadv) + λrecLrec, (10)

where λadv and λrec are the hyperparameters and we em-
pirically set λadv = 1.0 and λrec = 0.1 in our experiments.

4. Experiments
In this section, we conduct extensive experiments to

demonstrate the effectiveness of our proposed model. We
first introduce the dataset and evaluation metrics in our ex-
periments. Then we perform ablation study and evaluate the
performance of font generation in various settings. Finally,
we compare our model with current state-of-the-art models,
which verifies the promising performance of our method.

4.1. Implement Details

We implement our model on PyTorch platform [28] with
the public-available toolkit [26, 27] and conduct extensive
experiments to demonstrate the effectiveness of our pro-
posed model. In our experiments, the size of font images is
H = W = 128. At the inference stage, we utilize 8 stylized
font images as the reference images (8-shot) to generate the
target font. More details are provided in Appendix.

4.2. Dataset and Evaluation Metrics

Datasets: To evaluate our proposed method on font gen-
eration task, we collect a Chinese font dataset including 403
font style. We randomly select 353 fonts as the training set,
and the remaining 50 fonts as the testing set. We employ
214 characters as the unseen contents and randomly sam-
ple other 800 characters to optimize our model. To evaluate
our model, we construct the Unseen Fonts Unseen Contents
(UFUC) testing set, termed as UFUC-test, by combining
the 214 unseen characters with the 50 testing fonts. More-
over, we further randomly select 200 characters from the

Table 1. Ablation study on the style representations with the mea-
surements of SSIM, ms-SSIM, LPIPS, FID. We use 15 sampling
points (N = 15) to evaluate our models. The bold number indi-
cates the best.

Methods SSIM↑ ms-SSIM↑ LPIPS↓ FID↓
Unseen Fonts and Seen Contents

NTF-Uni 0.6102 0.3489 0.1264 30.46
NTF-Loc 0.6299 0.4246 0.0999 13.72

Unseen Fonts and Unseen Contents
NTF-Uni 0.6331 0.3468 0.1283 33.12
NTF-Loc 0.6533 0.4187 0.1019 15.67

800 training characters, and then combine them with the 50
testing fonts to evaluate the generation performance on Un-
seen Fonts Seen Contents (UFSC), termed as UFSC-test.

Evaluation Metrics: In this paper, to quantitative eval-
uate our proposed method, four commonly used measure-
ments are employed: (1) SSIM and (2) its multi-scale ver-
sion ms-SSIM are adopt to evaluate the image quality based
on the similarity of luminance, contrast, and structure; (3)
LPIPS [39] is employed to quantify the perceptual similar-
ity; and (4). FID [13] is calculated to measure the domain
distribution between real samples and generated images.

4.3. Ablation Study

4.3.1 Ablation Study on Style Representations

As we discussed in Sec. 3.3, we provide two NTF structures
for the font generation task, the universal style representa-
tion (termed as NTF-Uni) and the localized style represen-
tation (termed as NTF-Loc), respectively. In this section,
we use 15 sampling points N = 15 to estimate the inte-
gral in Eq. 5 and conduct extensive experiments to evaluate
the generation performance of two structures. As shown in
Tab. 1, the localized style representation performs signifi-
cantly better than universal style representation in all mea-
surements, which is consistent with the recent development
of FFG model, thus we employ the localized style represen-
tation (NTF-Loc) as the default model to perform extensive
experiments in the following sections.

4.3.2 The Number of Sampling Points for Font Ren-
dering

In our proposed model, we draw N sampling points even-
ly to numerically estimate the continuous integral in Eq.
5. To verify the correctness and effectiveness of our mod-
el, we conduct extensive experiments on various sampling
points N . The experimental results are present in Tab. 2,
and we can draw the following conclusions: (1). Since the
base model is the traditional font generation process, the
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Table 2. Ablation study on the number of sampling points for
rendering font images.

Num. SSIM↑ ms-SSIM↑ LPIPS↓ FID↓
Unseen Fonts and Seen Contents

Base 0.6189 0.3674 0.1114 18.74
N = 5 0.6229 0.3997 0.1035 15.35
N = 10 0.6280 0.4159 0.1017 14.14
N = 15 0.6299 0.4246 0.0999 13.72
N = 20 0.6260 0.4160 0.1012 16.38

Unseen Fonts and Unseen Contents
Base 0.6413 0.3649 0.1156 19.05
N = 5 0.6466 0.3938 0.1065 17.86
N = 10 0.6503 0.4107 0.1046 16.55
N = 15 0.6533 0.4187 0.1019 15.67
N = 20 0.6473 0.4035 0.1049 18.10

Figure 4. The visualization results of the generated font images
with respect to the different sampling numbers N . We highlight
the anomalous font pixels and structures by the colored boxes.

improvements from the base model to the N = 5 case ver-
ify the effectiveness of our NTF. (2). As we expected, in-
creasing sampling points in the proper range is beneficial for
the generation performance, which demonstrates that our
NTF has indeed learned the desired transformation process
for font generation task. (3). However, with the sampling
points further increasing, the generation performance be-
gins to decrease (at N = 20 in our experiments), which
may come from the noise accumulation in the font render-
ing process (the integral in Eq. 3).

We present the visualization results of the generated font
images with respect to the different sampling numbers N
in Fig. 4. From this figure, we find that a small number of
sampling points is enough to generate stylized font images.
With the sampling number increasing, our model can grad-
ually improve the quality of generated font images by (a)
recovering the broken structures, (b) removing the anoma-
lous pixels, or (c) strengthening the fine-grained structures.
Moreover, as we have discussed in the previous paragraph,
with more sampling points, some unexpected font pixels ap-
pear in the final image, which leads to performance degra-

dation. To further verify our model, we visualize the trans-
formation process and present the intermediate rendered re-
sults along the integral path in Fig. 5. As shown in Fig.
5, the generated font image gradually transforms from the
source style to the target style, where the unrelated font pix-
els in source images are dissipated while other pixels of tar-
get font are gradually created. Moreover, for the creation
process, the skeleton of the font is first generated, then the
fine-grained details are added and the structures of the char-
acter become smooth and complete.

Figure 5. The visualization results of the intermediate rendering
process from original point to the estimated location along the in-
tegral path.

4.4. Comparison with the State-of-the-art Methods

To further demonstrate the superior performance of our
proposed model, we compare our method with recent state-
of-the-art works.

4.4.1 Comparison Methods

We compare our model with five state-of-the-art methods,
including FUNIT [19], DG-Font [36], LF-Font [26], FS-
Font [32], and MX-Font [27]. Following the previous prac-
tices [26,27], we modify and implement FUNIT to perform
few-shot font generation on our dataset. The DG-Font [36]
models the shape deformable of font generation via the de-
formation skip connection, which can be served as a com-
parison baseline for shape transformation models. LF-Font
[26] constructs the localized style representation by a prod-
uct of component factor and style factor via a factorization
strategy. MX-Font [27] employs multiple encoders to learn
different local concepts via weak supervision of the com-
ponent classifier. FSFont [32] utilizes the cross attention to
aggregate fine-grained local styles. For a fair comparison,
we train the above methods from scratch on our dataset and
utilize the same reference images in inference stage.

4.4.2 Quantitative Comparison

The quantitative experimental results are present in Tab. 3,
from which we can draw the following conclusions: (1).
Compared with the universal style representation method,
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Figure 6. Visual comparisons of our NTF-Loc with other state-of-the-art methods on our dataset.

Table 3. Performance comparison on few-shot font generation
task.

Methods SSIM↑ ms-SSIM↑ LPIPS↓ FID↓
Unseen Fonts and Seen Contents

FUNIT [19] 0.5990 0.2565 0.1438 15.12
DG-font [36] 0.6124 0.3784 0.1262 64.25
LF-font [26] 0.6208 0.3495 0.1238 36.37
FSFont [32] 0.6358 0.4123 0.1100 62.73
MX-font [27] 0.6053 0.3474 0.1054 25.80
NTF-Loc (Ours) 0.6299 0.4246 0.0999 13.72

Unseen Fonts and Unseen Contents
FUNIT [19] 0.6174 0.2651 0.1505 19.29
DG-font [36] 0.6433 0.3924 0.1293 70.90
LF-font [26] 0.6466 0.3052 0.1277 41.21
FSFont [32] 0.6463 0.4051 0.1188 66.49
MX-font [27] 0.6368 0.3676 0.1075 29.34
NTF-Uni (Ours) 0.6331 0.3468 0.1283 33.12
NTF-Loc (Ours) 0.6533 0.4187 0.1019 15.67

our NTF-Uni performs better than FUNIT in terms of SSIM
and LPIPS. (2). With the help of localized style representa-
tion, our NTF-Loc has 0.0202, 0.0264, and 17.45 improve-
ments than NTF-Uni in terms of SSIM, LPIPS, and FID, re-
spectively. (3). Our NTF-Loc achieves the best generation
performance in all evaluation metrics, which demonstrates
the powerful generation ability of our model.

4.4.3 Qualitative Comparison

To qualitatively evaluate our model, we visualize the gen-
erated font images under the UFUC setting in Fig. 6. As
shown in this figure, FUNIT and LF-Font often produce font
images with incomplete structures. DG-Font, FSFont and
MX-Font usually lose some local details of characters, and
contain some artifacts near the character region. Our NTF-
Loc generates high-quality font images than other state-of-

the-art methods, which have better structure completeness
and style consistency. Finally, compared with target font
images, we find that generating unseen stylized font is still
a challenging task, especially for the styles with large defor-
mation. More qualitative results are provided in Appendix.

5. Conclusion

In this paper, we develop a novel approach for the few-
shot font generation (FFG) task, which regards the font gen-
eration process as a continuous transformation via the cre-
ation and dissipation of font pixels. We construct a neural
transformation field (NTF) to embed such transformations,
where each location in NTF represents a specific structure-
related transformation. The path from the origin point to
this location corresponds to the transformation process from
the source font to the target font. A style estimator is imple-
mented to estimate the location of font styles from the ref-
erence image, while a structure encoder is employed to ex-
tract structure information from the source image. With the
estimated location, a set of sampling points are generated to
calculate the intermediate transformations. Then we accu-
mulate these intermediate results to generate the final font
images via the proposed font rendering formula. Extensive
experiments demonstrate the effectiveness of our proposed
model.
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