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Figure 1. As the preview of the movie, trailers are selected by professionals to grab an audience’s attention.However, trailers are usually
composed with shots sparsely selected from movies to avoid spoilers, and the audience cannot get complete highlight information.Some
trailer clips convey the artistic style of the film only and lack movie storylines, disturbing the audience’s impressions.In addition, different
audiences may be interested in different styles of clips, which makes it challenging to learn highlights from them.

Abstract
Movie highlights stand out of the screenplay for efficient

browsing and play a crucial role on social media platforms.
Based on existing efforts, this work has two observations:
(1) For different annotators, labeling highlight has un-
certainty, which leads to inaccurate and time-consuming
annotations. (2) Besides previous supervised or unsuper-
vised settings, some existing video corpora can be useful,
e.g., trailers, but they are often noisy and incomplete to
cover the full highlights. In this work, we study a more
practical and promising setting, i.e., reformulating high-
light detection as “learning with noisy labels”. This setting
does not require time-consuming manual annotations and
can fully utilize existing abundant video corpora. First,
based on movie trailers, we leverage scene segmentation
to obtain complete shots, which are regarded as noisy
labels. Then, we propose a Collaborative noisy Label
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Cleaner (CLC) framework to learn from noisy highlight
moments. CLC consists of two modules: augmented cross-
propagation (ACP) and multi-modality cleaning (MMC).
The former aims to exploit the closely related audio-visual
signals and fuse them to learn unified multi-modal repre-
sentations. The latter aims to achieve cleaner highlight
labels by observing the changes in losses among different
modalities. To verify the effectiveness of CLC, we further
collect a large-scale highlight dataset named MovieLights.
Comprehensive experiments on MovieLights and YouTube
Highlights datasets demonstrate the effectiveness of our
approach. Code has been made available at:https:
/ / github . com / TencentYoutuResearch /
HighlightDetection-CLC.

1. Introduction
With the growing number of new publications of movies

in theaters and streaming media, audiences become even
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harder to choose their favorite one to enjoy for the next two
hours. An effective solution is to watch the movie trailers
before choosing the right movie. This is because trailers
are generally carefully edited by filmmakers and contain
the most prominent clips from the original movies. As a
condensed version of full-length movies, trailers are elab-
orately made with highlight moments to impress the audi-
ences. Consequently, they are high potential in serving as
supervision sources to train automatic video highlight de-
tection algorithms and facilitating the mass production of
derivative works for video creators in online video plat-
forms, e.g., YouTube and TikTok.

Existing video highlight detection (VHD) approaches
are generally trained with annotated key moments of long-
form videos. However, they are not suitable to tackle the
movie highlight detection task by directly learning from
trailers. The edited shots in trailers are not equivalent to
ground-truth highlight annotations in movies. Although a
previous work [43] leverages the officially-released trail-
ers as the weak supervision to train a highlight detector,
the highlighted ness of trailer shots is extremely noisy and
varies with the preference of audiences, as shown in Fig. 1.
On one hand, trailers tend to be purposefully edited to avoid
spoilers, thus missing key moments of the storylines. On
the other hand, some less important moments in the orig-
inal movies are over-emphasized in the trailers because of
some artistic or commercial factors. The subjective nature
of trailer shots makes them noisy for the VHD task, which
is ignored by existing VHD approaches.

To alleviate the issue, we reformulate the highlight de-
tection task as “learning with noisy labels”. Specifically,
we first leverage a scene-segmentation model to obtain the
movie scene boundaries. The clips containing trailers and
clips from the same scenes as the trailers provide more com-
plete storylines. They have a higher probability of being
highlight moments but still contain some noisy moments.
Subsequently, we introduce a framework named Collab-
orative noisy Label Cleaner (CLC) to learn from these
pseudo-noisy labels. The framework firstly enhances the
modality perceptual consistency via the augmented cross-
propagation (ACP) module, which exploits closely related
audio-visual signals during training. In addition, a multi-
modality cleaning (MMC) mechanism is designed to filter
out noisy and incomplete labels.

To support this study and facilitate benchmarking exist-
ing methods in this direction, we construct MovieLights,
a Movie Highlight Detection Dataset. MovieLights con-
tains 174 movies and the highlight moments are all from
officially released trailers. The total length of these videos
is over 370 hours. We conduct extensive experiments on
MovieLights, in which our CLC exhibits promising results.
We also demonstrate that our proposed CLC achieves sig-
nificant performance-boosting over the state-of-the-art on

the public VHD benchmarks.
In summary, our major contributions are as follows:

• We introduce a scene-aware paradigm to learn high-
light moments in movies without any manual annota-
tion. To the best of our knowledge, this is the first time
that highlights detection is regarded as learning with
noisy labels.

• We present an augmented cross-propagation to capture
the interactions across modalities and a consistency
loss to maximize the agreement between the different
modalities.

• We incorporate a multi-modality noisy label cleaner to
tackle label noise, which further improves the robust-
ness of networks to annotation noise.

• Experiments on movie datasets and benchmark
datasets validate the effectiveness of our framework.

2. Related Works
Video Highlight Detection. This task aims to identifying
the interesting moments from untrimmed videos. In recent
years, the videos studied for this task extend from domain-
specific sport videos [41] to general videos such as social
media videos [37], news [35], first-person videos [53] and
vlog [25] . Most of previous works [14,21,53] interpret the
video highlight detection task as a segment-level ranking
problem. They compare pairwise segments from same do-
main video in order to learn a model that assigns highlight
scores to these segments where the highlight segments re-
ceive higher scores than the non-highlight segments. MINI-
Net [16] proposes to cast highlight detection as multiple in-
stance ranking network learning. SL-Module [50] explores
the highlight detection problem through Unsupervised Do-
main Adaptation (UDA) [32]. UMT [29] integrates high-
light detection and moment retrieval into a unified frame-
work and conduct joint optimization. PLD [45] models the
video highlight detection into a pixel-level distinction es-
timation task. In this work, we regard highlight detection
as learning with noisy labels. Joint-VA [2] also consid-
ers video highlight detection from the perspective of noise.
However, it focuses on noise in features, such as videos hav-
ing noisy audio when the microphone constantly has water
splashing against it. We focus on specific annotation noise
in video highlight detection.
Studies on Movies and Trailers. Studies on movies and
trailers have received increased attention in research. [18]
introduces a comprehensive dataset for movie understand-
ing. [4,42] try to model the relationships among the movie
characters. [7, 34, 47] focus on breaking the storylines of
movies into semantically cohesive parts. Besides the stud-
ies on movies, efforts have been made to develop trailer un-
derstanding. [57] presents a movie summarization system
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and composes movie summaries in terms of user experi-
ence evaluation. [9] designs a movie trailer dataset for the
evaluation of video-based recommender systems. [19] is
the first approach that bridges trailers and movies and al-
lows knowledge learned from trailers to be transferred to
full movie analysis. In [43], the visual module and the
temporal analysis module are respectively trained on trail-
ers and movies. Because of the inaccessibility of pub-
lic trailer-related benchmarks, we construct a new dataset
(MovieLights) to detect the highlight moments in movies.
Learning with Noisy Labels. Learning with noisy labels
has been a long-standing problem in computer vision. There
are three kinds of approaches to this problem. One of the
most common strategies for tackling label noise is to cap-
ture the transition probabilities between noisy labels and
clean labels [31,38,48,49,52,56]. Another solution is to de-
sign robust loss functions for model training against noisy
labels [8, 26, 28, 30, 44, 55]. A popular method is to design
a mechanism to select clean samples or give lower weight
for noise samples in the training set to reduce impact of
noise [15, 17, 20, 39, 46, 51]. In this paper, we attempt to
solve the problem by exploiting multi-modalities nature of
movies.

3. Movie Highlight Dataset

In this paper, we aim to detect the highlight moments
in movies by learning from easily accessible trailers as
the noisy supervision. However, the existing movie and
trailer-related benchmarks [3, 9, 18] lack sufficient func-
tions for this task, such as the absence of full-length
movies and ground-truth highlight annotations. Huang et
al. [19] propose to respectively learn visual representa-
tions from trailers and temporal structure from full-length
movies in their constructed Large-Scale Movie and Trailer
Dataset (LSMTD). Wang [43] constructs a Trailer Moment
Detection Dataset (TMDD) for detecting trailer moments
from full-length movies without explicit human annotation.
Both LSMTD and TMDD are not publicly available, while
TMDD only contains three movie genres.

The inaccessibility of public benchmarks motivates us
to construct a new dataset, named Movie Highlight Detec-
tion Dataset (MovieLights). In particular, we purchase a
set of movies from commercial channels and collect their
corresponding trailers from streaming platforms such as
YouTube, covering at least 25 genres to ensure content di-
versity. The movies and trailers are then prepossessed by
shot segmentation [36] and scene segmentation [47], re-
spectively. The resulting shots are a series of consecutive
frames taken by the camera until a physical interruption,
and the scenes are consecutive shots that share a semanti-
cally related theme.

As seen in Fig. 2, to build the ground truth, we con-
duct Faiss [22] to obtain visual similarity matching between
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Figure 2. The labeling process of MovieLights. For the training
set, we introduce a scene-aware paradigm to obtain labels automat-
ically. For the testing set, we collect 2 sets of labels from different
annotators.

Table 1. The basic statistics of MovieLights.

Train Test

Movie Number 144 30
Avg Durations per Movie 2.19h 2.14h

Avg Shot Number per Movie 1852 1940
Avg Scene Number per Movie 207 193

Annotator1 Positive sample Proportion - 0.27
Annotator2 Positive sample Proportion - 0.30

Positive sample proportion 0.35 0.21

trailer frames and movie frames. We locate trailer mo-
ments in the movie and align them with the movie shots
as annotation references. For the testing set, we collect 2
sets of moments for each movie from different workers,
and these moments are annotated by different annotators
independently. To ensure the consistency of results from
different annotations, during the annotation procedure, all
highlight moments must be related to the annotation refer-
ences. Though all selected shots are relevant to the trailers,
as highlight moments can be subjective, they may still vary
in their saliency and time span. We calculate the intersec-
tion between every pair of moments annotated as the ground
truth. However, the vast diversity of movie storylines makes
the annotation challenging as it is time-consuming and re-
quires annotators to be familiar with the movie. To col-
lect a large amount of training data efficiently, we introduce
a scene-aware paradigm to obtain the highlight moments
label without any manual annotation. Specifically, we ex-
pand the shot-level annotation references to the scene span
as positive samples automatically. It will capture the com-
plete scene context of the trailer shot with movie storylines.
Since the trailer shots may contain some less important mo-
ments, the acquired highlight labels are still noisy.

As seen in Tab. 1, MovieLights contains 174 movies
in full length with their official trailers and it is split into
a training set with 144 movies, and a testing set with 30
movies. The content diversity is ensured by the rich domain
informations (more than 25 genres) and abundant segments
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(325k shots and 36k scenes). Most movies in our dataset are
between 90 to 150 minutes, and the length of the annotated
moments varies from tens of seconds to several minutes. As
the acquired positive highlight moments take up 35% in the
training set while the annotated true positives take up 21%
in the testing set, the difference tells the obvious existence
of label noise.

We plan to release the dataset publicly to promote further
study of movie analysis. Due to copyright issues, trailers
and movies will be released in the form of extracted features
in visual and audio modalities.

4. Approach

4.1. Overview

The overall architecture of our Collaborative noisy Label
Cleaner (CLC) framework is illustrated in Fig. 3, which in-
cludes three modules: feature extraction, augmented cross-
propagation (ACP), and multi-modal cleaning (MMC).

In our framework, both the visual and audio modalities
are utilized. For feature extraction and encoding, we first
split the video V into T shots. We characterize the ith shots
by two vectors, i.e., vi for the visual features, and âi for
the audio features, where i = 1, 2, ..., T . These features
are extracted using pre-trained visual [11] and audio feature
extractors [24]. The parameters of the two extractors are
frozen during training.

The ACP and MMC are the core components of our
framework. Since the visual-audio signals in videos are
closely related but do not always contribute to highlight de-
tection, the ACP module exploits the relationship via uni-
modal and cross-modal interactions. Then, it learns unified
multi-modal representations for highlight detection. As the
obtained highlight moments after scene segmentation are
noisy, the MMC module firstly observes the changes in uni-
modal losses, then filters the noisy labels and utilizes the
clean ones for multi-modal supervised learning. Next, we
will introduce details for each component.

4.2. Augmented Cross-Propagation

Cross-Propagation. To predict the highlights, the model
needs to understand the storylines of the movie. Meanwhile,
visual and audio inputs do not always contribute to accurate
prediction. Therefore, temporal modeling and modality in-
teraction are the keys to achieving successful highlight de-
tection. To achieve this goal, we design our ACP module to
fuse the visual-audio modalities. It involves three steps in
total.

First, in order to align the multi-modal features, we in-
troduce h which is fully-connected (FC) layer with ReLU
to the âi such that it has same dimension as the vi.

ai = h(âi). (1)

Movies are composed of consecutive audio-visual clips.
Therefore, to measure the highlighted ness of a given shot,
one must consider the relationship of the shot with its adja-
cent shots. The self-attention mechanism has shown effec-
tiveness in capturing the long-term dependencies in previ-
ous works. We leverage self-attention to capture the tempo-
ral relationship for vi and ai via Eq. 2 and Eq. 3, respec-
tively.

vs
i = softmax

(
(viW

v
1 )(vW

v
2 )

⊤
√
d

)
(vW v

3 ), (2)

asi = softmax

(
(aiW

a
1 )(aW

a
2 )

⊤
√
d

)
(aW a

3 ), (3)

where v = [v1;v2; ...;vT ] and a = [a1;a2; ...;aT ]; the
scaling factor d is equal to the visual/audio feature dimen-
sion and (∗)⊤ denotes the transpose operator; W v and W a

are learnable matrices of two modalities, which are imple-
mented by a linear layer. Uni-modal self-attention can well
capture uni-modal temporal contexts and enhance clip fea-
tures within the same modality.

Despite the above self-attention capturing the clip inter-
actions within the uni-modality, it is critical to capture the
interactions across modalities. To capture semantic asso-
ciations based on multi-modal signals, we introduce cross-
attention to update the features of each modality.

vc
i = softmax

(
(viW

v
4 )(aW

a
4 )

⊤
√
d

)
(aW a

5 ), (4)

aci = softmax

(
(aiW

a
6 )(vW

v
5 )

⊤
√
d

)
(vW v

6 ), (5)

Through cross-attention, the information from two
modalities are connected. However, considering audio-
visual temporal asynchrony, it is necessary to select effec-
tive information from multi-modality. We augment the rel-
evant positive connections and dampen the irrelevant con-
nections. The strength of these connections is measured by
the cross-correlation matrix, computed by,

cv = ReLU

(
va⊤√

d

)
, ca = ReLU

(
av⊤
√
d

)
. (6)

For each modality, the cross-correlation matrix c is used
to re-weight the cross-attention features. Finally, we obtain
updated visual features v̄i and audio features āi by fusion
of the original features, enhanced uni-modal features, and
cross-modal features.

v̄i = f(vi,v
s
i , (

T∑
j=1

cvij) ∗ vc
i ), (7)

āi = f(ai,a
s
i , (

T∑
j=1

caij) ∗ aci ), (8)
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Figure 3. Overview of the proposed CLC. It includes three modules: feature extraction, augmented cross-propagation (ACP), and multi-
modal cleaning (MMC). The visual and audio modalities of the input video are represented as vectors by the feature extraction module.
Then the features are augmented by ACP module to capture semantic associations acorss modalities. MMC is used to filter outs noisy
and incomplete labeling with additional uni-modal branches. During inference, we remove the uni-modal branches and only rely on the
prediction of multi-modal branch. More details of the CLC are shown in Sec. 4.1

where f is the fusion function consisting of FC layers and
ReLU to further project the features.

Clearly, the cross-correlation matrix will assign large
weights to clips that are relevant to the other modality. In
addition, the ReLU activation in Eq. 6 cuts off connections
with negative similarity values and only relevant positive
connections would be preserved. By the above operations,
the original feature will be infused with richer information.
Consistency Loss. Multi-modal inputs help to comprehen-
sively learn by integrating different aspects and boosting
model performance. However, they are not fully exploited
because some modality-specific features may be weakened
in the fusion even when the multi-modal model outperforms
its uni-modal counterpart. In this work, we provide parallel
branches for each modality separately to obtain uni-modal
prediction during training. As seen in Fig. 3, all branches
share the same clip feature extracted from ACP and the fea-
ture is fed into different branches independently. In each
branch, we develop a temporal model G to obtain its pre-
diction score yi of the ith clip being a highlight as follows:

yMM
i = G(v̄i, āi),y

UMv
i = G(v̄i),y

UMa
i = G(āi). (9)

where MM is multi-modal branch; UMv is visual branch
and UMa is audio branch.

However, the gap between the different modalities would
bring instability in the joint optimization process. We em-
ploy the auxiliary consistency loss to guarantee consistency
between the different modalities. Given the multi-modal
features of a clip, they are consistent if they share the same
prediction. Specifically, the consistency loss is defined as

the cross-entropy between the multi-modal prediction prob-
ability yMM

i and uni-modal prediction probability yUM
i :

Lcons = −
(

N∑
i=1

yUMv
i logyMM

i +
N∑
i=1

yUMa
i logyMM

i

)
, (10)

where N is the number of samples in a batch.
This consistency loss not only implicitly enhances uni-

modal information, but also explicitly guides the multi-
modal branch to robuster supervision. The added uni-modal
branches are only utilized in the training phase and are dis-
abled during the inference stage.

4.3. Multi-modal Cleaning

Multi-modality Sample Cleaning. Annotation noise is in-
evitable in VHD due to subjectivity depending on the users
and annotators. In this paper, we argue that highlight detec-
tion should be regarded as Learning with Noisy Labels. To
alleviate the performance drop caused by noisy labels, we
adopt a multi-modality collaborative cleaning to adaptively
filter noisy samples with noisy modality information.

Firstly, we maintain multiple outputs simultaneously
which are predicted by different branches. The uni-modal
branches independently select clean samples based on the
low-loss criterion in which instances with lower losses are
treated clean samples. Contrary to existing noisy sample
selection methods [12, 54], which directly discard high-
loss samples, we keep all samples to train the uni-modal
branches. Then, we update the multi-modal branch using
only clean samples selected by both uni-modal branches
in the back-propagation. The samples for the multi-modal
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branch training are selected dynamically while all samples
participate in the uni-mode branches training. In this way,
MMC obtains information on all samples to avoid the model
defecting to favoring easy samples. More details of MMC
are presented in the supplementary material.

Each branch has its own loss function. For the uni-modal
branch, we employ the cross-entropy loss with all samples
as follows:

LUMv = LUMv
ce = −

N∑
i=1

gi logy
UMv
i , (11)

LUMa = LUMa
ce = −

N∑
i=1

gi logy
UMa
i . (12)

For the multi-modal branch, its cross-entropy loss and
consistency loss are updated with a re-weighting scheme
with clean samples.

LMM
ce = −

N ′∑
i=1

gi logy
MM
i , (13)

LMM
cons = −

N′∑
i=1

yUMv
i logyMM

i +

N′∑
i=1

yUMa
i logyMM

i

 , (14)

LMM = LMM
ce + βLMM

cons , (15)

where gi and y∗
i denote the ground-truth and predicted

probability of the ith clip, respectively; N is the number
of samples in a batch and N ′ is the number of samples se-
leted by MMC; and β are designed to balance different loss
terms.
Post processing. In experiments we observe that noise
makes jitter prediction curves along the temporal di-
mension, which may cause discontinuous thresholds for
highlight selection. Therefore, we apply a median fil-
ter to smooth the prediction curves. Supposing y =
[y1;y2; ...;yT ] is the original curve predicted by the CLC,
the smoothed curve s = [s1; s2; ...; sT ] is given by:

si =

{
Med (yi−k,yi+k) , k < i ≤ T − k

yi, otherwise
(16)

where k is the window size, and “Med” denotes the median
filter.

5. Experiment
5.1. Datasets and Experimental Settings

Datasets. We evaluate our CLC on the constructed dataset
MovieLights and public YouTube Highlights dataset [37].
MovieLights is split into training and testing sets, each con-
taining 144 and 30 movies respectively.

We split movies into shots. The movie features are rep-
resented at shot-level. We use the middle frame of each

shot to extract its visual feature with ViT [10] pre-trained
by CLIP [33]. We align timestamps of audio clips with the
visual shots, and sample the audio clip of each with 16K
Hz sampling rate and 512 windowed signal length. The re-
sulted shot-level audio features are obtained with the PANN
audio network [24] pretrained on AudioSet [13].

The YouTube Highlights contains six distinct categories
with a total 422 videos currently available. Following the
practice of prior efforts, we train a highlight detector for
each category. YouTube Highlights provides two annota-
tions: Harvested Highlight and Mturk Highlight. In the
Harvested annotation, the match label specifies if each clip
is matched in the edited video, where 1 denotes matched,
-1 denotes unmatched and 0 denotes the borderline cases.
In the Mturk annotation, the highlight labels are marked by
multiple turkers of different styles, making it noisier than
the Harvested annotation.

On YouTube Highlights, we use the same protocol and
data preprocessing as [29]. It obtain clip-level visual fea-
tures and optical flow features using I3D [6] pre-trained on
Kinetics400 [23]. It use a PANN audio network [24] pre-
trained on AudioSet [13] to obtain audio features that align
with the visual clips. Frame-level features are average-
pooled within each clip for both audio and visual features
to generate a clip-level feature. Since each feature vector
spans 32 consecutive frames, we follow [29] and consider
the feature vector corresponded to a clip if their overlap is
more than 50%.
Benchmarks. To better inspect the robustness of our
CLC against noisy labels, we also apply label perturbations
in training set of YouTube Highlights while keeping the
ground-truths in the testing set unchanged. YouTube High-
lights has two benchmarks for comparison. 1) Harvested
with matched: we regard the clips labeled with matched
as the highlighted clips and this is the same setting as in
previous works [29, 50]. 2) Harvested with matched and
borderline: clips labeled with matched and borderline are
treated as the highlight moments. In this benchmark, the
training set contains some highlighted clips with weak con-
fidence. We select the clips whose mturk-label is over score
1 as the highlighted clips, which means that at least one
turker selects the clip as a highlight. There are labeled by
different types of annotators between Mturk and the test set
and bring greater noise. We select the clips whose mturk-
label is over score 1 as the highlighted clips, which means
that at least one turker selects the clip as a highlight. Due the
labeling gap between the Mturk annotation in the training
set and the clean testing set, this benchmark is even noisier.
Baselines. We introduce CLC−, the degenerated ver-
sion of CLC, as a baseline. Similar to CLC, CLC− is a
Bi-LSTM-based model and takes the temporal sequence of
shot features as input but lacks the modules of augmented
cross-propagation and multi-modality noisy label cleaner.
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Table 2. Results on MovieLights.

Methods Modality mAP

GIFs [14] V 25.48
SL-Module [50] V 32.34
SL-Module [50] VA 34.27
UMT [29] VA 38.7
CLC− VA 39.65
CLC− w/ SCE [44] VA 39.83
CLC− w/ LS [40] VA 40.49
CLC VA 43.88

Evaluation Metric. We adopt mean Average Preci-
sion (mAP) as the evaluation metric for MovieLights and
YouTube Highlights. Considering that a highlighted mo-
ment in one video is not necessarily more interesting than
non-highlight moments in other videos, we evaluate on each
test video independently and report the averaged results.
Implementation Details. On the MovieLights, we train
our model using SGD, with a learning rate of 0.01. We
train for 50 epochs. Before the cross-attention modules, we
project each modality into a vector of 512 dimension. The
key, query, and value vectors all share the same dimension.
Weight β in Eq. 15 is empirically set to 0.1 and window size
k in Eq. 16 is set to 9.

5.2. Results on MovieLights

On MovieLights, we train our model with the noisy
pseudo labels. To compare with previous state-of-the-art
highlight detection works, we train UMT [29] and SL-
Module [50] using the same protocol and data preprocess-
ing as in CLC. We also compare with Video2GIF [14] using
its off-the-shelf tool1. The upper part of Tab. 2 illustrates the
significant performance gain of CLC.

To demonstrate the advantages of CLC in learning with
noisy labels, we make comparisons with two main-stream
label noise approaches: Label Smoothing [40] and SCE
loss [44]. Specifically, we insert Label Smoothing or
SCE into our CLC− framework to create two baseline
VHD methods to tackle label noise. The bottom part of
Tab. 2 shows that CLC outperforms the two baseline meth-
ods by a notable margin, indicating that our augmented
cross-propagation and multi-modality noisy label cleaner
are more effective than vanilla label noise approaches in
VHD tasks.

5.3. Ablation Study

In this experiment, we analyze the impact of each mod-
ule. The results are summaried in Tab. 3.
Multi-modality Sample Cleaning. We first inspect the
impact of the multi-modality sample filter module because
we are primary concerned with learning with noisy labels

1https://github.com/gyglim/video2gif code

Table 3. Ablation results of MoiveLighgts.

MMSC CP CL PP mAP

× × × × 39.65
✓ × × × 41.69
✓ ✓ × × 42.79
✓ ✓ ✓ × 43.22
✓ ✓ ✓ ✓ 43.88

Table 4. Results on YouTube Highlights.

Methods dog gym. park. ska. ski. surf. Avg.

GIFs [14] 30.8 33.5 54 55.4 32.8 54.1 46.4
LSVM [37] 60.0 41.0 61.0 62.0 36.0 61.0 53.6
HighlightMe [5] 63 73 72 64 52 62 64
MINI-Net [16] 58.2 61.7 70.2 72.2 58.7 60.1 64.4
CHD [1] 60.6 71.1 74.2 49.8 68.2 68.5 65.4
Trail [43] 63.3 82.5 62.3 52.9 74.5 79.3 69.1
SL-Module [50] 70.8 53.2 77.2 72.5 66.1 76.2 69.3
Joint-VA [2] 64.5 71.9 80.8 62 73.2 78.3 71.8
PLD [45] 74.9 70.2 77.9 57.5 70.7 79 73
CO-AV [27] 60.9 66 89 74.1 69 81.1 74.7
UMT [29] 65.9 75.2 81.6 71.8 72.3 82.7 74.9
CLC(ours) 70.5 79.4 83.9 83.5 79.5 83.6 80.1

in VHD. The 2% performance gain from the module over
baseline shows the importance of filtering noisy sample.
Based on the this observation, the subsequent ablation ex-
periments are conducted under the setting of noise filtering.
Cross-Propagation. We then evaluate the impact of the
feature augmentation module. Compared to naive feature
concatenation, the models with augmented features show
superior performance. The results validate that feature aug-
mentation module can better explore the complementary in-
formation from different modalities and suppress the mutual
disturbance of desynchronized uni-modal information.
Consistency Loss. We examine the contribution of the con-
sistency loss. The results demonstrate that the employment
of the auxiliary multi-modal constraint further increases the
model robustness. This consistency loss not only implicitly
enhances uni-modal information, but also explicitly guides
the multi-modal branch to better learning.
Post Processing. We compare the highlight prediction
curves with and without the post processing median filter in
Fig. 4(a,b), which prevents disruptive prediction variation
and improves the overall performance.

5.4. Results on YouTube Highlights

We conduct experiments on the public video highlight
detection benchmarks YouTube Highlights, including six
domain video datasets, to verify the generalization ability
of CLC.

The setting of Harvested Highlight with matched is
consistent with the previous work [29]. As shown in Tab. 4,
CLC achieves state-of-the-art performance on the YouTube
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(a) (b) (c)

Figure 4. (a, b) Comparison of original prediction curve with filtered prediction curve. (c) Results on YouTube Highlights with noisy label.

Table 5. Results on YouTube Highlights with Noisy Label.

Annotation Noise Methods dog gym. park. ska. ski. surf. Avg.

Harvested matched clean UMT [29] 65.90 75.20 81.60 71.80 72.30 82.70 74.90
Harvested matched clean CLC 70.51 79.43 83.85 83.51 79.46 83.56 80.05 (↑ 5.15)
Harvested borderline slight noise UMT [29] 65.93 74.31 81.58 71.84 70.24 82.46 74.39
Harvested borderline slight noise CLC 69.41 80.73 78.50 85.36 81.11 83.16 79.71 (↑ 5.32)
Mturk severe noise UMT [29] 63.78 76.16 75.02 73.62 69.99 81.59 73.36
Mturk severe noise CLC 66.92 80.44 85.92 82.33 78.05 81.72 79.22 (↑ 5.86)

Movie clips Highlights

Figure 5. The highlight moments selected by our CLC from Skyfall and Sherlock Holmes. Top: Bond gives chase to a professional hitman
by car to find a classified hard drive, and then a firefight erupted in the market. Bottom: Holmes and Blackwood are facing off, and then
Blackwood reaches for a weapon to kill Holmes, but accidentally trips off a scaffolding and falls to his death.

Highlights, outperforming the existing multi-modal high-
light detection methods in the average metric across all
categories. Specifically, CLC achieves best performance
in three out of the six categories, while maintaining rea-
sonably competitive performance in the other three cate-
gories. These results support our claim that highlight de-
tection should be regarded as learning with noisy labels.

To quantify how CLC is robust to different levels of label
noise, we inspect the settings of Harvested Highlight with
matched and borderline and Mturk Highlight, which are
perturbed by varying degrees of label noise in YouTube
Highlights.

Tab. 5 exhibits the performances of CLC and UMT [29]
at different noise levels. As the noise level increases, the
VHD task becomes more difficult, but the performance su-
periority of our CLC over UMT becomes even more obvi-
ous. It is illustrated in Fig. 4(c) that compared with the most
recent state-of-the-art UMT, our model can achieve better
performance even when disturbed by severe label noise.

5.5. Visualization

As shown in Fig. 5, we present some visualization exam-
ples of the detected highlight clips in MovieLights by CLC.
The examples clearly shows that the prediction of CLC is
in accordance with user expectation. We will provide more
examples in the supplementary material.

6. Conclusion

In this study, we present Collaborative noisy Label
Cleaner (CLC), a novel framework to handle noisy labels
in video highlight detection. We make use of the aug-
mented cross-propagation module to better enhance net-
work robustness and multi-modality cleaning to achieve
cleaner highlight labels by observing the loss changes of
different modalities. We demonstrate the state-of-the-art
performance of our method with extensive experiments on
MovieLights and YouTube Highlights datasets. In future
work, we are interested in extending the proposed mecha-
nisms to other video-understanding tasks such as scene seg-
mentation and video temporal grounding.
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