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Abstract

Modeling and synthesizing real noise in the standard
RGB (sRGB) domain is challenging due to the complicated
noise distribution. While most of the deep noise generators
proposed to synthesize sRGB real noise using an end-to-end
trained model, the lack of explicit noise modeling degrades
the quality of their synthesized noise. In this work, we pro-
pose to model the real noise as not only dependent on the
underlying clean image pixel intensity, but also highly cor-
related to its neighboring noise realization within the local
region. Correspondingly, we propose a novel noise synthe-
sizing framework by explicitly learning its neighboring cor-
relation on top of the signal dependency. With the proposed
noise model, our framework greatly bridges the distribution
gap between synthetic noise and real noise. We show that
our generated “real” sRGB noisy images can be used for
training supervised deep denoisers, thus to improve their
real denoising results with a large margin, comparing to
the popular classic denoisers or the deep denoisers that are
trained on other sRGB noise generators. The code will be
available at https://github.com/xuan611/sRGB-Real-Noise-
Synthesizing.

1. Introduction
Real image denoising is one of the most challeng-

ing tasks in low-level vision. Deep denoisers that are
trained using synthetic noise, e.g., Additive White Gaus-
sian Noise (AWGN), perform poorly on real photography
[3, 15], which motivates more realistic noise models, e.g.,
[1, 5, 14–16]. In general, there are two approaches towards
real noise modeling, i.e., modeling in the raw-RGB and
standard RGB (sRGB) domains. Popular modeling meth-
ods including the physical-based [25, 28] and data-driven
methods [1, 6] exploit sophisticated noise models in the
raw-RGB domain, which demonstrated promising perfor-
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mance as noise in raw-RGB is largely simplified compar-
ing to noise in sRGB [20, 22]. However, raw-RGB images
are not usually utilized by common users due to their large
sizes. In contrast, most commercial cameras generate sRGB
images by default, which are more popular in practice. Un-
fortunately, the noise generation methods in the raw-RGB
domain cannot be directly applied to sRGB images, as the
real noise distribution in sRGB is more complicated than
raw-RGB noise, caused by the in-camera signal processing
(ISP) pipeline [22].

Recent works [5, 15] proposed to generate noise on raw-
RGB images and convert them into sRGB images by the ISP
pipeline including demosaicing, white balancing, gamma
correction, etc. While these methods synthesized realistic
noise, the requirement of raw-RGB images as well as manu-
ally defined ISP pipelines limits their applications. An alter-
native solution for sRGB real noise modeling is to train the
generative models with sRGB noisy-clean images and di-
rectly synthesize real noise on sRGB images [16,17,20,26].
However, these models synthesize noise without explicitly
modeling the characteristics of sRGB real noise, resulting
in degradation of the quality of the synthesized noise.

In this paper, we propose a novel real noise generation
network, based on Neighboring Correlation-Aware noise
model, dubbed as NeCA, to directly synthesize real noise
in the sRGB domain. The proposed real noise synthe-
sis assumes that the sRGB real noise is not only signal-
dependent, i.e., noise level partially depends on its un-
derlying clean pixel, but also highly correlated with its
neighboring noise realization. Such a real noise model
greatly bridges the gap between the synthetic and real noise
in sRGB. Furthermore, the synthesized “real” images by
the proposed NeCA can be used for training supervised
deep denoisers, thus tackling the real image denoising chal-
lenges, subjective to only a few real training data. The
trained deep denoiser using our synthetic noisy images
achieves state-of-the-art denoising performance, compared
to the popular classic denoisers as well as deep denoisers
that are trained on synthetic pairs from other noise models.
To sum up, our main contributions can be concluded as fol-
lows:
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• We introduce a neighboring correlation-aware noise
model for sRGB real noise synthesis by explicitly
modeling the neighboring correlation of real noise, to
bridge the gap between the synthetic and real noise dis-
tribution in sRGB.

• Our proposed framework shows a well-generalized
ability, which is still capable to improve the real im-
age denoising performance even with limited training
data.

• With the synthetic image pairs generated by NeCA,
the trained denoisers achieve state-of-the-art denoising
performance compared with the deep denoisers trained
with other real noise models.

2. Related Work
2.1. Raw-RGB Image Noise Synthesis

Modeling real noise in raw-RGB is challenging as it
cannot be simply assumed as Additive White Gaussian
Noise (AWGN). Typically, raw-RGB noise models can
be classified into two categories: physical-based models
and learning-based models. One of the most commonly
used physical-based models is the heteroscedastic Gaussian
noise [10], which posits noise value, located at pixel i, is
dependent on its underlying clean pixel intensity:

ni ∼ N (0, σ2
s · xi + σ2

c ), (1)

where n and x are noise and clean image in the raw-RGB
domain, while σs and σc denote the noise variance term
for signal-dependent and signal-independent components.
Such a noise model is also known as the noise level function
(NLF) as it describes the relationship between the pixel-
wise noise level and image intensity. To better model the
camera sensor noise, recent works [25, 28] have proposed
that real noise is a sophisticated combination of shot noise,
read noise and row noise, etc.

Compared to statistical modeling of noise, learning-
based models learn the real noise distribution with genera-
tive models such as the generative adversarial nets (GANs)
[6] and normalization flows [1] from paired noisy-clean im-
ages. Although these methods perform well in raw-RGB,
they cannot be directly applied to model sRGB real noise
since their assumptions are based on the characteristics of
raw-RGB noise. For instance, these noise generators syn-
thesize raw-RGB noise from an initialized heteroscedastic
Gaussian noise (as described in Equation (1)), which fails
to provide an accurate representation of real noise in the
sRGB domain [21, 22].

2.2. sRGB Image Noise Synthesis

The camera ISP pipeline, including demosaicing, tone
mapping, white balancing, gamma mapping, etc., makes

real noise in the sRGB domain to be more complicated than
it is in the raw-RGB domain. To synthesize sRGB real
noise, two approaches have been proposed: (1) synthesiz-
ing noisy samples in the raw-RGB domain and rendering
them into sRGB images by applying the manually defined
ISP pipeline [5, 15], and (2) directly synthesizing real noise
in the sRGB domain [8, 16, 17, 20, 26].

In CBDNet [15], heteroscedastic Gaussian noise is
added on raw-RGB clean images, and images are converted
into sRGB using demosaicing and camera response func-
tions. However, CBDNet requires raw-RGB images, which
are not commonly used. To address this issue, unprocess-
ing image (UPI) [5] proposes to de-render sRGB images
into raw-RGB images using several predefined unprocess-
ing pipelines. Similar procedures used in CBDNet are then
applied to the unprocessed raw-RGB images to obtain their
sRGB versions.

Despite CBDNet and UPI effectively synthesize sRGB
real noise, they still require predefined ISP pipelines, which
may not match real ones used in different camera sensors.
Therefore, generating real noise directly in the sRGB do-
main with deep generative models [11, 19] is considered
an alternative solution. GCBD [8] proposes a GAN-based
model that learns noise distributions by training on noise
patches that have been cropped from noisy images. How-
ever, the synthesized noise is signal-independent as it is
generated from random noise. DANet [26] and GRDN [17]
use conditional generative networks to synthesize signal-
dependent noise, however, few experiments are conducted
to demonstrate the effectiveness of the proposed noise gen-
erators. C2N [16] attempts to synthesize the real noise with
unpaired clean-noisy images, but the generated noise con-
tains artifacts and color-shift problems due to the unpaired
training mode. Recently, Kousha et al. [20] propose a condi-
tional flow-based model for sRGB image noise generation
that takes clean images, camera types, and ISO levels as
input. However, the denoiser, trained with synthetic data,
improves marginally compared to the unpaired noise gen-
eration method C2N. Unlike previous attempts that model
noise with an end-to-end generator, our proposed method
explicitly decomposes signal dependency and neighboring
correlation of real noise and learns them with separate net-
works.

3. Method

3.1. Neighboring Correlation-Aware Noise Model

In this section, we present our proposed noise model for
sRGB real noise. We begin by introducing the basic noise
model, which defines the signal dependency of pixel-wise
noise level and its underlying clean pixels. We then discuss
discrepancies between noise synthesized by the basic noise
model and sRGB real noise and propose to bridge this gap

1684



by explicitly modeling noise neighboring correlation on top
of the signal dependency.
Basic Noise Model. Both raw-RGB and sRGB real noise
are dependent on the image signal. In raw-RGB, the noise
level can be approximated as a simple function of its un-
derlying clean pixel intensity, i.e., heteroscedastic Gaussian
noise described in Equation (1). However sRGB real noise
is more complex due to camera settings and signal transfor-
mations in the ISP pipeline [20–22]. To address this chal-
lenge, we propose a noise model that characterizes the sig-
nal dependency of sRGB real noise. Specifically, for an
sRGB clean image x = (x1, ...,xN ) and its paired noisy
version y = (y1, ...,yN ), we define noise level at pixel i
as a function of the clean image patch Ωx, centered at clean
pixel xi, and camera ISO level γ:

σi = f(Ωx, γ), (2)

where f(·) represents the non-linear relationship of Ωx, γ
and the pixel-wise noise level σi = (σi,r,σi,g,σi,b) for
three color channels. For the sake of clarity, we omit the
location index i in the expression for the local region Ωx.
Then the distribution of noise v at each pixel is modeled as
a Gaussian distribution:

vi,c ∼ N (0,σ2
i,c), (3)

where c is the index of RGB channels. We further define
the noise level map m, which has the same size as the clean
image and the value at pixel i refers to the noise level σi.
Finally, we can simulate signal-dependent noise as follows:

v = ϵ⊙m, ϵi,c ∼ N (0, 12). (4)

Neighboring Correlation Noise Model. The noise syn-
thesized by the basic noise model still exhibits discrepan-
cies with real noise, as shown in Figure 1(b) and (d). We
attribute this gap to the improper noise realization defined
in Equation (4), where noise is sampled spatially indepen-
dently from the basic noise model. Specifically, the most
commonly used noise models, including the AWGN, het-
eroscedastic Gaussian noise, and our basic noise model, as-
sume that the noise distribution is independent at each pixel,
and the noise is sampled from the noise distribution without
considering its neighboring synthesized noise. However,
this noise realization method is inadequate to synthesize
sRGB real noise as the noise value is assumed to be highly
correlated with its neighboring noise values due to the influ-
ence of the ISP pipeline such as demosaicing, which intro-
duces neighboring operations. We refer to this characteristic
of noise as neighboring correlation and define a neighbor-
ing correlation operator g(·) that maps such the correlation
onto the synthesized signal-dependent noise v:

ni = g(Ωv), (5)

(a) Clean (b) SDNU Noise

(c) SDNC Noise (d) Real
Figure 1. The visualization of modeling signal dependency and
neighboring correlation of sRGB real noise. (a) Clean image. (b)
Synthetic signal-dependent and neighboring uncorrelated (SDNU)
noise. (c) Synthetic signal-dependent and neighboring correlated
(SDNC) noise. (d) Real noise. We add a constant value to the
noise maps for better visualizing the signal dependency.

where n is the neighboring correlated noise and Ωv is
the local patch of v, centered at pixel i. By processing
the neighboring uncorrelated noise v with the neighbor-
ing correlation operator, which is learned by our proposed
noise synthesizing framework in Section 3.2, the final gen-
erated noise performs similar characteristics to real noise,
as demonstrated in Figure 1(c) and (d). For the purpose
of clarity, we use SDNU noise to refer to the intermedi-
ate synthesized signal-dependent and neighboring uncorre-
lated noise v, and SDNC noise to refer to the final gener-
ated signal-dependent and neighboring correlated noise n.
In the following sections, we will introduce the proposed
noise synthesizing framework to explicitly learn the neigh-
boring correlation and signal dependency of noise.

3.2. Noise Synthesizing Framework

Given paired sRGB real-world noisy and clean images
(y,x), where y = x + n, our proposed framework aims
to learn the neighboring correlation-aware noise model us-
ing paired data. Our proposed framework, as illustrated in
Figure 2, comprises three networks: a gain estimation net-
work (GENet), a noise-level prediction network (NPNet),
and a neighboring correlation network (NCNet). GENet es-
timates the gain factor from a noisy image, which serves
to amplify the synthesized noise, similar to the ISO level.
NPNet synthesizes the SDNU noise by incorporating the
estimated gain factor and the clean image as inputs. Fi-
nally, NCNet explicitly models the neighboring correlation
of sRGB real noise and generates the SDNC noise.
Gain Estimation Network. The gain estimation network
(GENet) is designed to estimate the gain factor from a noisy
image y, which serves as guidance to control the overall
magnitude of the synthesized noise. The gain factor is de-
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Figure 2. The proposed noise synthesizing framework. Our NeCA contains three networks including the gain estimation network (GENet),
noise-level prediction network (NPNet), and neighboring correlation network (NCNet). PD denotes the Pixel-shuffle Down-sampling
scheme introduced in [29]. Local noise level estimation and global noise level estimation operations are formulated in Equation (13) and
(6). The details of the network architecture and PD scheme are described in the supplementary material.

fined as the global noise level of the noisy image, which is
the standard deviation calculated by every noise value in its
noise n:

β =

√
1

N

∑
i,c

(ni,c − n̄)
2
, (6)

where β is the defined global noise level of the noisy image
y, n̄ is the mean of the noise n, and N is the total num-
ber of pixels in the noisy image. However, during testing,
the calculated gain factor is unavailable. To solve this, we
aim to estimate the gain factor from the noisy image using
GENet:

β̂ = E(y), (7)

where E represents the GENet, and β̂ is the estimated gain
factor by GENet, which is expected to be as close as the
global noise level of the noisy image. The main reason to
use the gain factor estimated from the noisy image rather
than the ISO level is driven by a crucial factor. ISO levels
are typically saved in the metadata of images. The require-
ment of metadata will limit the application of our noise syn-
thesizing framework.
Noise-level Prediction Network. The noise-level predic-
tion network (NPNet) learns a parametric model for the
noise distribution defined in Equation (3). To achieve this,
NPNet predicts the pixel-wise noise level σ̂i using the clean
local patch Ωx and estimated gain factor β̂:

σ̂i = G1(Ωx, β̂), (8)

where G1 denotes the NPNet, which has three output chan-
nels to predict noise levels for each pixel. To effectively

incorporate the gain factor into the NPNet, we first apply
the layer normalization [4] to the feature map of convolu-
tion and then multiply the normalized feature map by the
gain factor. In practice, NPNet directly outputs the pre-
dicted noise level map m̂ by utilizing a clean image and
gain factor:

m̂ = G1(x, β̂). (9)

Once the noise level map m̂ is obtained, the SDNU noise
v̂ can be synthesized by using the sampling trick defined in
Equation (4).
Neighboring Correlation Network. The neighboring cor-
relation network (NCNet) performs as the neighboring cor-
relation operator, described in Equation (5). By taking the
noise value and its neighboring noise realization as input,
NCNet generates the SDNC noise n̂:

n̂i = G2(Ωv̂), (10)

where Ωv̂ is the noise patch of v̂ located at pixel i and G2

denotes the NCNet. The SDNC noise can be directly gen-
erated by taking the SDNU noise into the network:

n̂ = G2(v̂). (11)

3.3. Loss Functions

To jointly train the proposed networks, five loss func-
tions are introduced: (1) standard deviation losses Lstd1 and
Lstd2, (2) adversarial losses Ladv1 and Ladv2, (3) the regu-
larization loss Lreg. The details of these loss functions will
be introduced later.
Standard Deviation Loss. We introduce Lstd1 to enforce
the estimated gain factor β̂ by GENet to be close to the
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global noise level β of the noisy image, which is defined
as follows:

Lstd1 = Ey

[
(β̂ − β)2

]
, (12)

where β and β̂ are obtained by Equation (6) and (7).
The objective of NPNet is to predict the noise level map

m̂ by taking the clean image and gain factor as input. How-
ever, since the groundtruth noise level map is not avail-
able, we propose to use a simple local noise level estima-
tion method to approximate the noise level map m from the
noise, which is calculated as follows:

mi,c =

√
MF(Ω2

n)−MF2(Ωn), (13)

where Ωn denotes the 7 × 7 noise patch located at pixel i,
channel c of noise map n, and MF(·) represents the mean
filter. Then the Lstd2 is defined as follows:

Lstd2 = Ex,y

[
||m̂−m||22

]
. (14)

Adversarial Loss. In order to guarantee that the gener-
ated noise shares the similar distribution with real noise,
we introduce two adversarial losses. Our first adversarial
loss Ladv1 is imposed between the final synthetic SDNC
noise and real noise (n̂,n) to enforce the highly neighbor-
ing correlation in the generated noise, similar to that of the
real noise. Our second adversarial loss Ladv2 is calculated
by using Pixel-shuffle Down-sampling [29] versions of syn-
thesized intermediate noise v̂ and real noise n. Specifically,
Ladv2 servers as a complementary loss for Lstd2 because
estimating the approximate noise level map using Equation
(13) may not be reliable, as this method struggles to differ-
entiate between noise originating from different intensities.
However, directly calculating the adversarial loss between
noise v̂ and n is unreasonable since v̂ is neighboring un-
correlated. To address this problem, we utilize the Pixel-
shuffle Down-sampling (PD) scheme proposed in [29] to
obtain down-sampled versions ((v̂) ↓s,(n) ↓s) of both syn-
thetic noise v̂ and real noise n. Here ↓s denotes the PD
operation with a stride of s (in this paper, s is set to 3).
According to [29], the neighboring correlation in the PD
real noise (n) ↓s will be greatly attenuated. This allows
us to calculate the adversarial loss between the two down-
sampled versions. We utilize WGAN-GP [13] to compute
adversarial losses, while Ladv1 is defined as follows:

Ladv1 = −En̂ [D1(n̂)] , (15)

where D1 is the discriminator for NCNet, which scores the
realness of synthesized noise. Similarly, Ladv2 is computed
as follows:

Ladv2 = −E(v̂)↓s
[D2((v̂) ↓s)] , (16)

where D2 is the discriminator for NPNet. More detail about
the PD scheme and the discriminator losses will be dis-
cussed in the supplementary material.

NCNet

AWGN SINC noise

GENet

NPNet

NCNet

NeCA-W

NeCA-S

Figure 3. The designed two inference versions. NeCA-W utilizes
the whole framework to synthesize SDNC noise. NeCA-S only
adopts NCNet to synthesize signal-independent neighboring cor-
related (SINC) noise by taking the AWGN as input.

Regularization Loss. Besides the losses mentioned above,
a regularization loss Lreg is utilized to stabilize training.
It is imposed between the estimated gain factor β̂ and the
predicted noise level map m̂:

Lreg = Ex,y

[
||w||22

]
, (17)

where wi,c = m̂i,c − β̂.
Finally, the full loss functions of the framework are de-

scribed as follows:

L = Lreg+λ1Ladv1+λ2Ladv2+λ3Lstd1+λ4Lstd2, (18)

where λ1, λ2, λ3 and λ4 are hyperparameters to balance the
importance between different losses.

3.4. Inference Stage

We provide two inference versions to generate noise,
as illustrated in Figure 3: (1) NeCA-W applies the entire
framework to synthesize ”real” noise. It first estimates the
gain factor from an arbitrary noisy image and synthesizes
noise by conditioning on a clean image and the estimated
gain factor. (2) NeCA-S is the simplified version of NeCA-
W which uses only NCNet for inference. In this method,
AWGN is synthesized and then NCNet maps it with the
neighboring correlation. We refer to this synthetic noise
as signal-independent neighboring correlated (SINC) noise.
Notably, NeCA-S still enhances the performance of deep
denoiser on real noise, even though the denoiser is trained
using the synthesized SINC noise. In the meantime, this in-
ference version only requires minimal data to train the NC-
Net, which we will demonstrate in our experiments.

4. Experiments
4.1. Experimental Setup

To assess the effectiveness of our proposed noise syn-
thesizing framework, we conduct experiments in two parts:
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First, we assess the quality of the generated noise. Second,
we examine the performance of NeCA on the downstream
image denoising task. The details of the experiments will
be discussed in the following subsections.
Dataset. We evaluate our NeCA on the medium version
of Smartphone Image Denoising Dataset (SIDD) [2], which
comprises 320 noisy-clean image pairs captured by five dif-
ferent smartphone cameras, including Samsung Galaxy S6
Edge (S6), iPhone 7 (IP), Google Pixel (GP), Motorola
Nexus 6 (N6), and LG G4 (G4). These images are col-
lected in ten different scenes with varying ISO levels and
lighting conditions. The SIDD provides both raw-RGB and
sRGB images, with the sRGB version obtained by render-
ing the captured raw-RGB images through the manually de-
fined ISP pipeline provided in [2]. In our experiments, we
use the sRGB version to evaluate the proposed method.
Metrics. We evaluate the performance of NeCA using
three metrics: Discrete Kullback-Leibler (KL) divergence,
Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) [24]. The KL divergence is used to measure the
similarity of histograms between real noise and generated
noise. The histogram range is set from −0.1 to 0.1 with
64 intervals. The PSNR and SSIM are used to evaluate the
performance of deep denoisers. A higher PSNR and SSIM
reflect better denoising performance, while a smaller KL di-
vergence represents better noise synthesizing quality.
Implementation Details. All the networks are optimized
using Adam optimizer [18] with a batch size of 32. Im-
ages are cropped to a size of 96 × 96 pixels for training.
For noise generation, we train individual networks for 300
epochs with the learning rate of 10−4. For denoising, we se-
lect the DnCNN [27] as the default deep denoiser for com-
parison and train it for 300 epochs with the learning rate of
10−3. The λ1, λ2, λ3 and λ4 in the loss functions are set to
0.1, 0.1, 50, 10 respectively.

4.2. Noise Synthesis on SIDD

Compared Baselines. We compare NeCA with several
noise models, including Additive White Gaussian Noise
(AWGN), C2N [16], and the NLF (described in Equation
(1)). To synthesize AWGN, we estimate the noise level from
each noisy image by applying a noise estimation method in-
troduced in [7] and add it to its corresponding clean image.
To synthesize noise using the C2N, we directly utilize the
pretrained model provided by the authors. For the NLF, we
synthesize heteroscedastic Gaussian noise on the raw-RGB
clean images from SIDD, where the signal-dependent term
σ2
s and signal-independent term σ2

c are obtained from the
metadata provided by SIDD. We then apply the same ISP
pipeline as used in the SIDD to render them to sRGB. We
refer to this model as NLF-ISP for simplicity.
Preparation. We evaluate the results of generated noise on
each camera in SIDD, where 80% of image pairs are allo-

Camera Metrics AWGN C2N [16] NeCA NLF-ISP Real

G4
KL

PSNR
1.9755
28.15

0.1660
37.81

0.0242
38.85

0.0102
38.51

-
40.60

GP
KL

PSNR
1.8351
28.45

0.1315
37.08

0.0432
37.72

0.0126
37.74

-
38.33

IP
KL

PSNR
1.8562
28.01

0.0581
39.12

0.0410
39.46

0.0475
39.53

-
39.45

N6
KL

PSNR
2.1465
26.31

0.3524
33.59

0.0206
35.54

0.0063
34.84

-
35.56

S6
KL

PSNR
0.4517
27.22

0.4517
33.18

0.0302
35.56

0.0902
35.99

-
36.85

Average
KL

PSNR
2.0062
27.90

0.2129
36.37

0.0342
37.58

0.0414
37.59

-
38.27

Table 1. Quantitative results of synthetic noise. The results are
computed on the validation sets of five SIDD cameras with KL di-
vergence and PSNR (dB). The best results are highlighted in bold.

cated for training the noise synthesizing framework, while
the rest 20% are reserved for validation. The quality of the
synthesized noise was evaluated using two metrics: KL di-
vergence and PSNR. We calculate the KL divergence be-
tween the histograms of ground truth noise in the validation
set and the noise synthesized by NeCA with clean images
and corresponding gain factors from the validation set. No-
tably, the gain factors used for evaluation are estimated by
GENet from the noisy images paired with the clean images,
as they cannot be set to random values for evaluation. Be-
sides, we also use the PSNR to further evaluate the quality
of synthesized noisy images. We train the DnCNN with
the synthesized noisy-clean image pairs on the training set
and apply it to denoise the noisy images from the validation
set. We calculate the PSNR between the denoised images
and corresponding clean images to evaluate the denoising
performance. In order to maintain consistency between the
training and validation sets, we ensure that both sets contain
the same set of ISO levels.

Noise Synthesis Results. Table 1 shows the KL divergence
and PSNR results computed on validation sets of five de-
vices. For the results of average KL divergence over all five
cameras, our method exhibits the best performance among
all noise models. Additionally, our method lags slightly be-
hind NLF-ISP by 0.01 dB on the average PSNR. It is worth
noting that noise samples generated by NLF-ISP are first
synthesized in the raw-RGB domain and then rendered to
sRGB using the same ISP pipelines as in SIDD, suggest-
ing the minimal discrepancies between noise samples from
NLF-ISP and real data. The similar results on each cam-
era between NLF-ISP and our NeCA model demonstrate
the promising performance of the proposed model. Fig-
ure 4 shows generated noise maps from compared methods.
Remarkable visual similarities observed between generated
noise maps and real noise maps indicate that our framework
is capable to synthesize realistic noise.
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Figure 4. Visualization of synthetic noise samples under different
ISO-lighting conditions on SIDD [2]. The displayed images, from
left to right, correspond to clean image, C2N, Our method, NLF-
ISP and real noisy image.

4.3. Applications on Real Image Denoising

Compared Baselines. Various noise generation methods
are evaluated to demonstrate the effectiveness of these base-
lines performed on the downstream real image denoising
task, including GCBD [8], C2N [16], Flow-sRGB [20],
NeCA-S and NeCA-W. When assessing denoising perfor-
mance, classical denoisers such as BM3D [9] and WNNM
[12] are also included in the experiments.
Preparation. We establish the synthetic SIDD where clean
images are from the original SIDD and noisy images are
synthesized by using NeCA-W and NeCA-S. Specifically,
the proposed framework is trained on the entire SIDD for
each camera and the whole framework (NeCA-W) is used to

Method SIDD DND
PSNR(dB) SSIM PSNR(dB) SSIM

BM3D [9] 25.65 0.685 34.51 0.851
WNNM [12] 25.78 0.809 34.67 0.865
GCBD [8] - - 35.58 0.922
C2N∗ [16] 33.76 0.901 36.08 0.903
Flow-sRGB∗ [20] 34.74 0.912 - -
NeCA-S∗ 36.10 0.927 36.96 0.938
NeCA-W∗ 36.82 0.932 37.53 0.940
Real∗ 37.12 0.934 37.89 0.942

Table 2. Quantitative evaluation of denoising performance on
SIDD and DND benchmark. ∗ denotes the DnCNN denoiser is
trained on either the synthetic or real image pairs with the SIDD.
(red: the best result, blue: the second best)

generate noise for each clean image from the SIDD, where
the gain factor is estimated from its paired noisy image. On
the other hand, We train NeCA with a few paired images,
e.g., three image pairs with varying ISO levels (800, 1600,
3200) from camera N6 and use only NCNet (NeCA-S) to
generate signal-independent neighboring correlated (SINC)
noise for clean images from SIDD, as seen in Figure 3. The
synthesized SINC noise is added to the clean image. For
each clean image, the noise level of AWGN is randomly se-
lected from a range of [0, 75]. Our experiments with NeCA-
S aim to demonstrate the advantages of explicitly modeling
the neighboring correlation of real noise. Other sRGB real
noise generation baselines, including C2N [16] and Flow-
sRGB [20], also follow the same experimental settings with
NeCA-W. With the synthetic noisy-clean image pairs, we
train the DnCNN on either synthetic or real pairs of SIDD.
Then the denoising performances are evaluated on both the
SIDD and DND [23] benchmarks.
Results and Discussions. Table 2 shows the denoising
results of the compared denoisers. Obviously, DnCNN
trained on the synthetic samples from NeCA-W, achieves
the best results among all compared methods in terms of
both PSNR and SSIM. Specifically, NeCA-W gets 2.08 dB
gains from Flow-sRGB on the SIDD benchmark, where
Flow-sRGB is an end-to-end flow model which implicitly
synthesizes real noise. The improvement of denoising per-
formance obtained by NeCA-W indicates the accuracy of
our noise model. Moreover, even though the denoising per-
formance of NeCA-W still does not surpass the denoiser
trained on the real data, the slight PSNR and SSIM dis-
crepancies between them suggest our model does shrink
this gap. Furthermore, the most impressive thing is that
NeCA-S still achieves comparable denoising results on both
the SIDD and DND benchmarks, outperforming the Flow-
sRGB by a large margin. Note that the synthetic noise from
NeCA-S is signal-independent. The superior performance
of NeCA-S further verifies explicitly modeling neighboring
correlation benefits the sRGB real noise synthesis.

Figure 6 and 7 show the denoised images from the SIDD

1689



(a) Clean (b) β̂ = 0.02 (c) β̂ = 0.06 (d) β̂ = 0.10 (e) β̂ = 0.14 (f) β̂ = 0.18

Figure 5. Results of controllable noise synthesis. The gain factor ranges from 0.02 to 0.18 with intervals of 0.04.

(a) Noisy (b) C2N [16] (c) NeCA-S

(d) NeCA-W (e) Real (f) Clean
Figure 6. Denoising results on the SIDD dataset. DnCNN de-
noisers are trained on the noisy images from (b) C2N, (c, d) our
models, and (e) real noisy images of the SIDD.

(a) Noisy (b) BM3D [9] (c) C2N [16]

(d) NeCA-S (e) NeCA-W (f) Real
Figure 7. Denoising results on the DND dataset. DnCNN de-
noisers are trained on the noisy images from (c) C2N, (d, e) our
models, and (f) real noisy images of the SIDD.

and DND datasets. The results indicate that the denois-
ers trained on the synthetic image pairs from NeCA-W and
NeCA-S achieve similar denoising results compared to the
denoiser trained on real image pairs. In contrast, the de-
noiser trained on noisy samples from C2N, which employs
an unpaired training scheme, fails to suppress the noise ef-
fectively, partly due to its unpaired train scheme.

Loss w/o Lstd2 w/o Ladv1 w/o Lreg all

KL 0.052 0.048 0.108 0.041

Table 3. Ablation study on the effectiveness of different loss func-
tions. We train the framework on the training set of camera IP and
calculate KL divergence on its validation set.

4.4. Customized Generation

Our proposed noise synthesizing framework allows for
controlling the generated noise with multiple noise levels
by manipulating the gain factors. Figure 5 illustrates the
controllable synthesizing results, which are generated by
varying the gain factor within the range of 0.02 to 0.18 with
intervals of 0.04. The results demonstrate that an increase
in the gain factor value leads to a proportional increase in
the magnitude of the generated noise.

4.5. Ablation Study

In this section, we conduct ablation studies to verify
the effectiveness of individual loss functions in our frame-
work, including Lstd2, Ladv2 and Lreg . We exclude Lstd1

and Ladv1 from evaluation since they are indispensable for
framework training. As indicated in Table 3, the model
achieves optimal performance in KL divergence with com-
plete loss functions, suggesting all the components con-
tribute to the final synthetic noise. However, removing Lreg

significantly reduces the KL divergence, suggesting the im-
portance of stabilizing the training process. Moreover, both
Ladv2 and Lstd2 improve the quality of synthetic noise, sup-
porting our claim that Ladv2 serves as a complementary
loss for Lstd2, enabling the NPNet to predict more accurate
noise levels.

5. Conclusion
In this paper, we propose a neighboring correlation-

aware noise model for sRGB real noise generation. Our
proposed method effectively bridges the gap between syn-
thetic noise and real noise by explicitly modeling the
signal dependency and neighboring correlation of real
noise. The experimental results demonstrate the pro-
posed noise model achieves superior performance on both
real noise synthesis and downstream real image denoising
tasks.
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