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Abstract

The task of Vision-Language Navigation (VLN) is for an
embodied agent to reach the global goal according to the
instruction. Essentially, during navigation, a series of sub-
goals need to be adaptively set and achieved, which is nat-
urally a hierarchical navigation process. However, previ-
ous methods leverage a single-step planning scheme, i.e.,
directly performing navigation action at each step, which
is unsuitable for such a hierarchical navigation process.
In this paper, we propose an Adaptive Zone-aware Hierar-
chical Planner (AZHP) to explicitly divides the navigation
process into two heterogeneous phases, i.e., sub-goal set-
ting via zone partition/selection (high-level action) and sub-
goal executing (low-level action), for hierarchical planning.
Specifically, AZHP asynchronously performs two levels of
action via the designed State-Switcher Module (SSM). For
high-level action, we devise a Scene-aware adaptive Zone
Partition (SZP) method to adaptively divide the whole nav-
igation area into different zones on-the-fly. Then the Goal-
oriented Zone Selection (GZS) method is proposed to select
a proper zone for the current sub-goal. For low-level ac-
tion, the agent conducts navigation-decision multi-steps in
the selected zone. Moreover, we design a Hierarchical RL
(HRL) strategy and auxiliary losses with curriculum learn-
ing to train the AZHP framework, which provides effective
supervision signals for each stage. Extensive experiments
demonstrate the superiority of our proposed method, which
achieves state-of-the-art performance on three VLN bench-
marks (REVERIE, SOON, R2R).

1. Introduction

In recent years, Embodied-AI (E-AI) research has at-
tracted a surge of interest within the computer vision, nat-
ural language processing and robotics communities since
its interdisciplinary nature. The long-term goal of E-AI re-
search is to build intelligent agents that can interact with
humans to complete assigned tasks. In this paper, we fo-
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Figure 1. Given a goal-oriented/semantic-level instruction, (a) pre-
vious methods essentially adopt a singel-step navigation paradigm,
i.e., directly taking an action from the action space according to
the global goal at each step; (b)(c) we instead propose a hierarchi-
cal navigation paradigm, containing high- and low-level actions to
adaptively set and achieve a series of sub-goals.

cus on the Vision-Language Navigation (VLN) task, one of
the most fundamental E-AI topics, where embodied agents
need to navigate in a photorealistic 3D environment (gener-
ally unseen) according to the natural language instruction.

The instruction given to the agent is mainly two types,
i.e., step-by-step instruction (e.g. R2R) and goal-oriented
instruction (e.g. REVERIE and SOON). The latter is more
practical for the home assistant robot since people usually
do not provide fine-grained commands, but also more chal-
lenging. Firstly, the goal-oriented instruction contains po-
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tential hierarchical information. As shown in Figure 1, the
global goal is “bring me the white pillow”, which indicates
the agent needs to complete several potential sub-goals, e.g.,
leaving the current room, finding the bedroom, locating the
white pillow. Thus it is essentially a hierarchical navigation
process, where the high-level process is sub-goal setting
and the low-level process is sub-goal executing. Secondly,
sub-goal means reaching a sub-target in a sub-region, which
requires the agent to divide the scene into several zones and
choose the proper zone for the current sub-goal. Impor-
tantly, the sub-goal depends not only on the instruction, and
an appropriate sub-goal needs to be set based on the agent’s
current state, which means the agent needs to conduct zone
partition and selection adaptively during navigation. For ex-
ample, in Figure 1(b), when the agent is in the living room,
the sub-goal is set as “finding the exit in the exit area (red
zone)”. Thirdly, it is non-trivial to learn such a hierarchical
navigation policy, especially given that there are no expert
demonstrations for teaching the high-level process.

However, the dominant paradigm of current state-of-
the-art VLN methods is essentially a singel-step planning
paradigm as shown in Figure 1(a). It directly takes one step
of navigation action at each time, according to the action
space and the global goal. Such a paradigm does not ex-
plicitly model the hierarchical planning nature of the VLN
task, largely limiting the long-horizon decision ability.

To address the issues, we propose an Adaptive Zone-
aware Hierarchical Planner (AZHP) based on our main idea,
i.e., building a novel hierarchical planning framework for
the VLN task. Firstly, AZHP models the navigation process
as a hierarchical action-making process containing high-
level and low-level actions. During navigation, the high-
level action aims to set sub-goals, and the low-level action
aims to complete the sub-goals accordingly. Specifically,
the high-level action divides the whole scene into differ-
ent zones and selects a proper zone for navigation based
on the current state, e.g., the green zone (hallway) in Fig-
ure 1(c). Then the low-level action is applied to execute
specific navigation decision multi-steps in the selected zone
until reaching the sub-target. Secondly, for the high-level
action, we propose a Scene-aware adaptive Zone Partition
(SZP) method to adaptively divide the global action map
into several zones on-the-fly, according to the position and
observations of each viewpoint. Note that the action map is
a maintained topological map that records the historical tra-
jectory and observations. Also, we design a Goal-oriented
Zone Selection (GZS) method to select a specific zone ac-
cording to the instruction and zone attributes. Besides, a
State-Switcher Module (SSM) is placed to decide whether
the current sub-goal is achieved and switch to the next sub-
goal, supporting the asynchronous scheme. Thirdly, since
there is no direct supervision signal for high-level action
training, we propose a Hierarchical Reinforcement Learn-

ing (HRL) strategy to provide cooperative rewards. Besides,
we design auxiliary losses with a curriculum learning strat-
egy to improve the learning robustness further.

In summary, we make the following contributions. (i)
We propose AZHP, which conducts a hierarchical naviga-
tion paradigm via setting two-level actions, to solve the
long-horizon planning VLN task. To the best of our knowl-
edge, AZHP is the pioneering work investigating hierar-
chical planning strategy for the VLN task. (ii) We devise
SZP and GZS for high-level action, where SZP adaptively
divides scenes into several zones on-the-fly, and GZS se-
lects the corresponding zone for a specific sub-goal. Also,
SSM is designed to support asynchronous switching be-
tween high/low-level actions. (iii) To construct and learn
the hierarchical planning policy, we design an HRL strat-
egy and auxiliary losses with a curriculum learning man-
ner. Superior performance on three datasets demonstrates
the method’s effectiveness. Code is available at: https:
//github.com/chengaopro/AZHP.

2. Related Work

2.1. Vision-Language Navigation

With the development of standard datasets [3, 5, 11, 22,
28,43,61], the Vision-Language Navigation (VLN) task [3,
16, 54] is getting increasingly popular in recent years.

Early VLN solutions utilise RNN to reserve the navi-
gation history [3, 14, 31, 36, 47, 49, 53]. However, these
methods have limited ability to capture long-range depen-
dency as the path length grows. To fulfil such a long-
term memory in navigation, transformer-based models [8,
17, 18, 20, 30, 37, 41, 57, 59] are devised for the VLN task.
VLN-BERT [20] inserts a recurrent state in the transformer
to record navigation history. In HAMT [8], all observa-
tions and actions in history are directly encoded by trans-
formers as different types of tokens. Meanwhile, some
works [2, 7, 10, 13, 19, 51, 61] aim to build navigation topo-
logical maps on-the-fly to provide more complete scenario
representations. DUET [10] dynamically assembles the
topological map during navigation and combines the local-
global decision results. [51] conducts reasoning and de-
signed policy on the global action map. Another line of
works [2, 9, 10, 24–26, 36, 51, 52, 55, 58] focus on the navi-
gation policy learning. In EGP [13], the agent can jump to a
remote viewpoint along the shortest path recorded in topo-
logical maps. Pathdreamer [25] designs a model to generate
features for future viewpoints and reduces exploring costs.

However, none of the work focuses on investigating the
hierarchical nature of VLN task. They essentially lie in a
single-step navigation paradigm that performs one-level ac-
tions step-by-step to achieve the global goal.
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Figure 2. The overall architecture of the designed hierarchical planning scheme, which contains a high-level policy πH(·) and low-level
policy πL(·). Specifically, πH(·) sets a sub-goal gHt via taking action aH

t , i.e., zone partition/selection. Further, πL(·) conducts multistep
navigation actions aL

t within the zone. Besides, SSM aims to decide when to switch the state for the next sub-goal.

2.2. Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) is a popu-
lar framework [45] for long-horizon tasks due to its efficient
exploration [38, 39] and interpretability. In this framework,
the action is decomposed into two hierarchical levels, and
the agent outputs the high/low-level actions sequentially.
Currently, there are two common kinds of HRL, i.e., the op-
tions framework [4, 23, 48] and the goal-conditional frame-
work [29, 38, 40]. The former chooses an option from a
fixed-size option set as the high-level action and selects the
corresponding low-level policy, while the latter outputs a
continuous embedding as the high-level action which serves
as the input to the low-level policy. Our work falls into
the option framework while differs from them by adaptively
adding options during navigation to better handle the grow-
ing action space. Recently, HRL is also explored in navi-
gation tasks [21, 27, 29] with continuous space. Compared
to them, we further demonstrate that the high-level policy,
which explicitly divides action space into zones and chooses
zone-level sub-goals, can better improve performance.

3. Method

Problem Formulation. In the VLN task, an embodied
agent is required to navigate to the target location [3, 22]
or even localise the remote target object [43, 61], with the
hint of a natural language instruction and observed environ-
ment along the path. In the beginning, the agent is spawned
at a random location in a previously unseen environment,
where the navigable area is described as an undirected graph
G with an adjacency matrix E. Note that the agent can only
observe the explored part of G. At each location (view-
point), the agent receives a panoramic view of the surround-
ing environment, which is represented as a set of local views
{oi ∈ R1×Dh |i = 1, · · · , 36}. Each local view contains the
corresponding heading angleh and elevation anglee.

3.1. Hierarchical Planning Overview

The VLN task is intrinsically hierarchical, which con-
sists of a high-level process (i.e. sub-goal setting) and a
low-level process (i.e. sub-goal executing). Note that sub-
goal means reaching a sub-target in a sub-region. Therefore,
we propose an Adaptive Zone-aware Hierarchical Planner
(AZHP) to model such a hierarchical planning process ex-
plicitly. Specifically, AZHP is composed of two policy net-
works as shown in Figure 2, where a high-level policy πH(·)
learns to set sub-goal gH and a low-level policy πL(·) learns
to achieve gH accordingly. During navigation, at time step
t, we maintain a topological graph Gt following [10] to
record the historical trajectory and current observations.

Specifically, at time step t, the high-level action aHt , i.e.,
zone partition/selection, is taken based on the learned high-
level policy network aHt ← πH(aHt |Gt;θ

H), where θH is
the network parameter. After zone partition and selection,
we obtain a selected zone G∗

t , which is a sub-graph of Gt.
Then the low-level action aLt , i.e., navigation decision, is
conducted in multi-steps. aLt is obtained via the low-level
policy: aLt ← πL(aLt |G∗

t ;θ
L), which means the agent just

navigates in G∗
t . In addition, we propose a State-Switcher

Module (SSM) to learn whether gH is achieved and whether
switching to the next sub-goal during navigation.

3.2. Hierarchical Reinforcement Learning

Since there is no expert demonstration for training the
high-level policy πH(·), we propose a hierarchical rein-
forcement learning (HRL) solution (shown in Figure 2) and
auxiliary losses (introduced in Sec 3.5).

Firstly, we design a reward function for the low-level
policy πL(·). During navigation, at step t, the agent ex-
ecutes an action aLt . Then the reward rLt is defined as:
(i) when the distance dist to the target location changes,
rLt = −(dist − dist−1); (ii) when the agent stops at the
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Figure 3. Illustration of the pipeline of AZHP (above) and SZP/GZS (below). Best viewed in colour.

target location, rLt is set to 10, otherwise −10; (iii) pass-
ing the target location without stopping gets a −10 reward.
Then the reward for high-level policy is obtained via accu-
mulation rHt =

∑end
t=start r

L
t , where [start, end] is the time

interval of the current sub-goal.
Then we adopt the Temporal Difference (TD) algorithm

to optimise both policy networks based on rHt and rLt . For
simplicity, we only describe the process of high-level policy
optimisation. Technically, we utilise an MLP network to es-
timate the state-value functions vH(Gt;W

H), where WH

is a learnable parameter. Note that the state-value function
is used to evaluate how good the current state is. Then we
calculate the TD target yHt and TD error δHt via:

yHt = rHt + γ · vH(Gt+1;W
H), (1)

δHt = vH(Gt;W
H)− yHt , (2)

where γ is the factor of discounted return. Finally, πH(·)
and vH(·) can be optimised by gradient descent:

θH ← θH − β · δHt ·
∂

∂θH
ln(πH(aHt |Gt;θ

H)), (3)

WH ←WH − α · δHt ·
∂

∂WH
ln(vH(Gt;W

H)), (4)

where α, β are hyperparameters.

3.3. High-level Policy

To set sub-region for sub-goal adaptively, we propose
a high-level policy network, which contains two parts,
i.e., Scene-aware adaptive Zone Partition (SZP) and Goal-
oriented Zone Selection (GZS).
Scene-aware adaptive Zone Partition (SZP). As shown in
Figure 3, at time step t, we apply an object detector on the

current view images to extract objects’ visual features. Then
we follow [10] to adopt a cross-modal transformer to inte-
grate current view/object visual features and language fea-
tures into the topological graph Gt = (Ht, Et). Gt contains
Nv

t nodes/viewpoints, and Ht ∈ RNv
t ×Dh , Et ∈ RNv

t ×Nv
t

represent the node feature matrix and weighted adjacency
matrix respectively. Note that Et is initialised via the dis-
tance between corresponding viewpoints. Therefore, the
goal of SZP is to perform zone partition over Gt, obtaining
a set of sub-graphs {Gi

t}
Nz

t
i=1, where Nz

t denotes the zone
number. Here, we set Nz

t adaptively during navigation, i.e.,
the larger Gt is, the more zones are divided:

Nz
t = ⌈visit lent × ratio⌉, (5)

where visit lent is the current trajectory length, and
ratio ∈ (0, 1) is the hyperparameter.

Firstly, we treat all nodes as zone centres and aim to pro-
duce the corresponding zone features Zt = {zit}

Nv
t

i=1 for
each of them as shown in Figure 3(a). Considering that
zit should represent the state of its surrounding, we inte-
grate the neighbour features in an adaptive manner. Specif-
ically, we calculate the relation score si,jt of node feature
hj
t ∈ R1×Dh regarding to node feature hi

t ∈ R1×Dh via:

si,jt =

{
σ([hi

tWH , hj
t ]WS) ei,jt < THRd

− inf else
, (6)

where σ(·) is activate function, [, ] is concatenation, WH ∈
RDh×Dh ,WS ∈ R2Dh×1 are learnable parameters. Note
that ei,jt represents the distance between nodes i and j.
Since remote nodes are not considered neighbours, we set a
distance threshold THRd. Hence we obtain a relation score
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matrix St ∈ RNv
t ×Nv

t . For standardisation, we perform the
softmax function on each line of St as St ← softmax(St).
Then we get zone features via Zt = StHt.

Secondly, as shown in Figure 3(b), we grade zone feature
zit via calculating the representive score ϕi

t of node i:

ϕi
t = σ(zitW1 +

∑
(zitW2 − zjtW3)), e

i,j
t < THRd (7)

where W1,W2,W3 ∈ RDh×1 are learnable parameters, and
(zitW2 − zjtW3) indicates the difference clues between two
zones. As we expect Gt to be divided into Nz

t zones, we se-
lect top Nz

t zone centres according to ϕt, where we denote
the index of zone centres as ît. Thus the probability distri-
bution of nodes belonging to zones is Pt = softmaxît

(St) ∈
RNv

t ×Nz
t . Then other nodes are assigned to the selected

zone centre according to Pt and distance, as shown in Fig-
ure 3(c). Therefore, we split Gt into Nz

t zones {Gi
t}

Nz
t

i=1,
where Gi

t = (Hi
t , E

i
t), and Hi

t , Ei
t denote node features

and adjancy matrix of i-th zone respectively.
Goal-oriented Zone Selection (GZS). This part aims to
select a zone G∗

t from {Gi
t}

Nz
t

i=1 for further low-level ac-
tions. Firstly, the instruction is encoded as embeddings
I ∈ RL×Dh by language encoder [10, 46], where L is the
length. Note that we denote the produced sentence-level
feature of instruction as Î ∈ R1×Dh . Basically, we hope
the selected zone for sub-goal is orientated to the instruc-
tion. Secondly, as shown in Figure 3(d), we calculate a
zone scorei for each zone via inner production function:

zone scorei = σ(ÎWI) · σ(zitWZ)
T, (8)

where WI ,WZ ∈ RDh×Dw are learnable parameters. Thus
we select zone G∗

t = (H∗
t , E

∗
t ) with the highest score as

the navigation area for the current sub-goal, where N∗
t is

nodes number, and H∗
t , E

∗
t are nodes features and adjancy

matrix. After the selection is completed, the agent moves
to the selected zone centre along the shortest path and per-
forms subsequent low-level actions within the zone.

3.4. Low-level Policy

Navigation Decision. At time step t, the low-level policy
network πL(·) produces the low-level action aLt (i.e. naviga-
tion decision). Specifically, only viewpoints in the current
zone G∗

t = (H∗
t , E

∗
t ) can be taken as a navigation action.

We adopt multi-layers cross-attention to evaluate each node
feature h∗i

t in G∗
t and pick the viewpoint with highest score

as aLt to navigate to, which is simply formulated as:

aLt = argmax
i∈G∗

t

CrossAttention(h∗i
t , I). (9)

State-Switcher Module (SSM). To determine whether to
switch the current state to the next sub-goal, i.e., applying
another group of high- and low-level actions, we propose an
SSM. Concretely, we evaluate the state at time step t by:

state scoret = sigmoid(σ(ÎW ′
I) · σ(hc

tWS)), (10)

where hc
i ∈ R1×Dh is the feature of current viewpoint, and

W ′
I ,WS ∈ RDh×Dw are learnable parameters. Then, we

set a threshold THRS ∈ [0, 1] for state scoret to decide
whether to switch to the next sub-goal, i.e., re-divide the
whole graph G and re-select G∗ to navigate. If the agent
keeps the current sub-goal, it will continue to navigate in the
current zone via low-level actions and add newly observed
viewpoints to the current zone G∗

t for updating.

3.5. Training Objectives

The training losses consist of two parts: auxiliary losses
for high-level policy and action losses for low-level policy.
Auxiliary Losses. There are no expert demonstrations for
the high-level action, i.e., zone partition and selection. Thus
we train the high-level policy network with both hierarchi-
cal RL (mentioned in Sec 3.2) and auxiliary losses, i.e.,
zone partition loss Lzp and zone selection loss Lzs.

For Lzp, we divide Gt in a heuristic way and apply the
results as zone partition labels. Concretely, we obtain the
indexes īt of Nz

t zone centers via the formulation:

īt = {round(1+(k−0.5)×stept)|k = 1, · · · , Nz
t }, (11)

where round(·) is rounding function, stept = (visit lent−
1)/Nz

t , īkt represents the index of k-th zone center. Such a
process makes the centres evenly distributed. Then the zone
label z̄jt of node j is calculated by nearest neighbor search:
z̄jt = argmini∈īt e

i,j
t . Besides, the probability distribution

of nodes belonging to zones is Pt, where Pt(j, i) is the pos-
sibility of node j belonging to zone i. Lzp is calculated via:

Lzp =

T∑
t=1

Nv
t∑

j=1

− logPt(j, z̄
j
t ). (12)

For Lzs, at time step t, we take ī∗t as the label, where ī∗t
is the index of the zone that GT viewpoint lies in:

Lzs =

T∑
t=1

− log[softmax(zone score)]̄i∗t . (13)

Curriculum Learning Strategy. Since the proposed Lzp

and Lzs are not based on GT labels and only provide heuris-
tic supervision, thus we apply them only at the beginning of
the training phase to improve the initial learning robustness.
After that, we utilise HRL to train the network, aiming to
obtain a more flexible high-level policy.
Action Losses. Following [10,20], we compute the naviga-
tion action loss in the low-level process via:

Lnav = −
T∑

t=1

[log p(āt) + log p(āπt )], (14)
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Methods
Val-Seen Val-Unseen Test-Unseen

Navigation Grounding Navigation Grounding Navigation Grounding
TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL↓ OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑

Random 11.99 8.92 2.74 1.91 1.97 - 10.76 11.93 1.76 1.01 0.96 - 10.34 8.88 2.30 1.44 1.18 -
Human - - - - - - - - - - - - 21.18 86.83 81.51 53.66 77.84 51.44
Seq2Seq [3] 12.88 35.70 29.59 24.01 18.97 14.96 11.07 8.07 4.20 2.84 2.16 1.63 10.89 6.88 3.99 3.09 2.00 1.58
SMNA [35] 7.54 43.29 41.25 39.61 30.07 28.98 9.07 11.28 8.15 6.44 4.54 3.61 9.23 8.39 5.80 4.53 3.10 2.39
RCM [53] 10.70 29.44 23.33 21.82 16.23 15.36 11.98 14.23 9.29 6.97 4.89 3.89 10.60 11.68 7.84 6.67 3.67 3.14
FAST-Mat [43] 16.35 55.17 50.53 45.50 31.97 29.66 45.28 28.20 14.40 7.19 7.84 4.67 39.05 30.63 19.88 11.61 11.28 6.08
CKR [15] 12.16 61.91 57.27 53.57 39.07 - 26.26 31.44 19.14 11.84 11.45 - 22.46 30.40 22.00 14.25 11.60 -
ORIST [42] 10.73 49.12 45.19 42.21 29.87 27.77 10.90 25.02 16.84 15.14 8.52 7.58 11.38 29.20 22.19 18.97 10.68 9.28
VLNBERT [20] 13.44 53.90 51.79 47.96 38.23 35.61 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
AirBERT [17] 15.16 48.98 47.01 42.34 32.75 30.01 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28
SIA [34] 13.63 65.85 61.91 57.08 45.96 42.65 41.53 44.67 31.53 16.28 22.41 11.56 48.61 44.56 30.80 14.85 19.02 9.20
HAMT [8] - - - - - 25.18 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08
DUET [10] 13.86 73.86 71.75 63.94 57.41 51.14 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06
HOP [44] 13.80 54.88 53.76 47.19 38.65 33.85 16.46 36.24 31.78 26.11 18.85 15.73 16.38 33.06 30.17 24.34 17.69 14.34
AZHP (ours) 13.95 75.12 74.14 67.22 59.80 54.20 22.32 53.65 48.31 36.63 34.00 25.79 21.84 55.31 51.57 35.85 32.25 22.44

Table 1. Comparisons on REVERIE dataset. Our AZHP significantly boosts the navigation performance, especially on val-unseen set.

where āt is the teacher action, and āπt is the heuristic action
label, i.e., shortest path from the current node to the target.
Besides, we adopt Log = − log p(ō) as object grounding
loss, where ō is the ground-truth object. Therefore, the total
loss (except for HRL) is obtained as:

L = λ1Lzp + λ2Lzs + λ3Lnav + Log, (15)

where λ1, λ2, λ3 are balance factors.

4. Experiments
4.1. Datasets and Metrics

We conduct extensive experiments on three datasets:
REVERIE [43], SOON [61] and R2R [3].
REVERIE contains 21, 702 instructions, with an average
length of 18. In each panorama, predefined object bounding
boxes are provided. Apart from reaching the correct target,
the agent also needs to select the correct object at the end.
REVERIE contains 85 scenes, where 59 for training and
val-seen, 10 for val-unseen and 16 for test-unseen.
SOON also requires the agent to choose the correct object at
the end of the navigation path. However, predefined object
bounding boxes are not provided, thus we use a detector to
obtain bounding boxes for objects. Besides, the instruction
contains a more detailed description of the goal.
R2R has 10, 800 panoramic views in 90 scenes, with 7, 189
paths sampled from the navigation graphs. Each path is
equipped with several navigation instructions. The dataset
is split into training, val-seen, val-unseen, and test-unseen.
Evaluation Metrics. Following prior works, we report the
standard metrics: success rate (SR); trajectory length (TL);
the success rate weighted by trajectory length (SPL); navi-
gation error (NE); oracle success rate (OSR). Navigation is
marked as successful only if the navigation error is below
3m. The oracle success means that the trajectory passes
through successful areas. Additionally, we adopt RGS and
RGSPL to evaluate object grounding for REVERIE and
SOON. Concretely, RGS (remote grounding success) is the

success rate of finding the correct object. RGSPL represents
the RGS weighted by trajectory length.

4.2. Implementation Details

The training process mainly includes two phases: pre-
training and fine-tuning. For the pre-training phase, we fol-
low [10, 20] to adopt four proxy training tasks. Addition-
ally, we also train our high-level policy network with the
proposed auxiliary losses. Since samples in the pre-training
phase are cut out from the GT trajectories, SZP, GZS and
SSM are trained simultaneously on each single step. Note
that our transformer layers are initialised via the pre-trained
LXMERT [46]. The batch size is 64, and the learning rate is
set to 5e− 5 with a weight decay of 0.01. We pre-train our
model for 100, 000 iterations. The model is trained via an
AdamW optimiser with a learning rate of 1e−5 and a batch
size of 8. The loss weights are λ1 = 0.1, λ2 = 2.5, λ3 = 2
for balancing each loss term to the same order of magnitude.
Besides, ratio and THRD are set to 0.3 and 6 respectively.
The hidden state dimension Dh is 768 and Dw is 128. The
pre-training and fine-tuning phases cost about 12 hours on
a single NVIDIA A100 GPU, respectively.

4.3. Comparison with State-of-the-Art Methods

REVERIE. As shown in Table 1, our proposed AZHP
significantly improves the navigation performance. On
the val-unseen split, compared to the previous state-of-
the-art method DUET [10], AZHP improves OSR and SR
by 2.58% and 1.33%. SPL is increased from 33.73% to
36.63%, RGS raises from 32.15% to 34.00%, and RGSPL
raises from 23.03% to 25.79%. On the test split, AZHP
brings RGS and RGSPL to a promising performance.
SOON. As shown in Table 2, our AZHP beats all previous
methods by a huge margin on main metrics. For example,
AZHP raises OSR by 5.28% and SR by 4.43%, respectively.
Though TL of AZHP is larger, our method still gains an im-
provement of SPL by 4.00%, which indicates that AZHP
explores the environment in a more efficient way, i.e., sig-
nificantly improves the navigation performance with less
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Methods Val-Unseen

TL↓ OSR↑ SR↑ SPL↑ RGSPL↑
GBE [61] 28.96 28.54 19.52 13.34 1.16
DUET [10] 36.20 50.91 36.28 22.58 3.75
AZHP (ours) 39.33 56.19 40.71 26.58 5.53

Table 2. Comparisons on SOON dataset.

Methods Val-Unseen Test-Unseen

TL↓ NE↓ SR↑ SPL↑ TL↓ NE↓ SR↑ SPL↑
Random 9.77 9.23 16 - 9.89 9.79 13 12
Human - - - - 11.85 1.61 86 76

Speak-Follow [14] - 6.62 35 - 14.82 6.62 35 28
RCM+SIL [53] 11.46 6.09 43 - 11.97 6.12 43 38
SM [35] - 5.52 45 32 18.04 5.67 48 35
Regretful [36] - 5.32 50 41 13.69 5.69 48 40
EGP [13] - 5.34 52 41 - - - -
EnvDrop [47] 10.70 5.22 52 48 11.66 5.23 51 47
FedCLIP-ViL [60] - 4.80 56 50 - - - -
PREVALENT [18] 10.19 4.71 58 53 10.51 5.30 54 51
AuxRN [62] - 5.28 55 50 - 5.15 55 51
RelGraph [19] 9.99 4.73 57 53 10.29 4.75 55 52
AP [52] 19.90 4.40 55 40 21.00 4.77 56 37
ORIST [42] 10.90 4.72 57 51 11.31 5.10 57 52
NvEM [1] 11.83 4.27 60 55 12.98 4.37 58 54
SSM [51] 20.70 4.32 62 45 20.40 4.57 61 46
SSM+CCC [50] - - - - - 4.30 62 49
CSAP [56] 12.59 3.72 65 59 13.30 4.06 62 57
VLNBERT [20] 12.01 3.93 63 57 12.35 4.09 63 57
REM [12] 12.44 3.89 64 60 13.11 3.87 65 59
ADAPT [32] 12.21 3.77 64 58 12.99 3.79 65 59
MTVM [33] - 3.73 66 59 - 3.85 65 59
SEvol [6] 12.26 3.99 62 57 13.40 4.13 62 57
HAMT [8] 11.46 2.29 66 61 12.27 3.93 65 60
DUET [10] 13.94 3.31 72 60 14.73 3.65 69 59
HOP [44] 12.27 3.80 64 57 12.68 3.83 64 59
AZHP (ours) 14.05 3.15 72 61 14.95 3.52 71 60

Table 3. Comparisons on R2R dataset.

cost growth on exploration. Additionally, RGSPL is also
lifted up from 3.75% to 5.53%. SOON contains more chal-
lenging data than other datasets, indicating that AZHP is
more capable of coping with complex scenes. Note that the
results of the test split can not be evaluated on the official
competition website currently.
R2R. AZHP also achieves competitive performance on the
R2R dataset compared to previous methods, which is shown
in Table 3. Though the SPL is the same with HAMT [8],
our SR improves 6% on both val-unseen and test, which is
a large margin. Besides, compared to DUET [10], AZHP
also refines the navigation performance. For example, on
the test split, NE is dropped from 3.65m to 3.52m. SR also
rises from 69% to 71%, and SPL is lifted from 59% to 60%.

4.4. Ablation Study

High-level Action. Ablations are conducted on REVERIE.
In Table 4, ‘#1’ introduces high-level action compared to
our Base-Net, where SSM, SZP and GZS are replaced by
the heuristic methods. When the proposed modules are dis-
carded, SSM is replaced by a fixed-step switching strategy,
SZP is replaced by the heuristic partitioning strategy.

SSM. With the SSM added in ‘#2’, SR is raised up from
44.90% to 46.95% obviously on val-unseen as shown in
Table 4. This demonstrates that SSM successfully evalu-
ates the current navigation state, and thus high-level action
is performed more effectively. Besides, ‘#2’ also surpasses
Base-Net confirming the validity of the high-level action.
SZP. Compared with ‘#2’, ‘#3’ gains 2.55% and 1.27% ab-
solute increment of SR and SPL on val-unseen, which con-
firms the effectiveness of the proposed SZP. With a more
reasonable partition over the navigation graph, the improve-
ment in the unseen environment is quite obvious.
GZS. With GZS added in ‘#4’, compared to ‘#3’, SPL is
lifted from 34.13% to 36.63%, which shows that GZS can
pick the appropriate zone under the guide of instruction and
increase the chance for successful navigation. Besides, with
GZS, the effectiveness of SZP and SSM is further reflected.
Zone Number. As shown in Table 5a, zone partition and
selection refine navigation performance by narrowing the
action space. However, an excessive number of zones may
hurt the performance (e.g. ratio = 0.8) since the repre-
sentations of zones may be blurred, which brings additional
difficulties for selection.
Distance Threshold in SZP. Results in Table 5b reveal how
THRd affects the performance, where higher THRd indi-
cates a more sparse graph. When THRd = 6, the perfor-
mance is greatly improved on val-unseen. Such gain con-
firms that sparse graph representation provides more gener-
alizable information. However, there is a trade-off since an
excessively sparse graph (e.g. THRd = 8) otherwise loses
crucial information, reducing performance.

4.5. Qualitative Analysis

To better analyse the effectiveness of SZP, we visualise
two samples in Figure 4 and Figure 5, where viewpoints
are shown on the top-down view of the scene. We colour
viewpoints according to the zone partition and use arrows
to demonstrate the trajectory.

In Figure 4(a), the agent starts at a bathroom and
searches the nearby study room, finding nothing relevant.
Then it returns to the hallway and labels all points as one
single zone. When walking along the hallway (Figure 4(b)),
it dynamically separates the zone into two parts: points
along the hallway and points near the bathroom. It can be
seen that our model learns to adaptively adjust zone par-
tition as it explores, considering geometric distance, func-
tionality and correspondence to the instruction.

As shown in Figure 5, this example is an open scene
with two sets of sofas in a large living room. At first, our
model divides both of them into a single zone (green in Fig-
ure 5(a)). With more detailed observation, our model learns
to splits two sets of sofas into different zones (green and
blue in Figure 5(b)) and successfully finds the target statue
at the end of this large living room. This sample demon-
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Name Low-level High-level SSM SZP GZS Val-Seen Val-Unseen
Action Action TL↓ OSR↑ SR↑ SPL↑ RGS↑ TL↓ OSR↑ SR↑ SPL↑ RGS↑

Base-Net ✓ 16.51 78.57 75.61 66.96 60.15 26.85 50.67 43.62 28.20 28.66
#1 ✓ ✓ 14.61 78.07 75.19 67.57 61.77 24.67 51.15 44.90 31.63 29.93
#2 ✓ ✓ ✓ 14.86 76.81 75.33 67.55 61.70 25.10 53.96 46.95 32.86 31.41
#3 ✓ ✓ ✓ ✓ 14.22 74.07 72.80 65.14 59.31 24.69 56.43 49.50 34.13 33.48
#4 ✓ ✓ ✓ ✓ ✓ 13.95 75.12 74.14 67.22 59.80 22.32 53.65 48.31 36.63 34.00

Table 4. Ablations. The performance is gradually improved with the continuous addition of proposed methods, especially on val-unseen.

ratio
Val-Seen Val-Unseen

TL↓ SR↑ SPL↑ RGS↑ TL↓ SR↑ SPL↑ RGS↑
0 16.51 75.61 66.96 60.15 26.85 43.62 28.20 28.66

0.3 13.95 74.14 67.22 59.80 22.32 48.31 36.63 34.00
0.6 13.70 73.86 66.86 60.08 23.51 50.33 35.54 33.91
0.8 13.93 72.38 65.22 57.41 24.18 48.57 34.65 32.38

(a) Zone Number: We change the zone number via adjusting ratio. Too many
or few zones hurt the performance, where ratio = 0.3 is the best.

THRd
Val-Seen Val-Unseen

TL↓ SR↑ SPL↑ RGS↑ TL↓ SR↑ SPL↑ RGS↑
0 13.41 76.46 70.47 63.25 24.06 46.15 32.32 29.93
3 14.86 75.33 67.55 61.70 25.10 47.95 33.86 31.41
6 13.95 74.14 67.22 59.80 22.32 48.31 36.63 34.00
8 13.77 74.35 67.58 60.58 23.89 47.69 33.69 31.55

(b) Graph Sparsity: When THRd = 0, the graph in SZP is extremely dense,
thus lacks generalisation. Setting THRd = 6 obtains a balanced performance.

Table 5. Ablations. We conduct ablation studies on the key components of our model to further analyse the insights.

Instruction: Go to the dining room and pull out the left 
chair with it's back to the window

(a)

(b)

Figure 4. SZP Visualisation on val-unseen. Best viewed in colour.

strates the flexibility of our SZP algorithm, which can dy-
namically adjust the granularity of the partition according
to the specific environment and instruction.

5. Conclusion

In this paper, we propose AZHP for the VLN task, the
pioneer investigation of the hierarchical navigation policy.
The proposed AZHP divides the navigation process into hi-
erarchical high-level and low-level actions. For the high-
level, we devise SZP to adaptively divide the topological
map into different zones online and GZS to select the zone
corresponding to the sub-goal. Additionally, SSM is de-
signed to fulfil asynchronous switching between high/low-
level actions. To promote the learning process of such a
hierarchical policy, we design an HRL strategy and auxil-

Instruction: Go to the living room with the white fireplace 
and take the middle statue off of top ridge of the fireplace

(a)

(b)

Figure 5. SZP Visualisation on val-unseen.

iary losses, which are performed in a curriculum learning
manner. AZHP achieves state-of-the-art performance on
REVERIE, SOON and R2R datasets. We believe this work
will bring new insights to the VLN task and benefit follow-
ing related works. Also, the code and limitation discussion
are provided in the supplementary materials, and the code
will be public to facilitate future research.
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