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Abstract

Cross-Domain Few-Shot Learning (CD-FSL) is a recently
emerging task that tackles few-shot learning across different
domains. It aims at transferring prior knowledge learned on
the source dataset to novel target datasets. The CD-FSL task
is especially challenged by the huge domain gap between
different datasets. Critically, such a domain gap actually
comes from the changes of visual styles, and wave-SAN [10]
empirically shows that spanning the style distribution of the
source data helps alleviate this issue. However, wave-SAN
simply swaps styles of two images. Such a vanilla operation
makes the generated styles “real” and “easy”, which still
fall into the original set of the source styles. Thus, inspired
by vanilla adversarial learning, a novel model-agnostic
meta Style Adversarial training (StyleAdv) method together
with a novel style adversarial attack method is proposed
for CD-FSL. Particularly, our style attack method synthe-
sizes both “virtual” and “hard” adversarial styles for model
training. This is achieved by perturbing the original style
with the signed style gradients. By continually attacking
styles and forcing the model to recognize these challenging
adversarial styles, our model is gradually robust to the vi-
sual styles, thus boosting the generalization ability for novel
target datasets. Besides the typical CNN-based backbone,
we also employ our StyleAdv method on large-scale pre-
trained vision transformer. Extensive experiments conducted
on eight various target datasets show the effectiveness of
our method. Whether built upon ResNet or ViT, we achieve
the new state of the art for CD-FSL. Code is available at
https://github.com/lovelyqian/StyleAdv-CDFSL.

1. Introduction
This paper studies the task of Cross-Domain Few-Shot

Learning (CD-FSL) which addresses the Few-Shot Learn-
ing (FSL) problem across different domains. As a gen-
eral recipe for FSL, episode-based meta-learning strategy

* indicates corresponding author

has also been adopted for training CD-FSL models, e.g.,
FWT [48], LRP [42], ATA [51], and wave-SAN [10]. Gener-
ally, to mimic the low-sample regime in testing stage, meta
learning samples episodes for training the model. Each
episode contains a small labeled support set and an unla-
beled query set. Models learn meta knowledge by predicting
the categories of images contained in the query set according
to the support set. The learned meta knowledge generalizes
the models to novel target classes directly.

Empirically, we find that the changes of visual appear-
ances between source and target data is one of the key causes
that leads to the domain gap in CD-FSL. Interestingly, wave-
SAN [10], our former work, shows that the domain gap
issue can be alleviated by augmenting the visual styles of
source images. Particularly, wave-SAN proposes to augment
the styles, in the form of Adaptive Instance Normalization
(AdaIN) [22], by randomly sampling two source episodes
and exchanging their styles. However, despite the efficacy
of wave-SAN, such a naı̈ve style generation method suffers
from two limitations: 1) The swap operation makes the styles
always be limited in the “real” style set of the source dataset;
2) The limited real styles further lead to the generated styles
too “easy” to learn. Therefore, a natural question is whether
we can synthesize “virtual” and “hard” styles for learning a
more robust CD-FSL model? Formally, we use “real/virtual”
to indicate whether the styles are originally presented in the
set of source styles, and define “easy/hard” as whether the
new styles make meta tasks more difficult.

To that end, we draw inspiration from the adversarial
training, and propose a novel meta Style Adversarial train-
ing method (StyleAdv) for CD-FSL. StyleAdv plays the
minimax game in two iterative optimization loops of meta-
training. Particularly, the inner loop generates adversarial
styles from the original source styles by adding perturba-
tions. The synthesized adversarial styles are supposed to be
more challenging for the current model to recognize, thus, in-
creasing the loss. Whilst the outer loop optimizes the whole
network by minimizing the losses of recognizing the images
with both original and adversarial styles. Our ultimate goal is
to enable learning a model that is robust to various styles, be-
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yond the relatively limited and simple styles from the source
data. This can potentially improve the generalization ability
on novel target domains with visual appearance shifts.

Formally, we introduce a novel style adversarial attack
method to support the inner loop of StyleAdv. Inspired yet
different from the previous attack methods [14,34], our style
attack method perturbs and synthesizes the styles rather than
image pixels or features. Technically, we first extract the
style from the input feature map, and include the extracted
style in the forward computation chain to obtain its gradient
for each training step. After that, we synthesize the new
style by adding a certain ratio of gradient to the original
style. Styles synthesized by our style adversarial attack
method have the good properties of “hard” and “virtual”.
Particularly, since we perturb styles in the opposite direction
of the training gradients, our generation leads to the “hard”
styles. Our attack method results in totally “virtual” styles
that are quite different from the original source styles.

Critically, our style attack method makes progressive
style synthesizing, with changing style perturbation ratios,
which makes it significantly different from vanilla adver-
sarial attacking methods. Specifically, we propose a novel
progressive style synthesizing strategy. The naı̈ve solution of
directly plugging-in perturbations is to attack each block of
the feature embedding module individually, which however,
may results in large deviations of features from the high-
level block. Thus, our strategy is to make the synthesizing
signal of the current block be accumulated by adversarial
styles from previous blocks. On the other hand, rather than
attacking the models by fixing the attacking ratio, we syn-
thesize new styles by randomly sampling the perturbation
ratio from a candidate pool. This facilitates the diversity
of the synthesized adversarial styles. Experimental results
have demonstrated the efficacy of our method: 1) our style
adversarial attack method does synthesize more challenging
styles, thus, pushing the limits of the source visual distribu-
tion; 2) our StyleAdv significantly improves the base model
and outperforms all other CD-FSL competitors.

We highlight our StyleAdv is model-agnostic and com-
plementary to other existing FSL or CD-FSL models, e.g.,
GNN [12] and FWT [48]. More importantly, to benefit from
the large-scale pretrained models, e.g., DINO [2], we fur-
ther explore adapting our StyleAdv to improve the Vision
Transformer (ViT) [5] backbone in a non-parametric way.
Experimentally, we show that StyleAdv not only improves
CNN-based FSL/CD-FSL methods, but also improves the
large-scale pretrained ViT model.

Finally, we summarize our contributions. 1) A novel meta
style adversarial training method, termed StyleAdv, is pro-
posed for CD-FSL. By first perturbing the original styles
and then forcing the model to learn from such adversarial
styles, StyleAdv improves the robustness of CD-FSL models.
2) We present a novel style attack method with the novel

progressive synthesizing strategy in changing attacking ra-
tios. Diverse “virtual” and “hard” styles thus are generated.
3) Our method is complementary to existing FSL and CD-
FSL methods; and we validate our idea on both CNN-based
and ViT-based backbones. 4) Extensive results on eight un-
seen target datasets indicate that our StyleAdv outperforms
previous CD-FSL methods, building a new SOTA result.

2. Related Work
Cross-Domain Few-Shot Learning. FSL which aims at
freeing the model from reliance on massive labeled data has
been studied for many years [12,25,39,41,43,45,46,56,58].
Particularly, some recent works, e.g., CLIP [38], CoOp [65],
CLIP-Adapter [11], Tip-Adapter [59], and PMF [19] ex-
plore promoting the FSL with large-scale pretrained mod-
els. Particularly, PMF contributes a simple pipeline and
builds a SOTA for FSL. As an extended task from FSL,
CD-FSL [1, 7–10, 15, 16, 23, 29, 32, 37, 42, 48, 51, 60, 67]
mainly solves the FSL across different domains. Typical
meta-learning based CD-FSL methods include FWT [48],
LRP [42], ATA [51], AFA [20], and wave-SAN [10]. Specif-
ically, FWT and LRP tackle CD-FSL by refining batch
normalization layers and using the explanation model to
guide training. ATA, AFA, and wave-SAN propose to aug-
ment the image pixels, features, and visual styles, respec-
tively. Several transfer-learning based CD-FSL methods,
e.g., BSCD-FSL (also known as Fine-tune) [16], BSR [33],
and NSAE [32] have also been explored. These methods re-
veal that finetuning helps improving the performances on tar-
get datasets. Other works that introduce extra data or require
multiple domain datasets for training include STARTUP [37],
Meta-FDMixup [8], Me-D2N [9], TGDM [67], TriAE [15],
and DSL [21].
Adversarial Attack. The adversarial attack aims at mis-
leading models by adding some bespoke perturbations to
input data. To generate the perturbations effectively, lots of
adversarial attack methods have been proposed [6, 14, 26, 27,
34, 36, 55, 57]. Most of the works [6, 14, 34, 36] attack the
image pixels. Specifically, FGSM [14] and PGD [34] are
two most classical and famous attack algorithms. Several
works [26, 27, 62] attack the feature space. Critically, few
methods [57] attack styles. Different from these works that
aim to mislead the models, we perturb the styles to tackle
the visual shift issue for CD-FSL.
Adversarial Few-Shot Learning. Several attempts [13,
28, 30, 40, 52] that explore adversarial learning for FSL
have been made. Among them, MDAT [30], AQ [13], and
MetaAdv [52] first attack the input image and then train
the model using the attacked images to improve the defense
ability against adversarial samples. Shen et al. [40] attacks
the feature of the episode to improve the generalization ca-
pability of FSL models. Note that ATA [51] and AFA [20],
two CD-FSL methods, also adopt the adversarial learning.
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However, we are greatly different from them. ATA and AFA
perturb image pixels or features, while we aim at bridging
the visual gap by generating diverse hard styles.
Style Augmentation for Domain Shift Problem. Augment-
ing the style distribution for narrowing the domain shift issue
has been explored in domain generation [31, 54, 66], image
segmentation [3, 63], person re-ID [61], and CD-FSL [10].
Concretely, MixStyle [66], AdvStyle [63], DSU [31], and
wave-SAN [10] synthesize styles without extra parameters
via mixing, attacking, sampling from a Gaussian distribu-
tion, and swapping. MaxStyle [3] and L2D [54] require
additional network modules and complex auxiliary tasks to
help generate the new styles. Typically, AdvStyle [63] is the
most related work to us. Thus, we highlight the key differ-
ences: 1) AdvStyle attacks styles on the image, while we
attack styles on multiple feature spaces with a progressive
attacking method; 2) AdvStyle uses the same task loss (seg-
mentation) for attacking and optimization; in contrast, we
use the classical classification loss to attack the styles, while
utilize the task loss (FSL) to optimize the whole network.

3. StyleAdv: Meta Style Adversarial Training
Task Formulation. Episode T = ((S,Q), Y ) is randomly
sampled as the input of each meta-task, where Y represents
the global class labels of the episode images with respect to
Ctr. Typically, each meta-task is formulated as an N -way
K-shot problem. That is, for each episode T , N classes
with K labeled images are sampled as the support set S,
and the same N classes with another M images are used
to constitute the query set Q. The FSL or CD-FSL models
predict the probability P that the images in Q belong to N

categories according to S. Formally, we have |S| = NK,
|Q| = NM , |P | = NM ⇥N .
FGSM and PGD Attackers. We briefly summarize the
algorithms for FGSM [14] and PGD [34], two most famous
attacking methods. Given image x with label y, FGSM
attacks the x by adding a ratio ✏ of signed gradients with
respect to the x resulting in the adversarial image x

adv as,

x
adv = x+ ✏ · sign(rxJ(✓, x, y)), (1)

where J(·) and ✓ denote the object function and the learnable
parameters of a classification model. PGD can be regarded
as a variant of FGSM. Different from the FGSM that only
attacks once, PGD attacks the image in an iterative way and
sets a random start (abbreviated as RT) for x as,

x
adv

0 = x+ kRT · N (0, I), (2)

x
adv

t
= x

adv

t�1 + ✏ · sign(rxJ(✓, x, y)), (3)

where kRT , ✏ are hyper-parameters. N is Gaussian noises.

3.1. Overview of Meta Style Adversarial Learning
To alleviate the performance degradation caused by the

changing visual appearance, we tackle CD-FSL by promot-
ing the robustness of models on recognizing various styles.
Thus, we expose our FSL model to some challenging virtual
styles beyond the image styles that existed in the source
dataset. To that end, we present the novel StyleAdv adver-
sarial training method. Critically, rather than adding pertur-
bations to image pixels, we particularly focus on adversar-
ially perturbing the styles. The overall framework of our
StyleAdv is illustrated in Figure 1. Our StyleAdv contains
a CNN/ViT backbone E, a global FC classifier fcls, and a
FSL classifier ffsl with learnable parameters ✓E , ✓cls, ✓fsl,
respectively. Besides, our core style attack method, a novel
style extraction module, and the AdaIN are also included.

Overall, we learn the StyleAdv by solving a minimax
game. Specifically, the minimax game shall involve two iter-
ative optimization loops in each meta-train step. Particularly,

• Inner loop: synthesizing new adversarial styles by attack-
ing the original source styles; the generated styles will
increase the loss of the current network.

• Outer loop: optimizing the whole network by classifying
source images with both original and adversarial styles;
this process will decrease the loss.

3.2. Style Extraction from CNNs and ViTs
Adaptive Instance Normalization (AdaIN). We recap the
vanilla AdaIN [22] proposed for CNN in style transfer. Par-
ticularly, AdaIN reveals that the instance-level mean and
standard deviation (abbreviated as mean and std) convey the
style information of the input image. Denoting the mean
and std as µ and �, AdaIN (denoted as A) reveals that the
style of F can be transfered to that of Ftgt by replacing the
original style (µ,�) with the target style (µtgt,�tgt):

A(F, µtgt,�tgt) = �tgt

F � µ(F )

�(F )
+ µtgt. (4)

Style Extraction for CNN Features. As shown in the upper
part of Figure 1 (b), let F 2 RB⇥C⇥H⇥W indicates the
input feature batch, where B, C, H , and W denote the batch
size, channel, height, and width of the feature F , respectively.
As in AdaIN, the mean µ and std � of F are defined as:

µ(F)b,c =
1

HW

HX

h=1

WX

w=1

Fb,c,h,w, (5)

�(F)b,c =

vuut 1

HW

HX

h=1

WX

w=1

(Fb,c,h,w � µb,c(F ))2 + ✏, (6)

where µ,� 2 RB⇥C .
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Figure 1. (a): Overview of StyleAdv method. The inner loop synthesizes adversarial styles, while the outer loop optimizes the whole
network. (b): Style extraction for CNN-based and ViT-based features (illustration with B=1).

Meta Information Extraction for ViT Features. We ex-
plore extracting the meta information of the ViT features as
the manner of CNN. Intuitively, such meta information can
be regarded as a unique “style” of ViTs. As shown in Fig-
ure 1 (b), we take an input batch data with image split into
P ⇥ P patches as an example. The ViT encoder will encode
the batch patches into a class (cls) token (Fcls 2 RB⇥C)
and a patch tokens (F0 2 RB⇥P

2⇥C). To be compatible
with AdaIN, we reshape the F0 as F 2 RB⇥C⇥P⇥P . At this
point, we can calculate the meta information for patch tokens
F as in Eq. 5 and Eq. 6. Essentially, note that the transformer
integrates the positional embedding into the patch represen-
tation, the spatial relations thus could be considered still
hold in the patch tokens. This supports us to reform the
patch tokens F0 as a spatial feature map F . To some extent,
this can also be achieved by applying the convolution on the
input data via a kernel of size P ⇥P (as indicated by dashed
arrows in Figure 1 (b)).

3.3. Inner Loop: Style Adversarial Attack Method
We propose a novel style adversarial attack method – Fast

Style Gradient Sign Method (Style-FGSM) to accomplish
the inner loop. As shown in Figure 1, given an input source
episode (T , Y ), we first forward it into the backbone E and
the FC classifier fcls producing the global classification loss
Lcls (as illustrated in the 1� paths). During this process, a
key step is to make the gradient of the style available. To
achieve that, let FT denotes the features of T , we obtain the
style (µ, �) of FT as in Sec. 3.2. After that, we reform the
original episode feature as A(FT , µ,�). And the reformed

feature is actually used for the forward propagation. In this
way, we include µ and � in our forward computation chain;
and thus, we could access the gradients of them.

With the gradients in 2� paths, we then attack µ and � as
FGSM does – adding a small ratio ✏ of the signed gradients
with respect to µ and �, respectively.

µadv = µ+ ✏ · sign(rµJ(✓E , ✓fcls ,A(FT , µ,�), Y )), (7)

�
adv = �+ ✏ · sign(r�J(✓E , ✓fcls ,A(FT , µ,�), Y )), (8)

where the J() is the cross-entropy loss between classification
predictions and ground truth Y , i.e., Lcls. Inspired by the ran-
dom start of PGD, we also add random noises kRT · N (0, I)
to µ and � before attacking. N (0, I) refers to Gaussian
noises and kRT is a hyper-parameter. Our Style-FGSM en-
ables us to generate both “virtual” and “hard” styles.
Progressive Style Synthesizing Strategy: To prevent the
high-level adversarial feature from deviating, we propose
to apply our style-FGSM in a progressive strategy. Con-
cretely, the embedding module E has three blocks E1, E2,
and E3, with the corresponding features F1, F2, and F3.
For the first block, we use (µ1, �1) to denote the original
styles of F1. The adversarial styles (µadv

1 ,�
adv

1 ) are ob-
tained directly as in Eq. 7 and Eq. 8. For subsequent blocks,
the attack signals on the current block i are those accumu-
lated from the block 1 to block i � 1. Take the second
block as an example, the block feature F2 is not simply
extracted by E2(F1). Instead, we have F

0

2 = E2(F adv

1 ),
where F

adv

1 = A(F1, µ
adv

1 ,�
adv

1 ). Attacking on F
0

2 results
in the adversarial styles (µadv

2 ,�
adv

2 ). Accordingly, we gen-
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erate (µadv

3 ,�
adv

3 ) for the last block. The illustration of the
progressive attacking strategy is attached in the Appendix.
Changing Style Perturbation Ratios: Different from the
vanilla FGSM [14] or PGD [34], our style attacking algo-
rithm is expected to synthesize new styles with diversity.
Thus, instead of using a fixed attacking ratio ✏, we randomly
sample ✏ from a candidate list ✏list as the current attacking
ratio. Despite the randomness of ✏, we still synthesize styles
in a more challenging direction, ✏ only affects the extent.

3.4. Outer Loop: Optimize the StyleAdv Network
For each meta-train iteration with clean episode T as in-

put, our inner loop produces adversarial styles (µadv

1 ,�
adv

1 ),
(µadv

2 ,�
adv

2 ), and (µadv

3 ,�
adv

3 ). As in Figure 1, the goal of
the outer loop is to optimize the whole StyleAdv with both
the clean feature F and the style attacked feature F

adv uti-
lized as the training data. Typically, the clean episode feature
F can be obtained directly as E(T ) as in 3� paths.

In 4� paths, we obtain the F
adv by transferring

the original style of F to the corresponding adver-
sarial attacked styles. Similar with the progressive
style-FGSM, we have F

adv

1 = A(E1(T ), µadv

1 ,�
adv

1 ),
F

adv

2 = A(E2(F adv

1 ), µadv

2 ,�
adv

2 ), and F
adv

3 =
A(E3(F adv

2 ), µadv

3 ,�
adv

3 ). Finally, F adv is obtained by ap-
plying an average pooling layer to F

adv

3 . A skip probability
pskip is set to decide whether to skip the current attacking.
Conducting FSL tasks for both the clean feature F and style
attacked feature F

adv results in two FSL predictions Pfsl,
P

adv

fsl
, and two FSL classification losses Lfsl, Ladv

fsl
.

Further, despite the styles of F
adv shifts from that of

F , we encourage that the semantic content should be still
consistent as in wave-SAN [10]. Thus we add a consistent
constraint to the predictions of Pfsl and P

adv

fsl
resulting in

the consistent loss Lcons as,

Lcons = KL(Pfsl, P
adv

fsl
), (9)

where KL() is Kullback–Leibler divergence loss. In addition,
we have the global classification loss Lcls. This ensures
that ✓cls is optimized to provide correct gradients for style-
FGSM. The final meta-objective of StyleAdv is as,

L = Lfsl + Ladv

fsl
+ Lcons + Lcls. (10)

Note that our StyleAdv is model-agnostic and orthogonal
to existing FSL and CD-FSL methods.

3.5. Network Inference
Applying StyleAdv Directly for Inference. Our StyleAdv
facilitates making CD-FSL model more robust to style shifts.
Once the model is meta-trained, we can employ it for infer-
ence directly by feeding the testing episode into the E and
the fcls. The class with the highest probability will be taken
as the predicted result.

Finetuning StyleAdv Using Target Examples. As indi-
cated in previous works [16, 32, 33, 51], finetuning CD-FSL
models on target examples helps improve the model per-
formance. Thus, to further promote the performance of
StyleAdv, we also equip it with the fintuning strategy form-
ing an upgraded version (“StyleAdv-FT”). Specifically, as
in ATA-FT [51], for each novel testing episode, we augment
the novel support set to form pseudo episodes as training
data for tuning the meta-trained model.

4. Experiments

Datasets. We take two CD-FSL benchmarks proposed in
BSCD-FSL [16] and FWT [48]. Both of them take mini-
Imagenet [39] as the source dataset. Two disjoint sets split
from mini-Imagenet form Dtr and Deval. Totally eight
datasets including ChestX [53], ISIC [4, 47], EuroSAT [18],
CropDisease [35], CUB [50], Cars [24], Places [64], and
Plantae [49] are taken as novel target datasets. The former
four datasets included in BSCD-FSL’s benchmark cover med-
ical images varying from X-ray to dermoscopic skin lesions,
and natural images from satellite pictures to plant disease
photos. While the latter four datasets that focus on more
fine-grained concepts such as birds and cars are contained
in FWT. These eight target datasets serve as testing set Dte,
respectively.
Network Modules. For typical CNN based network, fol-
lowing previous CD-FSL methods [10, 42, 48, 51], ResNet-
10 [17] is selected as the embedding module while GNN [12]
is selected as the FSL classifier; For the emerging ViT based
network, following PMF [19], we use the ViT-small [5] and
the ProtoNet [41] as the embedding module and the FSL
classifier, respectively. Note that, the ViT-small is pretrained
on ImageNet1K by DINO [2] as in PMF. The fcls is built by
a fully connected layer.
Implementation Details. The 5-way 1-shot and 5-way 5-
shot settings are conducted. Taking ResNet10 as backbone,
we meta train the network for 200 epochs, each epoch con-
tains 120 meta tasks. Adam with a learning rate of 0.001
is utilized as the optimizer. Taking ViT-small as backbone,
the meta train stage takes 20 epoch, each epoch contains
2000 meta tasks. The SGD with a initial learning rate of
5e-5 and 0.001 are used for optimize the E() and the fcls,
respectively. The ✏list, kRT of Style-FGSM attacker are set
as [0.8, 0.08, 0.008], 16

255 . The probability pskip of random
skipping the attacking is chosen from {0.2, 0.4}. We evalu-
ate our network with 1000 randomly sampled episodes and
report average accuracy (%) with a 95% confidence interval.
Both the results of our “StyleAdv” and “StyleAdv-FT” are
reported. The details of the finetuning are attached in Ap-
pendix. ResNet-10 based models are trained and tested on a
single GeForce GTX 1080, while ViT-small based models
require a single NVIDIA GeForce RTX 3090.
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1-shot Backbone FT LargeP ChestX ISIC EuroSAT CropDisease CUB Cars Places Plantae Average

GNN [12] RN10 - - 22.00±0.46 32.02±0.66 63.69±1.03 64.48±1.08 45.69±0.68 31.79±0.51 53.10±0.80 35.60±0.56 43.55
FWT [48] RN10 - - 22.04±0.44 31.58±0.67 62.36±1.05 66.36±1.04 47.47±0.75 31.61±0.53 55.77±0.79 35.95±0.58 44.14
LRP [42] RN10 - - 22.11±0.20 30.94±0.30 54.99±0.50 59.23±0.50 48.29±0.51 32.78±0.39 54.83 ±0.56 37.49 ±0.43 42.58
ATA [51] RN10 - - 22.10±0.20 33.21±0.40 61.35±0.50 67.47±0.50 45.00±0.50 33.61±0.40 53.57±0.50 34.42±0.40 43.84
AFA [20] RN10 - - 22.92±0.20 33.21±0.30 63.12±0.50 67.61±0.50 46.86±0.50 34.25±0.40 54.04±0.60 36.76±0.40 44.85
wave-SAN [10] RN10 - - 22.93±0.49 33.35±0.71 69.64±1.09 70.80±1.06 50.25±0.74 33.55±0.61 57.75±0.82 40.71±0.66 47.37
StyleAdv (ours) RN10 - - 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06

ATA-FT [51] RN10 Y - 22.15±0.20 34.94±0.40 68.62±0.50 75.41±0.50 46.23±0.50 37.15±0.40 54.18±0.50 37.38±0.40 47.01
StyleAdv-FT (ours) RN10 Y - 22.64±0.35 35.76±0.52 72.92±0.75 80.69±0.28 48.49±0.72 35.09±0.55 58.58±0.83 41.13±0.67 49.41

PMF⇤ [19] ViT-small Y DINO/IN1K 21.73±0.30 30.36±0.36 70.74±0.63 80.79±0.62 78.13±0.66 37.24±0.57 71.11±0.71 53.60±0.66 55.46
StyleAdv (ours) ViT-small - DINO/IN1K 22.92±0.32 33.05±0.44 72.15±0.65 81.22±0.61 84.01±0.58 40.48±0.57 72.64±0.67 55.52±0.66 57.75
StyleAdv-FT (ours) ViT-small Y DINO/IN1K 22.92±0.32 33.99±0.46 74.93±0.58 84.11±0.57 84.01±0.58 40.48±0.57 72.64±0.67 55.52±0.66 58.57

5-shot Backbone FT LargeP ChestX ISIC EuroSAT CropDisease CUB Cars Places Plantae Average

GNN [12] RN10 - - 25.27±0.46 43.94±0.67 83.64±0.77 87.96±0.67 62.25±0.65 44.28±0.63 70.84±0.65 52.53±0.59 58.84
FWT [48] RN10 - - 25.18±0.45 43.17±0.70 83.01±0.79 87.11±0.67 66.98±0.68 44.90±0.64 73.94±0.67 53.85±0.62 59.77
LRP [42] RN10 - - 24.53±0.30 44.14±0.40 77.14±0.40 86.15±0.40 64.44±0.48 46.20±0.46 74.45±0.47 54.46±0.46 58.94
ATA [51] RN10 - - 24.32±0.40 44.91±0.40 83.75±0.40 90.59±0.30 66.22±0.50 49.14±0.40 75.48±0.40 52.69±0.40 60.89
AFA [20] RN10 - - 25.02±0.20 46.01±0.40 85.58±0.40 88.06±0.30 68.25±0.50 49.28±0.50 76.21±0.50 54.26±0.40 61.58
wave-SAN [10] RN10 - - 25.63±0.49 44.93±0.67 85.22±0.71 89.70±0.64 70.31±0.67 46.11±0.66 76.88±0.63 57.72±0.64 62.06
StyleAdv (ours) RN10 - - 26.07±0.37 45.77±0.51 86.58±0.54 93.65±0.39 68.72±0.67 50.13±0.68 77.73±0.62 61.52±0.68 63.77

Fine-tune [16] RN10 Y - 25.97±0.41 48.11±0.64 79.08±0.61 89.25±0.51 64.14±0.77 52.08±0.74 70.06±0.74 59.27±0.70 61.00
ATA-FT [51] RN10 Y - 25.08±0.20 49.79±0.40 89.64±0.30 95.44±0.20 69.83±0.50 54.28±0.50 76.64±0.40 58.08±0.40 64.85
NSAE [32] RN10 Y - 27.10±0.44 54.05±0.63 83.96±0.57 93.14±0.47 68.51±0.76 54.91±0.74 71.02±0.72 59.55±0.74 64.03
BSR [33] RN10 Y - 26.84±0.44 54.42±0.66 80.89±0.61 92.17±0.45 69.38±0.76 57.49±0.72 71.09±0.68 61.07±0.76 64.17
StyleAdv-FT (ours) RN10 Y - 26.24±0.35 53.05±0.54 91.64±0.43 96.51±0.28 70.90±0.63 56.44±0.68 79.35±0.61 64.10±0.64 67.28

PMF [19] ViT-small Y DINO/IN1K 27.27 50.12 85.98 92.96 - - - - -
StyleAdv (ours) ViT-small - DINO/IN1K 26.97±0.33 47.73±0.44 88.57±0.34 94.85±0.31 95.82±0.27 61.73±0.62 88.33±0.40 75.55±0.54 72.44
StyleAdv-FT (ours) ViT-small Y DINO/IN1K 26.97±0.33 51.23±0.51 90.12±0.33 95.99±0.27 95.82±0.27 66.02±0.64 88.33±0.40 78.01±0.54 74.06

Table 1. Results of 5-way 1-shot/5-shot tasks. “FT” means whether the finetuning stage is employed. “LargeP”’ represents if large pretrained
models are used for model initialization. “RN10” is short for “ResNet-10”. ⇤ denotes results are reported by us. Results perform best are
bolded. Whether based on ResNet-10 or ViT-small, our method outperforms other competitors significantly.

4.1. Comparison with the SOTAs

We compare our StyleAdv/StyleAdv-FT against several
most representative and competitive CD-FSL methods. Con-
cretly, with the ResNet-10 (abbreviated as RN10) as back-
bone, totally nine methods including GNN [12], FWT [48],
LRP [42], ATA [51], AFA [20], wave-SAN [10], Fine-
tune [16], NSAE [32], and BSR [33] are introduced as our
competitors. Among them, the former six competitors are
meta-learning based method that used for inference directly,
thus we compare our “StyleAdv” against them for a fair
comparison. Typically, the GNN [12] works as a base model.
The Fine-tune [16], NSAE [32], BSR [33], and ATA-FT [51]
(formed by finetuning ATA) all require finetuning model dur-
ing inference, thus our “StyleAdv-FT” is used. With the ViT
as backbone, the most recent and competitive PMF (SOTA
method for FSL) is compared. For fair comparisons, we
follow the same pipeline proposed in PMF [19]. Note that
we promote CD-FSL models with only one single source
domain. Those methods that use extra training datasets, e.g.,
STARTUP [37], meta-FDMixup [8], and DSL [21] are not
considered. The comparison results are given in Table 1.

For all results, our method outperforms all the listed
CD-FSL competitors significantly and builds a new state
of the art. Our StyleAdv-FT (ViT-small) on average achieves
58.57% and 74.06% on 5-way 1-shot and 5-shot, respec-
tively. Our StyleAdv (RN10) and StyleAdv-FT (RN10) also

beats all the meta-learning based or transfer-learning (fine-
tuning) based methods. Besides of the state-of-the-art ac-
curacy, we also have other worth-mentioning observations.
1) We show that our StyleAdv method is a general solution
for both CNN-based models and ViT-based models. Typi-
cally, based on ResNet10, our StyleAdv and StyleAdv-FT
improve the base GNN by up to 4.93% and 8.44% on 5-shot
setting. Based on ViT-small, at most cases, our StyleAdv-
FT outperforms the PMF by a clear margin. More results
of building StyleAdv upon other FSL or CD-FSL meth-
ods can be found in the Appendix. 2) Comparing FWT,
LRP, ATA, AFA, waveSAN, and our StyleAdv, we find that
StyleAdv performs best, followed by wave-SAN, then comes
the AFA, ATA, FWT, and LRP. This phenomenon indicates
that tackling CD-FSL by solving the visual shift problem
is indeed more effective than other perspectives, e.g., ad-
versarial training by perturbing the image features (AFA)
or image pixels (ATA), transforms the normalization lay-
ers in FWT, and explanation guided training in LRP. 3) For
the comparison between StyleAdv and wave-SAN that both
tackles the visual styles, we notice that StyleAdv outper-
forms the wave-SAN in most cases. This demonstrates that
the styles generated by our StyleAdv are more conducive to
learning robust CD-FSL models than the style augmentation
method proposed in wave-SAN. This justifies our idea of
synthesizing more challenging (“hard and virtual”) styles.
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4) Overall, the large-scale pretrained model promotes the
CD-FSL obviously. Take 1-shot as an example, StyleAdv-FT
(ViT-small) boosts the StyleAdv-FT (RN10) by 9.16% on av-
erage. However, we show that the performance improvement
varies greatly on different target domains. Generally, for tar-
get datasets with relative small domain gap, e.g., CUB and
Plantae, models benefit a lot; otherwise, the improvement is
limited. 5) We also find that under the cross-domain scenar-
ios, finetuning model on target domain, e.g., NSAE, BSR do
show an advantange over purely meta-learning based meth-
ods, e.g., FWT, LRP, and wave-SAN. However, to finetune
model using extremely few examples, e.g., 5-way 1-shot
is much harder than on relatively larger shots. This may
explain why those finetune-based methods do not conduct
experiments on 1-shot setting.
Effectiveness of Style-FGSM Attacker. To show the ad-
vantages of our progressive style synthesizing strategy and
attacking with changing perturbation ratios, we compare our
Style-FGSM against several variants and report the results in
Figure 2. Specifically, for Figure 2 (a), we compare our style-
FGSM against the variant that attacks the blocks individually.
Results show that attacking in a progressive way exceeds
the naive individual strategy in most cases. For Figure 2
(b), to demonstrate how the performance will be affected
by fixed attacking ratios, we also conduct experiments with
different ✏list. Since we set the ✏list as [0.8, 0.08, 0.008],
three different choices including [0.8], [0.08], and [0.008]
are selected. From the results, we first notice that the best
result can be reached by a single fixed ratio. However, sam-
pling the attacking ratio from a pool of candidates achieves
the best result in most cases.
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Figure 2. Effectiveness of the progressive style synthesizing strat-
egy and the changing style perturbation ratios. The 5-way 1-shot
results are reported. Models are built on ResNet10 and GNN.
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Figure 3. Visualization of wave-SAN and StyleAdv. (a): synthe-
sized images; (b): meta-training losses; (c): T-SNE results.

4.2. More Analysis

Visualization of Hard Style Generation. To help under-
stand the “hard” style generation of our method intuitively,
as in Figure 3, we make several visualizations comparing
StyleAdv against the wave-SAN. 1) As in Figure 3 (a), we
show the stylized images generated by wave-SAN and our
StyleAdv. The visualization is achieved by applying the
style augmentation methods to input images. Specifically,
for wave-SAN, the style is swapped with another randomly
sampled source image; for StyleAdv, the results of attacking
style with ✏ = 0.08 are given. We observe that wave-SAN
tends to exchange the global visual appearance, e.g., the
color of the input image randomly. By contrast, StyleAdv
prefers to disturb the important regions that are key to rec-
ognizing the image category. For example, the fur of the
cat and the key parts (face and feet) of the dogs. These ob-
servations intuitively support our claim that our StyleAdv
synthesize more harder styles than wave-SAN. 2) To quan-
titatively evaluate whether our StyleAdv introduces more
challenging styles into the training stage, as in Figure 3 (b),
we visualize the meta-training loss. Results reveal that the
perturbed losses of wave-SAN oscillate around the original
loss, while StyleAdv increases the original loss obviously.
These phenomenons further validate that we perturb data
towards a more difficult direction thus pushing the limits
of style generation to a large extent. 3) To further show
the advantages of StyleAdv over wave-SAN, as shown in
Figure 3 (c), we visualize the high-level features extracted
by the meta-trained wave-SAN and StyleAdv. Five classes
(denoted by different colors) of mini-Imagenet are selected.
T-SNE is used for reducing the feature dimensions. Results
demonstrate that StyleAdv enlarges the inter-class distances
making classes more distinguishable.
Why Attack Styles Instead of Images or Features? A
natural question may be why we choose to attack styles in-
stead of other targets, e.g., the input image as in AQ [13],
MDAT [30], and ATA [51] or the features as in Shen et
al. [40] and AFA [20]? To answer this question, we compare
our StyleAdv which attacks styles against attacking images
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Attack Target ChestX ISIC EuroSAT CropDisease CUB Cars Places Plantae Average

1-shot Image 22.71±0.35 33.00±0.53 67.00±0.82 72.65±0.75 48.15±0.72 34.40±0.60 57.89±0.83 39.85±0.64 46.96
Feature 22.55±0.35 32.95±0.53 68.71±0.81 70.86±0.78 46.52±0.70 34.07±0.54 56.68±0.81 39.62±0.62 46.50

Style (ours) 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06

5-shot Image 24.92±0.36 42.63±0.47 84.18±0.54 90.31±0.47 66.37±0.65 47.46±0.67 75.94±0.62 57.33±0.65 61.14
Feature 25.55±0.37 43.71±0.50 84.22±0.55 91.71±0.44 67.31±0.67 50.26±0.67 76.46±0.65 57.39±0.63 62.08

Style (ours) 26.07±0.37 45.77±0.51 86.58±0.54 93.65±0.39 68.72±0.67 50.13±0.68 77.73±0.62 61.52±0.68 63.77
Table 2. Comparison results (%) of attacking image, feature, and styles. Models build upon ResNet10 and GNN classifier.

Augment Method ChestX ISIC EuroSAT CropDisease CUB Cars Places Plantae Average

1-shot StyleGaus† 22.37±0.35 31.48±0.52 65.71±0.82 69.25±0.80 46.32±0.72 32.69±0.54 55.48±0.79 37.27±0.61 45.07
MixStyle [66] 22.43±0.35 33.21±0.53 67.35±0.80 68.80±0.82 47.08±0.73 33.39±0.58 56.12±0.78 38.03±0.62 45.80
AdvStyle [63] 22.04±0.36 30.83±0.52 65.19±0.82 64.96±0.81 47.43±0.72 31.90±0.52 53.95±0.79 35.81±0.59 44.01

DSU [31] 22.35±0.36 31.43±0.51 64.55±0.83 64.73±0.81 47.74±0.72 31.61±0.53 54.81±0.81 37.19±0.61 44.30
Style-FGSM (ours) 22.64±0.35 33.96±0.57 70.94±0.82 74.13±0.78 48.49±0.72 34.64±0.57 58.58±0.83 41.13±0.67 48.06

5-shot StyleGaus† 24.97±0.37 41.74±0.48 81.88±0.61 89.71±0.49 65.98±0.67 45.03±0.64 72.66±0.68 56.66±0.65 59.83
MixStyle [66] 25.04±0.36 43.77±0.53 82.67±0.58 88.90±0.52 65.73±0.66 45.91±0.63 75.90±0.63 56.59±0.62 60.56
AdvStyle [63] 25.03±0.35 43.15±0.50 83.09±0.57 88.44±0.52 66.42±0.67 44.85±0.64 74.14±0.65 54.89±0.64 60.00

DSU [31] 25.02±0.36 45.19±0.52 80.30±0.63 86.30±0.56 67.94±0.66 45.65±0.63 75.17±0.64 54.31±0.62 59.99
Style-FGSM (ours) 26.07±0.37 45.77±0.51 86.58±0.54 93.65±0.39 68.72±0.67 50.13±0.68 77.73±0.62 61.52±0.68 63.77

Table 3. Different style augmentation methods are compared. “StyleGaus†” means adding random Gaussian noises to the styles, where †
represents it is proposed by us. “MixStyle [66]”, “AdvStyle [63]” and “DSU [31]” are adapted from other tasks, e.g., domain generation.
Results (%) conducted under 5-way 1-shot/5-shot settings. Methods are built upon the ResNet10 and GNN.

and features by modifying the attack targets of our method.
The 5-way 1-shot/5-shot results are given in Table 2. We
highlight several points. 1) We notice that attacking image,
feature, and style all improve the base GNN model (given in
Table 1) which shows that all of them boost the generaliza-
tion ability of the model by adversarial attacks. Interestingly,
the results of our “Attack Image”/“Attack Feature” even
outperform the well-designed CD-FSL methods ATA [51]
and AFA [20] (shown in Table 1); 2) Our method has clear
advantages over attacking images and features. This again in-
dicates the superiority of tackling visual styles for narrowing
the domain gap issue for CD-FSL.
Is Style-FGSM Better than Other Style Augmentation
Methods? To show the advantages of our Style-FGSM
against other style augmentation methods, we introduce sev-
eral competitors including “StyleGaus”, MixStyle [66], Ad-
vStyle [63], and DSU [31]. Typically, “StyleGaus” that adds
random Gaussian noises into the styles is introduced as a sim-
ple but reasonable baseline. MixStyle [66], AdvStyle [63],
and DSU [31] which are initially designed for other tasks,
e.g., segmentation and domain generation are also adapted.
The results are reported in Table 3. Comparing the results
of StyleGuas with that reported in Table 1, we find that
perturbing the styles on the feature level by simply adding
random noises also improves the base GNN and even sur-
passes a few CD-FSL competitors on some target datasets.
This phenomenon is consistent with the insight that augment-
ing the style distributions helps boost the CD-FSL methods.
As for the comparison between our Style-FGSM and other
advanced style augmentation competitors, we find that Style-
FGSM performs better than all the MixStyle, AdvStyle, and

DSU on both 1-shot and 5-shot settings. Typically, MixStyle
and DSU both generate virtual styles, but their new styles
are still relatively easy. This shows that our hard styles boost
the model to a larger extent. AdvStyle generates both virtual
and hard (adversarial) styles. However, it is still inferior to
us. This indicates the advantages of our method that attacks
in latent feature space and adopts two individual tasks for
attacking and optimization.

5. Conclusion

This paper presents a novel model-agnostic StyleAdv
for CD-FSL. Critically, to narrow the domain gap which is
typically in the form of visual shifts, StyleAdv solves the
minimax game of style adversarial learning: first adds pertur-
bations to the source styles increasing the loss of the current
model, then optimizes the model by forcing it to recognize
both the clean and style perturbed data. Besides, a novel pro-
gressive style adversarial attack method termed style-FGSM
is presented by us. Style-FGSM synthesizes diverse “hard”
and “virtual” styles via adding the signed gradients to origi-
nal clean styles. These generated styles support the max step
of StyleAdv. Intuitively, by exposing the CD-FSL to adver-
sarial styles which are more challenging than those limited
real styles that exist in the source dataset, the generalization
ability of the model is boosted. Our StyleAdv improves both
CNN-based and ViT-based models. Extensive experiments
indicate that our StyleAdv build new SOTAs.
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