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Abstract

Images captured in low-light conditions often suffer from

significant quality degradation. Recent works have built a

large variety of deep Retinex-based networks to enhance

low-light images. The Retinex-based methods require de-

composing the image into reflectance and illumination com-

ponents, which is a highly ill-posed problem and there is

no available ground truth. Previous works addressed this

problem by imposing some additional priors or regulariz-

ers. However, finding an effective prior or regularizer that

can be applied in various scenes is challenging, and the

performance of the model suffers from too many additional

constraints. We propose a contrastive learning method and

a self-knowledge distillation method for Retinex decompo-

sition that allow training our Retinex-based model with-

out elaborate hand-crafted regularization functions. Rather

than estimating reflectance and illuminance images and rep-

resenting the final images as their element-wise products as

in previous works, our regularizer-free Retinex decomposi-

tion and synthesis network (RFR) extracts reflectance and

illuminance features and synthesizes them end-to-end. In

addition, we propose a loss function for contrastive learning

and a progressive learning strategy for self-knowledge dis-

tillation. Extensive experimental results demonstrate that

our proposed methods can achieve superior performance

compared with state-of-the-art approaches.

1. Introduction

High quality images are highly desirable for many com-

puter vision and machine learning applications. In a low-

light environment, images often suffer from visual degrada-

tions such as poor visibility and low contrast. The darker the

area in an image, the more the information is lost, and the

harder it is to recover the image with a good quality. Many

computer vision systems may malfunction or fail completely

in low-light conditions. If dark regions can be removed or al-

leviated after the low-light image enhancement, images can

(a) Input (b) SCI (CVPR 22) [22]

(c) URetinexNet (CVPR 22) [32] (d) Ours

Figure 1. Visual comparison on a real-captured low-light image

using state-of-the-art approaches.

become more clear. Thus low-light image enhancement can

potentially benefit many computer vision applications.

Traditional methods for low-light image enhancement

can be divided into two categories, one based on histogram

equalization [1, 2, 7, 12, 25] and the other based on Retinex

theory [4, 6, 9, 10, 13, 28]. However, relying on the hand-

crafted features, they are not robust against the degraded vis-

ibility and unexpected noise.

Recently, deep learning based approaches for low-light

image enhancement have received extensive attention. In-

stead of using prior handcrafted features, these methods,

such as directly learning enhanced results in an end-to-end

network and deep Retinex-based methods, can automatically

learn the features with deep neural networks [5,8,16,17,19,

20,22,26,27,29,31–35,37–39] for low-light image enhance-

ment. A specific survey can be found in [14].

Since Retinex theory [11] models the color perception of

human vision on natural scenes, deep Retinex-based meth-

ods have better enhancement performance and generaliza-

tion in most cases than directly learning enhanced results

in an end-to-end network. However, Retinex decomposition

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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is a highly ill-posed problem and there is no well-defined

ground truth for the reflectance and illumination of real im-

ages. Previous works [26, 31–33, 37–39] addressed this

problem by introducing some additional priors or regular-

izers, but these manually well-designed regularization func-

tions are difficult to apply to all scenes. The joint optimiza-

tion with too many constraints also leads to the absence of

adaptivity and efficiency. Therefore previous Retinex-based

methods often generate unnatural images.

To tackle these challenging issues, we propose a con-

trastive learning method and a self-knowledge distillation

method for Retinex decomposition. With these methods, our

proposed regularizer-free Retinex decomposition and syn-

thesis network (RFR) can be trained without additional pri-

ors or regularizers. Considering the effect of image degra-

dations on the Retinex decomposition, instead of estimat-

ing reflectance and illumination images and representing

the final image as their element-wise product, our model

extracts reflectance and illumination features and synthe-

sizes them through a neural network. Rather than using

multiple networks to perform decomposition, enhancement

and denoising separately for low-light image enhancement,

this method can be learned through an end-to-end network.

Moreover, a novel loss function for contrastive learning is

introduced, where some low-quality negative samples are

taken into account. Then, a progressive learning strategy

for self-knowledge distillation is presented, which allows the

student to learn the knowledge of the teacher more effec-

tively. We conduct extensive experiments to demonstrate

that our proposed methods are beneficial and reasonable.

Fig. 1 shows the visual comparisons of images recovered

from the low-light one using different approaches.

In summary, the contributions of our work are as follows:

∙ We propose a contrastive learning method and a self-

knowledge distillation method that enable the network

to extract high-quality reflectance and illumination

without additional priors or regularizers.

∙ We propose a regularizer-free Retinex decomposition

and synthesis network (RFR) for low-light image en-

hancement that extract reflectance and illumination

features and synthesizes them end-to-end to suppress

the effect of image degradations on the Retinex theory.

∙ We propose a loss function named Weighted Normal-

ized Temperature-Scaled Cross-Entropy Loss for con-

trastive learning and a progressive learning strategy for

self-knowledge distillation.

∙ Comprehensive experiments on different datasets show

the superiority of our proposed methods compared with

state-of-the-art approaches.

2. Methodology

2.1. Motivation

Following the physically explicable Retinex theory, deep

Retinex-based methods have better enhancement perfor-

mance and generalization in most cases than directly learn-

ing enhanced results in end-to-end networks. Retinex theory

states that an image 𝐈 can be decomposed into reflectance

𝐑 and illumination 𝐋, and expressed as their element-wise

product as:

𝐈 = 𝐑◦𝐋 (1)

Retinex-based methods usually require decomposing the

observed image into its reflectance and illumination com-

ponents. This problem is highly ill-posed and there is no

ground truth for reflectance and illumination of real images.

Previous works addressed the problem by introducing some

additional priors or regularizers, which imposed some elab-

orately hand-crafted constraints to train their decomposition

networks. The objective function of their Retinex decompo-

sition can be summarized as:

min
𝐑̂,𝐋̂

‖𝐈 − 𝐑̂◦𝐋̂‖2
𝐹
+ Φ

(
𝐑̂

)
+ Ψ

(
𝐋̂

)
(2)

where 𝐑̂, 𝐋̂ are the estimated reflectance and illuminance,

‖ ⋅ ‖𝐹 represents Frobenius norm, and Φ(𝐑̂),Ψ(𝐋̂) denote

the regularizers of reflectance and illuminance respectively.

However, it is challenging to find an effective prior or

regularizer that can be applied in various scenes. Inaccurate

priors or regularizers may lead to artifacts and color devia-

tions in the enhanced results. In addition, the joint optimiza-

tion with too many additional constraints may lead to pos-

sible suboptimal solutions to balance the mismatched goals

of them. Therefore, these solutions often suffer from the

absence of adaptivity and efficiency and require introduc-

ing some tricks during the model training (e.g., adding pure

black or pure white images to the training data). We believe

that they are not optimal and not elegant. In this work, we

would like to use only the most fundamental assumptions

in the Retinex theory as the objective function for Retinex

decomposition without introducing additional priors or reg-

ularizers, as follows:

min
𝐑̂𝑙 ,𝐋̂𝑙 ,𝐑̂𝑛,𝐋̂𝑛

∑

𝑖∈{𝑙,𝑛}

‖𝐈𝑖 − 𝐑̂𝑖◦𝐋̂𝑖‖2𝐹 + ‖𝐑̂𝑙 − 𝐑̂𝑛‖2𝐹 (3)

where 𝐈𝑙 and 𝐈𝑛 denote the low-light image and its corre-

sponding normal-light image respectively, 𝐑̂𝑙 and 𝐑̂𝑛 denote

the estimated reflectance of 𝐈𝑙 and 𝐈𝑛 respectively, and 𝐋̂𝑙

and 𝐋̂𝑛 denote the estimated illumination of 𝐈𝑙 and 𝐈𝑛 respec-

tively. ‖𝐈−𝐑̂◦𝐋̂‖2
𝐹

is derived from Eq. (1). And ‖𝐑̂𝑙−𝐑̂𝑛‖2𝐹
indicates that the reflectance of the low-light and normal-

light images of the same scene is identical, which is obvious.
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Figure 2. The framework of our RFR, which consists of the reflectance module, the illumination module and the synthesis module. The

reflectance module trained using our proposed contrastive learning method or self-knowledge distillation method extracts reflectance fea-

tures, the illumination module extracts illumination features, and the synthesis module synthesizes them to generate the enhanced images.

In addition, Retinex theory is an assumption for an ideal

situation, but low-light images in practice tend to have sig-

nificant noise and loss of details due to insufficient lighting.

If the effects of these image degradations are not taken into

account, it will result in inaccurate estimates of reflectance

and illumination. Although some Retinex-based works per-

form processes such as image denoising, it is difficult to

completely eliminate the effects of image degradation. Sim-

ply representing an enhanced image by the element-wise

multiplication of reflectance and illumination according to

Eq. (1) would amplify the deviation of the estimated re-

flectance and illumination, as shown in Eq. (4). The noise,

loss of details in the reflectance image, and blurring of the

illumination image would all be amplified in the final image,

resulting in poor visual effects.

𝐈̂𝑛 = 𝐑̂𝑙◦𝐋̂𝑛 =
(
𝐑𝑙 + 𝜀1

)
◦

(
𝐋𝑛 + 𝜀2

)

= 𝐈𝑛 + 𝐑𝑙◦𝜀2 + 𝐋𝑛◦𝜀1 + 𝜀1◦𝜀2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

deviation

(4)

where 𝜀1, 𝜀2 represent the deviations of the estimated re-

flectance and illumination, respectively.

In order to reduce the effect of deviations in reflectance

and illumination on the final result, instead of estimating the

reflectance and illumination images and representing the en-

hanced image as their element-wise product as in previous

works, we estimate the reflectance and illumination features

and synthesize them into the final image by neural network.

2.2. Retinex Decomposition with Contrastive
Learning

To improve the performance and generalization of
Retinex-based models, we use only the most fundamental

assumptions in the Retinex theory without introducing ad-
ditional priors or regularizers as in Eq. (3), and generate
the enhanced images by synthesizing the reflectance and il-
lumination feature maps by neural network. The objective
function of our Retinex decomposition is as follows:

min
𝜙𝑆 ,𝜙𝑅 ,𝜙𝐿

‖𝐈𝑛 − 𝜙𝑆

(
𝜙𝑅

(
𝐈𝑙

)
, 𝜙𝐿

(
𝐈𝑙

))
‖2
𝐹
+ ‖𝜙𝑅

(
𝐈𝑛

)
− 𝜙𝑅

(
𝐈𝑙

)
‖2
𝐹

(5)

where 𝜙𝑅, 𝜙𝐿 denote the modules used to estimate re-

flectance and illumination respectively, and their outputs are

reflectance and illumination features. And 𝜙𝑆 denotes the

module used to synthesize reflectance and illumination.

However, this objective function cannot be directly used

to train the model because the reflectance module of the net-

work only needs to output the same reflectance for all im-

ages to make ‖𝜙𝑅

(
𝐈𝑛

)
−𝜙𝑅

(
𝐈𝑙

)
‖2
𝐹
= 0. In order to extract

high-quality reflectance, we propose a contrastive learning

based Retinex decomposition method without introducing

additional priors or regularizers.

Specifically, the estimated reflectance should be

luminance-independent (i.e., min ‖𝜙𝑅

(
𝐈𝑛

)
− 𝜙𝑅

(
𝐈𝑙

)
‖2
𝐹

)

and meaningful (i.e., it can help the subsequent optimization

of min ‖𝐈𝑛 − 𝜙𝑆

(
𝜙𝑅

(
𝐈𝑙

)
, 𝜙𝐿

(
𝐈𝑙

))
‖2
𝐹

). For a low-light

image, we take the corresponding normal-light image as

a positive sample, and the rest of the normal-light images

in the minibatch as negative samples, and then extract the

luminance-independent features through contrastive learn-

ing. The network extracts similar features from positive

samples, and completely different features from negative

samples. An image and its positive sample, i.e. a low-light

image and its corresponding normal-light image, will

extract the same luminance-independent features in perfect

accordance with the assumption of reflectance consistency

in Retinex theory (i.e. min ‖𝐑𝑙 −𝐑𝑛‖2𝐹 ). Due to contrastive
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learning, the reflectance module no longer outputs the same

features for all input images and the estimated reflectance

will include the spatial features of the image.

We also propose a loss function for contrastive learning

named Weighted Normalized Temperature-Scaled Cross-

Entropy Loss (WNT-Xent Loss). We notice that most of the

low-light image datasets contain a lot of similar or identical

scene images, and it is unreasonable to treat these images as

negative samples. We therefore improve the commonly used

NT-Xent loss [3] in contrastive learning by weighting the

negative samples using the similarity of the original normal-

light images, and our WNT-Xent loss is shown below:

WNT-Xent = − log
exp

(
‖𝜙𝑅

(
𝐈𝑙𝑖

)
− 𝜙𝑅

(
𝐈𝑛𝑖

)
‖2
𝐹
∕𝜏

)

∑𝐵

𝑘=1

(
1 − 𝜔𝑖,𝑘

)
exp

(
‖𝜙𝑅

(
𝐈𝑙𝑖

)
− 𝜙𝑅

(
𝐈𝑛𝑘

)
‖2
𝐹
∕𝜏

)

(6)

where 𝜔𝑖,𝑘 ∈ [0, 1] represents the structural similarity [30]

of normal-light images 𝐈𝑛𝑖 and 𝐈𝑛𝑘
, 𝐁 is the batch size and 𝜏

denotes a temperature parameter.

2.3. Retinex Decomposition with Self-knowledge
Distillation

The reflectance extracted by the model trained directly

with Eq. (3) is luminance-independent, but it is meaningless

for the subsequent enhancement. Although our contrastive

learning approach can solve this problem, its performance

is affected by the quality of the training set. In order for

the estimated reflectance to help the subsequent optimiza-

tion of min ‖𝐈𝑛 − 𝜙𝑆

(
𝜙𝑅

(
𝐈𝑙

)
, 𝜙𝐿

(
𝐈𝑙

))
‖2
𝐹

, we also pro-

pose another Retinex decomposition method based on self-

knowledge distillation. Specifically, we use a branch of the

network to estimate the reflectance of the low-light image

(student branch) and a branch with the same architecture to

estimate the reflectance of the corresponding normal-light

image (teacher branch). The reflectance features extracted

by the teacher branch are used to guide the training of the

student branch.

In order to allow the teacher branch to extract the re-

flectance information instead of outputting the same feature

map for all inputs, we use the reflectance estimated by the

teacher branch to generate the final image and use the recon-

struction loss of the global network to guide the training of

the teacher branch. The objective function of the knowledge

distillation process is shown below:

kd = 𝜆
(
‖𝜙𝑅

(
𝐈𝑙

)
− 𝜙𝑅

(
𝐈𝑛

)
‖2
𝐹
∕𝜏

)
+ rec (7)

where 𝜆 is a trade-off parameter and rec is the reconstruc-

tion loss defined in Eq. (9).

However, we find it difficult to distill information from

the teacher branch directly to the student branch. [23] shows

that the performance of student networks decreases when

there is a large gap between students and teachers. In our

knowledge distillation, the severe image degradations of the

low-light images lead to a very large gap between the re-

flectance features extracted through the teacher branch and

through the student branch. This makes the student branch

difficult to converge during the training.

To bridge the gap, we propose a progressive learning

strategy. Specifically, in the process of self-knowledge dis-

tillation, we mix the low-light image with the corresponding

normal-light image as input to the student branch, and we

gradually increase the proportion of low-light images thus

increasing the difficulty for the student branch to learn the

knowledge of the teacher branch. The input can be expressed

as:

𝐈input = 𝛼𝐈𝑛 + (1 − 𝛼)𝐈𝑙, 𝛼 =
1 + cos

(
𝑇cur

𝑇total
𝜋
)

2
(8)

where 𝑇cur represents the current epoch of training, and 𝑇total

represents the total epoch number.

It is worth mentioning that our progressive learning strat-

egy can not only significantly improve the performance of

our self-knowledge distillation, but also be used in our con-

trastive learning based Retinex decomposition method, as it

can be considered as a data augmentation method that in-

creases the number of positive and negative samples. In

addition, our strategy allows the model to be trained with

images of different brightness, further improving the gener-

alization of the model. As a result, the images generated by

our model are rarely underexposed or overexposed even in

cross-dataset evaluation.

2.4. Overall Architecture

Based on the above approaches, we propose an end-to-

end regularizer-free Retinex decomposition and synthesis

network (RFR) for low-light image enhancement. We use

RFR𝐶𝐿 and RFR𝑆𝐷 to denote RFR trained with our pro-

posed contrastive learning and RFR trained with our pro-

posed self-knowledge distillation, respectively. As shown

in Fig. 2, our proposed RFR consists of three parts: the re-

flectance module, the illumination module, and the synthe-

sis module.

Reflectance module The reflectance module consists of

two branches with the same structure but without shared

parameters. Each branch contains four stages, and each

stage contains two convolution layers and a down-sampling

layer. In the training phase of Retinex decomposition, the

two branches receive low-light images and normal images

respectively to extract reflectance features. In other phases,

only the branch for low-light images is used to estimate the

reflectance.

Illumination module Since the global illumination in-

formation is critical for the low-light image enhancement

task, we introduce transformer layers to work with the con-

volution layers to capture longer dependencies without los-
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ing local dependencies. The illumination module is a hierar-

chical structure containing four stages, and each stage con-

tains two transformer layers and a convolution layer. The

transformer layers extract illumination features, which are

then down-sampled by the convolution layer.

Synthesis module The synthesis module also has four

stages, and each stage contains an up-sampling layer and two

transformer layers. We use a combination of nearest neigh-

bor interpolation and a convolutional layer instead of a de-

convolution layer for up-sampling, because we find that the

mechanism of splitting patches in the transformer layer ex-

acerbates the checkerboard artifacts of deconvolution. In ad-

dition, a skip connection is used for the corresponding stage

of the illumination module and the synthesis module.

We fine-tune the entire network after training the re-

flectance module with our methods. In the fine-tuning

phase and testing phase, only the low-light images are input

into the model and sent to the illumination module and the

branch for low-light images of the reflectance module for the

extraction of the corresponding features, respectively. The

following is the expression of our reconstruction loss in the

fine-tuning phase.

rec = (1 − 𝜆)

√
‖𝐈𝑛 − 𝐈̂𝑛‖2𝐹 + 𝜖2 + 𝜆SSIM

(
𝐈𝑛, 𝐈̂𝑛

)
(9)

where the weighting parameter 𝜆 is set to 0.8, the constant 𝜖

is set to 0.001, and SSIM represents the structural similarity

loss [30].

3. Experiments

3.1. Implementation Details

We train our model on LOL dataset [31] containing 500

pairs of real-captured images. We augment the data using

rotation and horizontal flipping and optimize the network by

AdamW optimizer [18] with the momentum terms of (0.9,

0.999). We set the learning rate to 0.0001 in the contrastive

learning and self-knowledge distillation phase and 0.00005

in the fine-tuning phase, and we use the cosine decay strat-

egy to decrease it. We train RFR for 300 epochs in all phases

on a Tesla V100 GPU.

3.2. Quantitative Evaluation

To fully evaluate the proposed approaches, we test our

methods on the images from various scenes, including

paired and unpaired datasets.

Evaluation on LOL. We use the test dataset in LOL

dataset [31] for quantitative evaluations, since it has images

of different light illuminations including particularly dark

images, which most methods cannot recover very well. We

compare the quality of images enhanced using RFR with

state-of-the-art methods.

Table 1. Quantitative results of different methods on LOL dataset.

Retinex indicates whether the method is based on Retinex theory.

Method Retinex PSNR↑ SSIM↑ LPIPS↓

LLNet [17] × 17.96 0.713 0.360

RetinexNet [31] ✓ 16.77 0.559 0.474

KinD [38] ✓ 20.87 0.802 0.170

RRDNet [39] ✓ 11.33 0.534 0.365

Zero-DCE [5] × 14.86 0.589 0.335

EnlightenGAN [8] × 17.48 0.677 0.322

KinD++ [37] ✓ 21.30 0.823 0.160

RUAS [16] ✓ 18.23 0.717 0.354

LLFlow [29] × 25.19 0.925 0.113

SCI [22] ✓ 14.78 0.646 0.339

SNR-Aware [34] × 24.61 0.842 0.151

URetinexNet [32] ✓ 21.33 0.835 0.122

RFR𝐶𝐿 ✓ 26.33 0.928 0.109

RFR𝑆𝐷 ✓ 26.41 0.928 0.107

Table 2. Quantitative results of cross-dataset evaluation on VE-

LOL dataset.

Method PSNR↑ SSIM↑ LPIPS↓

LLNet [17] (PR17) 17.57 0.739 0.402

RetinexNet [31] (BMVC18) 14.68 0.525 0.642

KinD [38] (ACMMM19) 18.42 0.766 0.288

RRDNet [39] (ICME20) 14.31 0.620 0.283

Zero-DCE [5] (CVPR20) 21.12 0.771 0.248

EnlightenGAN [8] (TIP21) 20.43 0.792 0.242

KinD++ [37] (IJCV21) 17.63 0.799 0.226

RUAS [16] (CVPR21) 14.36 0.671 0.337

LLFlow [29] (AAAI22) 23.85 0.899 0.146

SCI [22] (CVPR22) 16.37 0.711 0.270

SNR-Aware [34] (CVPR22) 23.52 0.874 0.216

URetinexNet [32] (CVPR22) 19.67 0.880 0.148

RFR𝐶𝐿 26.22 0.918 0.144

RFR𝑆𝐷 25.97 0.920 0.140

We adopt three well-known objective evaluation metrics:

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

(SSIM) [30] and Learned Perceptual Image Patch Similar-

ity (LPIPS) [36]. PSNR is the ratio between the maximum

possible power of the normal light image and the power of

the enhanced image and measures the fidelity between them.

SSIM is a perception-based model that considers more about

the structural message. LPIPS is a metric designed for hu-

man perception. So we can measure the quality of images

from many perspectives, including structure, details and vi-

sual effects. Table 1 shows that our methods outperform all

the other methods in all metrics.

Evaluation on VE-LOL. We use a cross-dataset evalua-

tion to further evaluate the performance and generalization

of our methods, in which we first train our model on the LOL

training set and then evaluate it on the VE-LOL [15] test set
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Input KinD++ [37] RUAS [16] LLFlow [29] SNR-Aware [34]

SCI [22] URetinexNet [32] RFR𝐶𝐿 RFR𝑆𝐷 Ground truth

Figure 3. Visual comparison with state-of-the-art low-light image enhancement methods on LOL dataset.

Table 3. Quantitative results of cross-dataset evaluation on some

unpaired datasets using NIQE metric. Smaller values represent

better quality.

DICM LIME MEF NPE All

LLFlow [29] 3.86 3.97 3.92 4.20 3.91

SCI [22] 4.10 3.68 3.63 4.47 4.01

SNR-Aware [34] 4.62 5.51 4.14 4.36 4.60

URetinexNet [32] 4.15 3.86 3.79 4.69 4.11

RFR𝐶𝐿 3.80 3.65 3.75 4.07 3.79

RFR𝑆𝐷 3.75 3.81 3.92 4.13 3.81

which contains 100 pairs of real-captured images and 100

pairs of synthetic images.

The evaluation results are shown in Table 2. We can see

that our RFR outperforms other models in all metrics, in-

dicating that it has excellent performance as well as good

generalization capabilities.

Evaluation on unpaired datasets. We also perform a

cross-dataset evaluation on some unpaired datasets includ-

ing DICM [12], LIME [6], MEF [21] and NPE [28].

Since there is no ground truth of normal-light images

in the unpaired datasets, we cannot evaluate the enhanced

results by the metrics PSNR, SSIM, LPIPS. Therefore, we

use the commonly used non-reference metric Natural Image

Quality Evaluator(NIQE) [24] to evaluate the enhanced im-

ages. NIQE is based on the construction of a “quality aware”

collection of statistical features based on a simple and suc-

cessful space domain natural scene statistic model. We com-

pare our methods with the latest state-of-the-art methods,

which are all trained on the LOL training set. The evaluation

results are shown in Table 3, which shows that our methods

have excellent generalization capabilities and the enhanced

images are visually more natural.

3.3. Qualitative Evaluation

We conduct mass qualitative evaluations on many paired

and unpaired datasets. From the results on LOL dataset

shown in Fig. 3, RUAS and SCI cannot restore the bright-

ness of extreme dark parts of the image, KinD++, SNR-

Aware and URetinexNet have obvious artifacts or noise, and

LLFlow does not recover a satisfactory overall brightness

leading to obvious color deviations. In contrast, our meth-

ods achieve superior visual performance on both global il-

lumination and details. Fig. 4 shows the visual results of

the cross-dataset evaluation on different unpaired datasets.

For the first three low-light images with different brightness,

most of the low-light enhancement methods are overexposed

and all except our model have serious color deviation. For

the last image, only our methods recover the structure of the

cave and do not introduce strange artifacts. Comparatively,

our methods largely achieve a significant lead in the quali-

tative evaluation. Compared to the previous Retinex-based

method, our methods generate more natural and realistic im-

ages without visible noise, nonrealistic color and texture dis-

tortions.

We also present the visual results of Retinex decompo-

sition to evaluate the effectiveness of our proposed meth-

ods, since quantitative evaluation of the reflectance and illu-

mination components is very difficult in the lack of ground

truths for them. However, the previous Retinex-based meth-

ods estimate reflectance and illumination images while our

methods estimate reflectance and illumination features, and

we cannot directly compare the feature maps with the im-

ages qualitatively. Therefore, we propose a method to gener-

ate approximate illumination images of our illumination fea-

tures and approximate reflectance images of our reflectance

features. Specifically, for a pure white image 𝐈𝑤, its re-

flectance image 𝐑𝑤 and illumination image 𝐋𝑤 are both

pure white images. The element-wise product of any im-

age and 𝐑𝑤 (or 𝐋𝑤) is the image itself. According to Eq.

(1), an image can be expressed as the element-wise prod-

uct of reflectance and illumination. Therefore, a reflectance

image can be expressed as the element-wise product of it-

self and 𝐋𝑤 and an illumination image can be expressed as

the element-wise product of itself and 𝐑𝑤. Our synthesis
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Input LLFlow [29] SNR-Aware [34] SCI [22] URetinexNet [32] RFR𝐶𝐿 RFR𝑆𝐷

Figure 4. Visual results of cross-dataset evaluation on unpaired datasets. These 4 images are from LIME, DICM, NPE and MEF respectively.

Input/Ground truth RetinexNet [31] RRDNet [39] KinD++ [37] URetinexNet [32] RFR𝐶𝐿 RFR𝑆𝐷

Figure 5. Comparisons of illumination and reflectance components estimated by different Retinex decomposition methods on VE-LOL

dataset. The first column is the input low-light image and the ground truth. The left part of the images in the rest of the first row is the

reflectance, and the right part is the illumination. The images in the rest of the second row are the corresponding enhanced results.

module can be approximated as the element-wise product of

illumination and reflectance, so we can get an approximate

reflectance or illumination image by replacing the input of

the reflectance module or illumination module with a pure

white image, as shown below:

𝜙𝑆

(
𝜙𝑅

(
𝐈𝑙

)
, 𝜙𝐿

(
𝐈𝑤

))
≈ 𝐑𝑙◦𝐋𝑤 = 𝐑𝑙,

𝜙𝑆

(
𝜙𝑅

(
𝐈𝑤

)
, 𝜙𝐿

(
𝐈𝑙

))
≈ 𝐑𝑤◦𝐋𝑙 = 𝐋𝑙

(10)

As shown in Fig. 5, we present the reflectance, illumina-

tion and enhanced results of our methods and other Retinex-

based methods. It should be noted that we only compare

the methods that can output reflectance and illumination. It

can be seen that RRDNet cannot extract good reflectance in

the extremely dark environment, and the reflectance images

estimated by RetinexNet and KinD++ both contain severe

noise. URertinexNet and our methods can estimate high

quality reflectance, but enhanced results of URertinexNet

are obtained from Eq. (1) while our results are generated by

the synthesis module. So our methods do not magnify the

defects of the reflectance and illumination, and can recover

more satisfactory brightness without introducing artifacts.

3.4. User Study

We conduct a user study to compare the subjective visual

quality of RFR and other Retinex-based methods. We ran-

domly select 30 images from the LOL [31], VE-LOL [15],

MEF [21], DICM [12], NPE [28] and LIME [6] test sets, 5

from each. The images are then enhanced using six Retinex-

based methods (RUAS [16], KinD++ [37], SCI [22], URe-

tinexNet [32], RFR𝐶𝐿 and RFR𝑆𝐷). We ask 20 people to

rate each image’s six enhancements. Specifically, we pro-

vide the original low-light images and present 6 kinds of

enhancement results in random order for participants to rate

their image quality from good to bad. The human subjects

are instructed to consider 1) whether the images contain over

or under-exposure artifacts 2) whether the images contain

visible noise; and 3) whether the images show nonrealistic

color or texture distortions. We calculate the average rank-
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(a) RFR𝐶𝐿 (b) RFR𝑆𝐷 (c) URetinexNet [32] (d) SCI [22] (e) KinD++ [37] (f) RUAS [16]

Figure 6. The results of six methods in the user study. In each histogram, the x-axis denotes the ranking index (1∼6, 1 represents the

highest), and the y-axis denotes the number of images in each ranking index.

Table 4. Quantitative results of the ablation study. WX denotes our

WNT-Xent loss and PL denotes our progressive learning strategy.

Method WX PL PSNR↑ SSIM↑ LPIPS↓

w/o Retinex × × 22.48 0.871 0.239

RFR𝐶𝐿 × × 25.33 0.922 0.122

RFR𝑆𝐷 × × 23.21 0.913 0.143

RFR𝐶𝐿 ✓ × 26.00 0.925 0.116

RFR𝐶𝐿 ✓ ✓ 26.33 0.928 0.109

RFR𝑆𝐷 × ✓ 26.41 0.928 0.107

Input w/o Retinex RFR𝐶𝐿 w/o WX

RFR𝑆𝐷 w/o PL RFR𝐶𝐿 RFR𝑆𝐷

Figure 7. Visual results of the ablation study. WX denotes our

WNT-Xent loss and PL denotes our progressive learning strategy.

ing of each method on each image and rank the results. As

a result, each method is assigned with rank 1-6 on that im-

age. The final results are shown in Fig. 6. RFR𝐶𝐿 has 13

results ranked 1, 6 results ranked 2, 8 results ranked 3, 3 re-

sults ranked 4, and no results ranked 5 or 6 out of the 30

images evaluated. RFR𝑆𝐷 has 8 results ranked 1, 15 results

ranked 2, 6 results ranked 3, 1 result ranked 4, and no results

ranked 5 or 6. When the histograms are compared, it is clear

that our methods produce better results for human subjective

evaluations across all datasets.

3.5. Ablation Study

We conduct comprehensive ablation studies to validate

each component of our proposed RFR. The quantitative re-

sults are shown in Table 4 and the visual results are shown

in Fig. 7.

To further validate the effectiveness of our approach, we

try to use our synthesis module to improve previous Retinex-

based methods. Specifically, for those methods that can out-

put reflectance and illumination, we use our synthesis mod-

ule to generate the final image with their estimated values.

Table 5. Quantitative results of different Retinex-based methods

with our synthesis module. SM denotes our synthesis module.

Method PSNR↑ SSIM↑ LPIPS↓

RetinexNet [31] 16.77 0.559 0.474

RetinexNet w/ SM 20.30 0.891 0.135

KinD [38] 20.87 0.802 0.170

KinD w/ SM 21.02 0.892 0.131

RRDNet [39] 11.33 0.534 0.365

RRDNet w/ SM 16.80 0.842 0.144

KinD++ [37] 21.30 0.823 0.160

KinD++ w/ SM 22.62 0.905 0.114

URetinexNet [32] 21.33 0.835 0.122

URetinexNet w/ SM 23.18 0.909 0.116

The quantitative results on LOL dataset [31] are shown in

Table 5, and it is clear that our synthesis module can signifi-

cantly improve the performance of the Retinex-based meth-

ods. In addition, the quality of reflectance and illumination

is crucial to the results. The higher the quality of reflectance

and illumination estimated by the previous Retinex-based

methods, the higher the quality of the enhanced images gen-

erated by our synthesis module.

4. Conclusion

In this paper, we propose a contrastive learning method

and a self-knowledge distillation method that allow train-

ing Retinex-based models without additional priors or reg-

ularizers. Instead of estimating reflectance and illumination

images and representing the final image as their element-

wise product, we propose an end-to-end Retinex-based net-

work that extracts reflectance and illumination features and

synthesizes them by a synthesis module. In addition, we

propose a loss function for contrastive learning and a pro-

gressive learning strategy for self-knowledge distillation. A

large number of experiments and comparisons prove the ef-

fectiveness of our proposed methods.
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