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Abstract

Generating a video given the first several static frames is
challenging as it anticipates reasonable future frames with
temporal coherence. Besides video prediction, the ability
to rewind from the last frame or infilling between the head
and tail is also crucial, but they have rarely been explored
for video completion. Since there could be different out-
comes from the hints of just a few frames, a system that can
follow natural language to perform video completion may
significantly improve controllability. Inspired by this, we
introduce a novel task, text-guided video completion (TVC),
which requests the model to generate a video from partial
frames guided by an instruction. We then propose Multi-
modal Masked Video Generation (MMVG) to address this
TVC task. During training, MMVG discretizes the video
frames into visual tokens and masks most of them to perform
video completion from any time point. At inference time, a
single MMVG model can address all 3 cases of TVC, in-
cluding video prediction, rewind, and infilling, by applying
corresponding masking conditions. We evaluate MMVG in
various video scenarios, including egocentric, animation,
and gaming. Extensive experimental results indicate that
MMVG is effective in generating high-quality visual ap-
pearances with text guidance for TVC.

1. Introduction
Generative video modeling [15, 70, 84] has made great

progress, which first succeeds in unconditional video gen-
eration [40,64]. More recently, video prediction [28,36,47]
has been trying the controllable setting, which anticipates
the future by completing a video from the past frames or
a static starting image [37, 97]. However, video prediction
may produce various outcomes, which makes it difficult to
meet human expectations. For the example in Fig. 1(a), the
game agent can keep jumping to the right or move back and
turn left. The limited guidance from only the first frame is

Figure 1. The introduced text-guided video completion (TVC)
task. (a) Video prediction may have different outcomes without
text guidance. (b) TVC performs video completion from the first
frame (prediction), the last frame (rewind), or both (infilling),
guided by the textual description.

insufficient to tell the intention. For humans, language is the
most straightforward way of communication. If a system
can follow an instruction to accomplish video completion, it
will significantly improve its controllability and make a vast
application impact. On the other hand, compared with video
prediction, video rewind and infilling have been rarely stud-
ied [39, 79], but they are also crucial. Breaking the limita-
tion of chronological guidance should make the visual guid-
ance more flexible, leading to a general video completion.

We thus introduce a novel task, text-guided video com-
pletion (TVC), where the partial frames and a given instruc-
tion jointly guide the video generation. As illustrated in
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Fig. 1(b), we consider three scenarios of video completion:
prediction from the first frame, rewind from the last frame,
and infilling between the head and tail. The missing (to-
be-completed) event should follow the textual instruction.
Compared to generating content from scratch [43, 87], TVC
requests models to understand the given visual and textual
guidance before generation, which better mimics how hu-
man imagines after seeing and listening in our daily lives.

To tackle TVC, we present Multimodal Masked Video
Generation (MMVG) to perform video completion. Specif-
ically, we represent the video frames as discrete visual to-
kens by temporal-aware VQGAN [54, 76]. One key chal-
lenge is to deal with the video frames that are not presented
in chronological (e.g., the last frame for rewind). Different
from autoregressive models [23, 86] that only condition on
the previous frames, MMVG carries out video completion
in an encoder-decoder manner. Specifically, we propose a
masking strategy that masks different parts of the video and
feeds them as the input to the multimodal encoder with the
instruction. As shown in Fig. 2, we allow MMVG to con-
sider the visual hints from different time points, and the de-
coder learns to produce the full target video. By varying the
masking conditions (including the cases of only the first or
last frame being accessible), a single MMVG can address
all TVC tasks, including video prediction, rewind, and in-
filling. Moreover, learning the recovery from partial frames
also empowers MMVG with a strong temporal coherence,
contributing to better generative video quality.

We consider videos in diverse scenarios for the TVC eval-
uation. There are Kitchen [13], Flintstones [26], and MU-
GEN [29] corresponding to the egocentric, animation, and
gaming scenes. The model should generate videos such as
performing kitchen activities in the first-person view, mak-
ing characters act the assigned behavior, or imitating an
agent playing game. All should be guided with the first/last
(or both) frame(s) and controlled through the given human
instructions. We also compare MMVG with previous meth-
ods [23, 57, 94, 96] on UCF-101 [69] and BAIR [18] for the
classic video generation/prediction tasks.

Experimental results demonstrate that instruction is nec-
essary to make video completion controllable, MMVG can
address all three TVC tasks, and our proposed masking strat-
egy enhances the temporal modeling, which further benefits
general video generation/prediction. In summary, our con-
tributions are three-fold:

• We introduce TVC to generate a video from partial frames
and control the temporal dynamics via natural language,
where our video completion includes 3 cases: prediction,
rewind, and infilling.

• We propose MMVG with an effecitve masking strategy to
address all TVC tasks through a single training.

• Extensive experiments show that our MMVG can handle
various types of video completion as well as video gener-

ation/prediction. We believe TVC can become a new topic
in vision-and-language research.

2. Related Work

Video Generation/Prediction. Video generation aims to
synthesize diverse videos from latent inputs [1,74,80]. Var-
ious generative modelings have shown promising results,
including generative adversarial networks (GAN) [10, 24,
72,96], autoregressive transformers [23,77,94], and denois-
ing diffusion models [16, 33, 34]. Upon that, video predic-
tion [2, 3, 25, 57, 85], which considers past frames to an-
ticipate future observations, should maintain temporal dy-
namics from static images. Though the overall idea is also
to complete a video from partial frames, other tasks, such
as rewind and infilling [39, 79, 90], are not extensively ex-
plored. In this paper, we introduce TVC to comprehensively
investigate the ability of video completion and make it more
maneuverable via textual description.
Text-to-Image/Video Genreation. Generating visual con-
tent from language [9, 50, 71] has a vast application value
in creative visual design. Previous works rely on the GANs
framework [49] to produce images [19, 20,22, 55, 61, 92] or
videos [43, 46, 52], conditioned on text. With large-scale
datasets [4,65,66,83], recent pre-trained models can gener-
ate high-quality natural images from open-domain descrip-
tion through discrete visual tokens [12, 17, 54, 59, 76, 95]
or the diffusion process [51, 58, 62, 63]. Leveraging such
techniques further extends to generate vivid videos [32, 35,
68, 78, 86, 87]. However, those methods that depend on
autoregressive generation can only be guided chronologi-
cally [27, 38]. Besides, video diffusion models require a
deterministic video length, which cannot consider diverse
temporal durations. In contrast, MMVG can perform video
completion in different lengths from arbitrary time points
and address all TVC tasks just with a single training.
Text-guided Video-to-Video. Video inpainting [7, 41, 91],
segmentation reconstruction [81, 82], or video style trans-
fer [8, 14, 88] can be seen as a particular case of video-to-
video synthesis (V2V). Even if text-guided V2V [5, 21, 93]
can be controlled by language, it is still conditioned on a
full video, where the temporal dynamics are usually pro-
vided. Different from that, TVC requires to regain the miss-
ing event from just partial guidance. It is more challenging
since the model has to capture what happened from the in-
struction, maintain the temporal coherence among limited
frames, and produce a complete video.

3. Text-guided Video Completion (TVC)

3.1. Task Definition

We study the text-guided video completion (TVC) task to
perform video completion from the first frame (prediction),

10682



Figure 2. An overview of our Multimodal Masked Video Generation (MMVG). We present temporal-aware VQGAN (T-VQ) for discrete
visual representation. MMVG considers the instruction X and partial frames of the video V from diverse time points through masking,
learning to generate the complete V . In this way, a single trained MMVG can perform all prediction, rewind, and infilling tasks.

the last frame (rewind), or the head and tail (infilling), con-
ditioned on the textual instruction. During training, we have
pairs of videos V and corresponding instructions X . Specif-
ically, V consists of N frames as {v1, v2, ..., vN}. Our goal
is to train a unified model that generates the complete V
given the partial frames from arbitrary time points and X .

3.2. Multimodal Masked Video Generation

Overview. An overview of our Multimodal Masked Video
Generation (MMVG) is illustrated in Fig. 2. To model
the video along with language, we propose temporal-aware
VQGAN to represent a frame as visual tokens, which con-
verts it into the same discrete space as the words. We
present an effective masking strategy that masks different
video parts for video completion learning. Those missing
fragments are replaced by the unique [SPAN] tokens, and
we consider the visual guidance from diverse time points.
The multimodal encoder consumes the text and the partial-
missing video, and the decoder learns to produce the com-
plete video from arbitrary guided frames. By varying the
masking conditions, MMVG learns to utilize the [SPAN]
token and unifies all TVC tasks during the training.

Temporal-aware Discrete Visual Tokens. VQ-VAE [76]
has shown promising capability in representing data as dis-
crete tokens. VQGAN [54] further models the prior distri-
bution of the latent space via a transformer with the GAN
training. If VQGAN is directly applied onto videos, it will
ignore the inner temporal coherence and treat each frame as
an independent image, resulting in an unsmooth video re-
construction. Though TATS [23] attempts to handle this by
making k consecutive frames altogether during VQ, it has

to pre-define the constant k before training. Such constraint
forbids it from representing a frame at any timestamp.

To address it with flexibility, we propose temporal-aware
VQGAN (T-VQ) to inject the temporal relationship into the
latent representation. We first follow VQGAN to learn the
target visual tokens zi by reconstructing a video frame vi:

zi = q(EncQ(vi) | C),

v̂i = DecQ(zi),

LVQ = ||v̂i − vi||1︸ ︷︷ ︸
reconstrcution

+ ||sg[EncQ(vi)]− Czi ||22︸ ︷︷ ︸
codebook

(1)

+β||sg[Czi ]− EncQ(vi)||22︸ ︷︷ ︸
commit

+ ||F(v̂i)−F(vi)||1︸ ︷︷ ︸
matching

,

where EncQ and DecQ are the VQ encoder and decoder.
The discrete latent code zi is acquired from the quantiza-
tion operation q [54], which adopts nearest neighbor search
by the trainable codebook C. We apply the straight-through
estimator over the stop-gradient operation sg and use β as
0.25 [76]. We also append VGG [67] features matching F
to stabilize the VQ loss LVQ [23]. The adversarial training
between the frame quality loss LG and discrimination loss
LD are further calculated from the discriminator D:

LG = log(1−D(v̂i)),

LD = log(1−D(v̂i)) + log(D(vi)).
(2)

To inject the temporal relationship into z, T-VQ is trained
with the introduced contrastive temporal reasoning:

oi = FCT(zi, zj),
LT = BCELoss(oi, 0 if i > j else 1),

(3)
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where j is a random frame from the same video. FCT is the
MLP classifier, and BCELoss is the binary cross-entropy
for before/after. Learning the temporal order from LT, z fa-
cilitates an implicit temporal coherence, leading to smooth
video modeling. Moreover, since z represents a single im-
age, it is flexible to support frames at arbitrary timestamps.
Generation from Masked Video. We propose the mask-
ing strategy M to obtain the masked videos V from diverse
time points. M masks out most video frames with the prob-
ability p and replaces each fragment as a unique [SPAN] to-
ken. For example, M reserves the third and the fifth frame,
and masks all the others over a video length of 5:

V : {[S], v3, [S], v5} = M(V | p). (4)

Our goal is to recover the missing part from V and perform
video completion, guided by the instruction X . To model
between the vision and language modalities, we apply our
EncQ over V for the discrete visual tokens {[S], z3, [S], z5}.
We also tokenize the text X into word tokens {wi}Li=1 with
the CLIP tokenizer [56], where L is the length of X . As in
the same discrete space, MMVG can achieve cross-modal
fusion by the multimodal encoder (EncM) through the self-
attention mechanism as the transformer [77]:

fw
i , fv

j = LPw(wi),LPv(zj)

{h} = EncM([{fw}, {fv}]),
(5)

where it obtains the features f by the linear projection (LP),
and h is the hidden encoding features. We can also regard
LP as the video/language embedder, which extracts the pre-
liminary visual/linguistic features.

After encoding the language hint and the partial-missing
video from EncM, our video decoder (DecM) learns to pro-
duce all frames for comprising the complete video. DecM

follows the vanilla autoregressive decoder, which first con-
ducts self-attention over the past generated tokens and then
predicts the discrete visual tokens as the video frame, con-
ditioned on the encoded features h:

ẑt = DecM({ẑ1, ..., ˆzt−1} | {h}),
Lt = CELoss(ẑt, zt),

LM =

N∑
t=1

Lt,

(6)

where zt is the ground-truth tokens of the frame vt in the
original V . We calculate the video decoding loss LM by the
cross-entropy (CELoss) to learn video generation as clas-
sification. Our DecM is built upon VideoSwin [45], which
has shown a strong visual perception on various video un-
derstanding tasks. The 3D-shifted windows [44] consider
different levels of spatial-temporal attention, and each win-
dow models blocks of video patches across T ′ consecutive

Algorithm 1 Mutlimodal Masked Video Generation
1: while TRAIN T-VQ do
2: V ← sample video
3: zi = q(EncQ(vi) | C)
4: v̂i = DecQ(zi)
5: oi = FCT(zi, zj) ▷ randomly sampled frame j
6: LVQ, LG← reconstruction, frame quality loss ▷ Eq. 1&2
7: LT ← temporal ordering loss ▷ Eq. 3
8: Update T-VQ by minimizing LVQ+LG+LT

9: LD ← discrimination loss ▷ Eq. 2
10: Update D by maximizing LD

11: end while
12:
13: while TRAIN MMVG do
14: V , X , p← sample video/instruction/probability
15: V: {va, [S], vb, ...} =M(V | p) ▷ diverse guided frames
16: {za, [S], zb, ...}, {w} = EncQ(V), Tokenizer(X )
17: {h} = EncM([{w}, {za, [S], zb, ...}])
18: for t← 1 to N do
19: ẑt = DecM({z1, ..., zt−1} | {h}) ▷ teacher-forcing
20: Lt← video decoding loss ▷ Eq. 6
21: end for
22: V̂ = DecQ({ẑNt=1})
23: LM =

∑N
t=1 Lt

24: Update MMVG by minimizing LM

25: p← update masking probability ▷ Eq. 8
26: end while

frames. To ensure the same dimension for video generation
in DecM, we remove the temporal down-sampling layer. In
the end, we can utilize DecQ to reconstruct all the frames as
our completed videos V̂:

V̂ = DecQ({ẑ}Nt=1). (7)

By varying the masking conditions through M, MMVG
learns how to complete a video from partial frames V at ar-
bitrary time points with the text, which overcomes the lim-
itation of chronological guidance. To make M more effec-
tive, we apply an adaptive probability p instead of random
sampling every time. Each video V keeps its own p, and
all frames are equally initialized in the beginning. Based on
the prediction error, we adjust the masking probability pt of
the t-th frame:

pt = pt + α((
Lt

LM

∑
p)− pt), (8)

where α is the adjusting rate. A larger video decoding loss
Lt indicates that the t-th frame is more difficult to recover.
MMVG learns more from those challenging cases and can
bring better generative quality for video completion.
Unifying TVC during Inference. After training with text
and partial-missing video, MMVG learns to perform video
completion over [SPAN] tokens. Then for inference, EncM

takes the following as its input to support different tasks:
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TVPrediction TVRewind TVInfilling

Kitchen Flintstones MUGEN Kitchen Flintstones MUGEN Kitchen Flintstones MUGEN

Method Text FVD↓ RCS↑ FVD↓ RCS↑ FVD↓ RCS↑ FVD↓ RCS↑ FVD↓ RCS↑ FVD↓ RCS↑ FVD↓ RCS↑ FVD↓ RCS↑ FVD↓ RCS↑

FILM [60] ✗ - - - - - - - - - - - - 250.2 56.1 352.7 51.4 538.8 5.9
VideoMAE [73] ✗ 328.9 47.6 317.5 55.6 548.7 7.0 365.9 48.2 335.5 55.9 545.2 7.1 246.9 54.7 211.5 60.6 494.9 7.8

TATS [23] ✗ 106.9 64.4 127.5 60.3 376.5 7.1 107.7 62.7 127.6 60.2 350.8 7.2 71.5 72.7 119.5 66.7 328.2 8.4
MMVGU ✗ 105.6 63.3 124.8 60.5 374.5 7.2 109.8 62.6 124.3 59.7 356.4 7.0 71.5 73.4 121.8 66.3 328.4 7.8
MMVGS ✗ 103.8 64.5 123.8 60.8 369.4 7.3 105.9 63.6 123.8 60.5 347.8 7.2 68.5 73.6 118.5 67.9 324.3 8.4

TATS [23] ✓ 87.2 66.3 115.9 70.6 90.1 67.9 89.8 63.3 116.3 70.4 89.8 68.7 57.4 77.6 95.8 78.2 58.9 73.6
MMVGU ✓ 80.2 68.4 108.2 72.9 84.8 70.2 83.2 66.9 113.2 71.6 93.1 68.4 59.8 77.8 92.8 78.3 59.2 73.2
MMVGS ✓ 75.6 68.8 106.3 73.7 83.3 71.1 79.7 68.1 107.2 72.9 88.7 70.0 56.0 78.1 91.6 79.6 57.2 74.1

Table 1. Results of TVC, including prediction, rewind, and infilling, on Kitchen [13], Flintstones [26], and MUGEN [29]. TATS [23]
requires specific training to support different tasks. We further train the unified MMVGU for each specific task as MMVGS.

• TVPrediction: [{w}, {z1, [SPAN]}]
• TVRewind: [{w}, {[SPAN], zN}]
• TVInfilling: [{w}, {z1, [SPAN], zN}]
In this way, a single trained MMVG can unify all TVC tasks
without the specific downstream fine-tuning.

3.3. Learning of MMVG

Algo. 1 illustrates the learning process of our proposed
MMVG for TVC. We first train T-VQ over video frames for
discrete visual tokens with contrastive temporal reasoning.
Specifically, we minimize the VQ reconstruction loss LVQ
and frame quality loss LG along with our temporal ordering
loss LT to optimize T-VQ. At the same time, we also update
the discriminator D via the standard adversarial training by
maximizing the discrimination loss LD. For video comple-
tion, the masking strategy M masks the video frames with
the probability p and then acquires guided frames from di-
verse time points. MMVG regards text and partial-missing
video by EncM for cross-modal fusion, and DecM further
predicts the visual tokens of frames autoregressively as the
complete video. As a sequential generation process, we ap-
ply the teacher-forcing trick. Instead of our predicted ẑ, the
ground-truth z from the previous timestamp is fed to stabi-
lize the training. Each video decoding loss Lt at timestamp
t is summed up as LM to optimize MMVG. According to
Lt, we update p for effective masking probability. The en-
tire optimization object can be summarized as two phases:

T-VQ: min
EncQ,DecQ,C,FCT

max
D

LVQ + LG + LD + LT

MMVG: min
EncM,DecM

LM
(9)

4. Experiments
4.1. Experimental Setup

Datasets. As a new task, we consider diverse video scenes
with natural instructions for TVC. Kitchen [13] records 22K
egocentric videos about kitchen activity, which have differ-
ent lengths (4-16 frames) with narrations. Flintstones [26]
contains 25K animation videos (15 frames) from The Flint-
stones, where each video description includes the characters

Dataset Train / Val #Frame #Word FPS

Kitchen [13] 16,695 / 5,804 8.3 2.8 6
Flintstones [26] 22,666 / 2,518 15 16.5 5
MUGEN [29] 362,239 / 12,848 16 20.6 5

Table 2. The statistics of our used datsets to evaluate TVC.

and their behavior. MUGEN [29] is built from agents play-
ing CoinRun [11], which consists of 375K gaming videos
(16 frames) with detailed text annotations. All videos in
these three datasets are resized into 128x128. An overview
is shown in Table 2 and Fig. 1(b). Since MMVG can unify
various tasks, we also evaluate video generation/prediction
on widely-used UCF-101 [69] and BAIR [18], video infill-
ing on UCF-101 following RaMViD [39], and text-to-video
generation on MSRVTT [89].
Evaluation Metrics. We apply the following metrics to
evaluate TVC results: 1) FVD [75] computes the video fea-
tures [6] distance to the ground truth; 2) RCS [86] is the
relative visual-text similarity to the instruction, compared to
the ground-truth video. We fine-tune the CLIP model [56]
on each dataset and adapt it to the video scene for a more
precise alignment. Apart from automatic metrics, we also
conduct a human evaluation from aspects of video quality,
instruction relevance, and ground-truth similarity. We sam-
ple 75 TVP results for each task and adopt MTurk1 to rank
over baselines and our MMVG. To avoid the potential rank-
ing bias, we hire 3 MTurkers for each sample of prediction,
rewind, and infilling tasks.
Implementation Detail. T-VQ contains ResBlocks [31] as
the visual auto-encoder (EncQ and DecQ). The discrimina-
tor D follows a similar architecture to EncQ. For the vector
quantization, we use a patch size 16, where a 128x128 video
frame transforms into 8x8 discrete visual tokens. There are
1024 vocabularies in the codebook C, and the hidden em-
bedding size is 256. We adopt batch size 32 with a learning
rate of 4.5e-6 to optimize T-VQ by Adam [42]. MMVG is
built in an encoder-decoder manner, where EncM is a trans-

1Amazon MTurk: https://www.mturk.com. Our studies have
been cleared by the human subject committee as an IRB-exempt protocol.
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Method Kitchen Flintstones MUGEN

VideoDiff [34] 138.6 206.4 410.7
MCVD [79] 119.9 183.8 400.2
TATS [23] 115.5 157.5 386.4

MMVG 109.1 127.6 368.6

Table 3. FVD results of video generation on our TVC datasets.

former with 24 layers, 16 attention heads, and hidden em-
bedding size 1024. DecM adopts a similar setting with tem-
poral window size 3 in VideoSwin. The initial sample rate p
of the masking strategy M is 0.9 with an adjusting rate α as
0.1. We optimize MMVG through the mixed precision [48]
with batch size 4 by Adam. The learning rate is also 4.5e-6.
All experiments are implemented in PyTorch [53] and done
on 8 NVIDIA A100 GPUs.

4.2. Main Results

Table 1 shows the results of all text-guided prediction,
rewind, and infilling for TVC. VideoMAE [73] is built upon
MAE [30] and reconstructs the missing video cubes, which
performs TVC by masking all video frames except the first
or the last (or both). TATS [23], the SOTA on video gener-
ation, also produces videos as discrete visual tokens. Since
TATS can only consider the past through the autoregressive
transformer, it requires specific training for each task. We
have MMVGU as the unified model that can support all TVC
tasks with a single training and MMVGS to further train for
each prediction, rewind, and infilling. We treat TATS as our
main baseline2 and study the importance of guided text.
TVPrediction. VideoMAE attempts to produce all frames
simultaneously, which is difficult to maintain video tempo-
ral consistency, resulting in a high 328.9 FVD on Kitchen.
TATS is inherently designed for prediction as it generates
the frames one after one. However, our unified MMVGU

performs better than TATS on all datasets (e.g., lower 105.6
and 124.8 FVD on Kitchen and Flintstones). These results
support that learning from diverse time points will not hurt
the prediction from the past. In contrast, our masking strat-
egy can bring superior temporal coherence. MMVGS fur-
ther improves itself through training prediction as comple-
tion from the head. However, there are too many possible
outcomes from just the beginning, where the predicted re-
sults may not meet the expectation (e.g., a high 370 FVD on
MUGEN). The instruction as guidance makes it related to
the expected ground-truth result. We can let MUGEN run,
jump, or collect coins as the textual descriptions to achieve
more controllability, leading to a noticeable improvement
(e.g., a lower 84.8 FVD by MMVGU). The higher 70.2 RCS
also shows that our MMVG can produce MUGEN videos

2Since we cannot receive feasible results after training diffusion meth-
ods for our TVC, we evaluate unconditional video generation in Sec. 4.3.
We use this repo (https://github.com/lucidrains/video-
diffusion-pytorch) as VideoDiff and the official repo as MCVD.

UCF-101

Method IS↑ FVD↓

VideoGPT [94] 24.7 -
DIGAN [96] 32.7 577

VideoDiff [34] 57.0 -
TATS [23] 57.6 420

MMVG 58.3 395

Table 4. Results of video generation
on UCF-101 [69].

BAIR

Method FVD↓

VideoGPT [94] 103.3
MaskViT [25] 93.6
MCVD [79] 89.5
TATS [23] 88.6

MMVG 85.2

Table 5. Results of video
prediction on BAIR [18].

that confirm with the instruction. Although the model may
try to imagine the animation or the kitchen activity, the lan-
guage hint can provide a clear goal to anticipate. Likewise,
MMVGU with text surpasses TATS, even though it is not
designed for prediction only. The specific trained MMVGS

benefits the unified model for further improvement.
TVRewind. Rewind from the last allows the model to imag-
ine what happened along with a suitable opening. In addi-
tion, the objects may not display on the last frame (e.g., the
spoons and forks for “close drawer”), which makes it more
challenging to complete. Similar to prediction, VideoMAE
cannot have feasible rewind results. Language is still es-
sential to remind the past and establish an adequate begin-
ning, where we can find a significant performance gap be-
tween with and without text (e.g., 90 vs. 350 FVD on MU-
GEN). Our unified MMVGU achieves comparable results
to TATS and even outperforms on Kitchen and Flintstones
(e.g., higher 66.9 and 71.6 RCS). With the learning of com-
pletion from partial frames, autoregressive model can still
accomplish video rewind without specific training. If fol-
lowing TATS design to train MMVGU for rewind, MMVGS

gains more improvement and utterly surpasses it.
TVInfilling. We consider the additional FILM [60] for in-
filling, which performs video interpolation with in-between
motion. Despite synthesizing intermediate frames between
the first and the last, the visual dynamics are changing too
rapidly to handle, resulting in a higher FVD. With guidance
from the head and tail, we find a noticeable improvement
even without instruction (e.g., lower FVDs on Kitchen),
which is helpful in temporal video modeling. To capture
the expected missing event, we still require the language
hint for more controllability. Our unified MMVGU achieves
comparable performance to TATS again, which is specifi-
cally trained for the infilling task. It shows that completion
from partial frames at different time points still helps, and
MMVGS further outperforms on TVInfilling.

4.3. Additional Study

Video Generation/Prediction. We further evaluate the
classic video generation and prediction tasks. Table 3 shows
FVD scores of unconditional video generation on our TVC
datasets. Note that only videos but no texts are used in these
experiments. Both VideoDiff [34] and MCVD [79] are built
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UCF-101 (FVD↓)

Method K=+1 +2 +5 ±1 ±2

RaMViD [39] 349.7 300.6 260.5 215.4 162.5
MMVG 316.3 258.5 194.6 183.2 120.3

Table 6. Results of video prediction and infilling on UCF-101.

upon denoising diffusion [33], where MCVD also considers
different partial frames during training. The results first in-
dicate that the vanilla token-based method is superior to the
diffusion-based model (TATS vs. VideoDiff) for video gen-
eration. In addition, MMVG, with the masking strategy that
learns the visual guidance from diverse time points, further
boosts the performance (the lowest 127.6, 109.1, and 368.6
FVD on Flintstones, Kitchen, and MUGEN, respectively).

We also evaluate MMVG on UCF-101 [69], which is
challenging to generate natural human videos. Table 4 sup-
ports that our MMVG can produce videos with higher vi-
sual similarity (a higher 58.3 IS) and temporal alignment (a
lower 395 FVD) to the ground truth. For video prediction,
we apply the widely-used BAIR [18] in Table 5, where the
model has to anticipate how a robot pushes objects from the
given first frame. MMVG again surpasses TATS with the
lowest 85.2 FVD. Although both generation and prediction
are generating video frames chronologically, the ability to
recover arbitrary missing frames for video completion em-
powers MMVG with a stronger temporal coherence, leading
to better generative video quality.

Video Infilling. We follow RaMViD [39] to evaluate video
infilling on UCF-101. We consider various guidance set-
tings K in Table 6. For example, K=+1 means given the
first frame, and K=±2 should provide the first and last two
frames. For prediction, MMVG outperforms RaMViD on
all K, and the performance gap gets even larger when more
guided frames are accessible (e.g., 33.4 on K=+1 and 65.9
on K=+5). A similar result can be found for infilling, where
MMVG can make the lowest 120.3 FVD on K=±2. Despite
having a similar masking strategy, it shows that generating
frames one after one still brings superior results. MMVG
allows autoregressive models to condition on visual hints
from any time point, which produces more similar videos
to the ground truth when infilling between the head and tail.

Text-to-Video Generation. Being a multimodal generative
model, MMVG supports text-to-video generation. To com-
pare with those large-scale methods, we pre-train MMVG
using WebVid [4], which contains 2.5M text-video pairs.
We adopt the masking strategy to treat the pre-training as
video completion. MMVG outperforms GODIVA [86] and
NUWA [87] without access the MSRVTT [89] data in Ta-
ble 7. Surprisingly, MMVG can generate videos that are
more related to the texts (a higher 0.2644 CLIP-S [86]) than
CogVideo [35], even though using twice less data. This re-
sult encourages the effectiveness of completion from partial

MSRVTT

Method Pre-training Zero-shot FID↓ CLIP-S↑

GODIVA [86] 136M ✗ - 0.2402
NUWA [87] 3.9M ✗ 47.7 0.2439

CogVideo [35] 5.4M ✓ 23.6 0.2631
Make-A-Video [68] 20M ✓ 13.2 0.3049

MMVG 2.5M ✓ 23.4 0.2644

TATS [23] - ✗ 63.2 0.2326
MMVG - ✗ 60.6 0.2385

Table 7. Results of text-to-video generation on MSRVTT [89].
We gray out methods that use significantly more pre-training data.

Kitchen Flintstones MUGEN

Method Text Q. T. GT Q. T. GT Q. T. GT

MMVG ✗ 1.99 1.81 1.82 1.73 1.66 1.62 2.03 1.56 1.55
TATS [23] ✓ 1.97 2.07 2.03 2.07 2.12 2.17 1.94 2.11 2.19

MMVG ✓ 2.04 2.12 2.15 2.20 2.22 2.21 2.03 2.33 2.26

Table 8. Human evaluation for TVP with aspects of video quality
(Q.), instruction relevance (T.), and ground-truth similarity (GT).

frames. For a fair comparison without additional data, we
directly train on MSRVTT. MMVG still outperforms TATS,
which shows that text-to-video generation can be improved
through learning from video completion as well.
Human Evaluation. We study the video quality (Q.), the
relevance to the instructions (T.), and the similarity to the
ground-truth video (GT) of the produced videos from the
human aspect. The results in Table 8 are calculated as the
mean ranking score (from 1 to 3, the higher is better) of each
method for TVPrediction. MMVG without text even gener-
ates higher quality videos than TATS with text on Kitchen
and MUGEN, where completion from partial frames ben-
efits the temporal coherence of generative video modeling.
While, the lowest ground-truth similarity illustrates that lan-
guage guidance is crucial for controllability. With instruc-
tion, MMVG anticipates the future as the text (the high-
est T.) and generates videos that meet the ground truth (the
highest GT), achieving the best overall performance.
Qualitative Results. Fig. 3 illustrates the keyframes of the
generated examples of three datasets. Thanks to the learn-
ing of completion from partial frames at diverse time points,
a single trained MMVG can support all TVC tasks. For pre-
diction, MMVG makes Fred “turn his head” or MUGEN
“jumps over the gear” from the guided text. MMVG further
recovers the missing spoons and forks for “close drawer”
from the last frame in a more challenging rewind scenario.
MMVG infills the missing event described in language such
as “stand up for dancing”, “walk across the kitchen”, “jump
onto the stage” from the head and tail.

From the same visual guidance, MMVG can lead TVC
results using different texts, achieving controllable video
completion. For example, we can let MUGEN “jump down
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Figure 3. Qualitative examples of TVC on Kitchen [13], Flintstones [26], and MUGEN [29]. We also illustrate video generation on UCF-
101 [69], video prediction on BAIR [18], and text-to-video prediction on WebVid [4].

the ground” or “land on a face”, starting from the same be-
ginning. We can also control the behavior as “keep walk-
ing” or “jump over a gear” to recover the missing middle
event. Furthermore, MMVG also carries out unconditional
video generation with smooth temporal coherence. We can
use language to produce natural dynamics in diverse scenes,
such as “sunset on the sea”, “green sea turtle swins”, or a
close look of “cut chicken”. The presented videos indicate
that our method not only unifies all TVC tasks but also per-
forms the classical video generation/text-to-video well.

5. Conclusion
We introduce a novel task of text-guided video comple-

tion (TVC) that performs video completion from the first,
last, or both frame(s) controlled by language. We present
Multimodal Masked Video Generation (MMVG) with an
effective masking strategy to learn the visual guidance from
any time point. By varying the masking conditions, MMVG
addresses all prediction, rewind, and infilling tasks within
one model. Experiments on various video scenes show that
our MMVG effectively addresses TVC as well as generative
video modeling. We believe TVC can help advance a new
field toward vision-and-language research.
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