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Abstract

Test-time adaptation harnesses test inputs to improve the
accuracy of a model trained on source data when tested
on shifted target data. Most methods update the source
model by (re-)training on each target domain. While re-
training can help, it is sensitive to the amount and order
of the data and the hyperparameters for optimization. We
update the target data instead, and project all test inputs to-
ward the source domain with a generative diffusion model.
Our diffusion-driven adaptation (DDA) method shares its
models for classification and generation across all domains,
training both on source then freezing them for all targets, to
avoid expensive domain-wise re-training. We augment dif-
fusion with image guidance and classifier self-ensembling
to automatically decide how much to adapt. Input adapta-
tion by DDA is more robust than model adaptation across
a variety of corruptions, models, and data regimes on the
ImageNet-C benchmark. With its input-wise updates, DDA
succeeds where model adaptation degrades on too little
data (small batches), on dependent data (correlated orders),
or on mixed data (multiple corruptions).

1. Introduction
Deep networks achieve state-of-the-art performance for

visual recognition [3,8,25,26], but can still falter when there
is a shift between the source data and the target data for test-
ing [38]. Shift can result from corruption [10, 27]; adver-
sarial attack [7]; or natural shifts between simulation and
reality, different locations and times, and other such differ-
ences [17, 36]. To cope with shift, adaptation and robust-
ness techniques update predictions to improve accuracy on
target data. In this work, we consider two fundamental axes
of adaptation: what to adapt—the model or the input—and
how much to adapt—using the update or not. We propose
a test-time input adaptation method driven by a generative
diffusion model to counter shifts due to image corruptions.

* indicates equal contribution, † indicates corresponding author.

The dominant paradigm for adaptation is to train the
model by joint optimization over the source and target [6,13,
44, 53, 54]. However, train-time adaptation faces a crucial
issue: not knowing how the data may differ during testing.
While train-time updates can cope with known shifts, what
if new and different shifts should arise during deployment?
In this case, test-time updates are needed to adapt the model
(1) without the source data and (2) without halting inference.
Source-free adaptation [15,19,20,23,51,55] satisfies (1) by
re-training the model on new targets without access to the
source. Test-time adaptation [46,51,56,58] satisfies (1) and
(2) by iteratively updating the model during inference. Al-
though updating the model can improve robustness, these
updates have their own cost and risk. Model updates may be
too computationally costly, which prevents scaling to many
targets (as each needs its own model), and they may be sen-
sitive to different amounts or orders of target data, which
may result in noisy updates that do not help or even hinder
robustness. In summary, most methods update the source
model, but this does not improve all deployments.

We propose to update the target data instead. Our
diffusion-driven adaptation method, DDA, learns a diffu-
sion model on the source data during training, then projects
inputs from all targets back to the source during testing.
Figure 1 shows how just one source diffusion model en-
ables adaptation on multiple targets. DDA trains a diffusion
model to replace the source data, for source-free adaptation,
and adapts target inputs while making predictions, for test-
time adaptation. Figure 2 shows how DDA adapts the input
then applies the source classifier without model updates.

Our experiments compare and contrast input and model
updates on robustness to corruptions. For input updates,
we evaluate and ablate our DDA and compare it to Diff-
Pure [30], the state-of-the-art in diffusion for adversarial
defense. For model updates, we evaluate entropy mini-
mization methods (Tent [56] and MEMO [58]), the state-
of-the-art for online and episodic test-time updates, and
BUFR [5], the state-of-the-art for source-free offline up-
dates. DDA achieves higher robustness than DiffPure and
MEMO across ImageNet-C and helps where Tent degrades
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Figure 1. One diffusion model can adapt inputs from new and multiple targets during testing. Our adaptation method, DDA, projects
inputs from all target domains to the source domain by a generative diffusion model. Having trained on the source data alone, our source
diffusion model for generation and source classification model for recognition do not need any updating, and therefore scale to multiple
target domains without potentially expensive and sensitive re-training optimization.

due to limited, ordered, or mixed data. DDA is model-
agnostic, by adapting the input, and improves across stan-
dard (ResNet-50) and state-of-the-art convolutional (Con-
vNeXt [26]) and attentional (Swin Transformer [25]) archi-
tectures without re-tuning.

Our contributions:

• We propose DDA as the first diffusion-based method for
test-time adaptation to corruption and include a novel self-
ensembling scheme to choose how much to adapt.

• We identify and empirically confirm weak points for on-
line model updates—small batches, ordered data, and
mixed targets—and highlight how input updates address
these natural but currently challenging regimes.

• We experiment on the ImageNet-C benchmark to show
that DDA improves over existing test-time adaptation
methods across corruptions, models, and data regimes.

2. Related Work

Model Adaptation updates the source model on tar-
get data to improve accuracy. We focus on source-free
adaptation—not needing the source while adapting—and on
test-time adaptation—making predictions while adapting—
because DDA is a source-free and test-time method.

Source-free adaptation [19, 20, 23, 51] makes it possi-
ble to respect practical deployment constraints on compu-
tation, bandwidth, and privacy. Nevertheless, most meth-
ods involve a certain amount of complexity and compu-
tation by altering training [4, 19, 20, 23, 51] and interrupt
testing by re-training their model(s) offline on each tar-
get [5, 19, 20, 23, 33]. DDA is source-free, as it replaces
the source data with source diffusion modeling. However,
it differs by updating the data rather than the model(s). Fur-

thermore, it does not alter the training of the classifier, as the
diffusion model is trained on its own. By keeping its models
fixed, DDA handles multiple targets without halting testing
for model re-training, as source-free model adaptation does.

Test-time adaptation [31, 32, 46, 51, 52, 56, 59, 61] simul-
taneously updates and predicts. Such test-time model up-
dates can be sensitive to their optimization hyperparameters
along with the size, order, and diversity of the test data. On
the contrary, DDA updates the data, which makes it indepen-
dent across inputs, and thereby invariant to batches, orders,
or mixtures of the test data. DDA can even adapt to a sin-
gle test input, without augmentation, unlike test-time model
adaptation.

Input Adaptation translates data between source and
target. DDA adapts the input from target to source by test-
time diffusion. Prior methods adapt during testing, but dif-
fer in their purpose and technique, or adapt during training,
but cannot handle new target domains during testing.

During testing, translation from source to target enables
the use of a source-only model. DiffPure [30] is the clos-
est method to DDA because it applies diffusion to defense
against the adversarial shift. However, DiffPure and DDA
differ in their settings of adversarial and natural shift re-
spectively, and as a result differ in their techniques. DDA
differs in its conditioning of the diffusion updates and its
self-ensembling of predictions before and after adaptation.

During training, translation from source to target pro-
vides additional data or auxiliary losses. Train-time trans-
lation includes style transfer [21,37,39,57], conditional im-
age synthesis [13,14,16,34,35,40,62], or adversarial gener-
ation [42] for robustness to shift. CyCADA [13] adapts by
translating between source and target via generation with
CycleGAN [62]. While CyCADA and DDA are generative,
CyCADA needs paired source and target data for training,
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and cannot adapt to multiple targets during testing. DDA
only trains one model on source to adapt to multiple targets.

Diffusion Modeling Diffusion [29, 41, 41, 47–50] is a
strong, recent approach to generative modeling that samples
by iteratively refining the input. In essence, diffusion learns
to “reverse” noise to generate an image by gradient updates
w.r.t. the input. The type of noise matters, and standard
diffusion relies on Gaussian noise. In this work, we inves-
tigate how a strong diffusion model can project corrupted
target data toward the source data distribution, even on cor-
ruptions that are highly non-Gaussian. We apply the denois-
ing diffusion probabilistic model (DDPM) [11] in this new
role of diffusion-driven adaptation. Guided diffusion mod-
els improve generation by optimization conditioned on class
labels [2, 12], text [24, 28], and images [1], but test-time
adaptation denies the data needed for their use as-is. DDA
improves on the straightforward application of diffusion to
achieve higher robustness to corruption during testing.

3. Diffusion-Driven Adaptation to Corruption

We propose diffusion-driven adaptation (DDA) to adopt
a diffusion model to counter shifts due to input corruption.
During training, we train a generation model (the diffusion
model) with the source data, and train a recognition model
(the classifier) with the source data and its labels. During in-
ference, taking an example from the target domain as input,
the diffusion model projects it back to the source domain,
and then the classifier makes a prediction on the projected
image. Figure 2 illustrates the projection and prediction
steps of DDA inference.

Our DDA approach does not need any target data dur-
ing training, and is able to accept arbitrary unknown tar-
get inputs during testing. Notably, this enables inference
on a single image from the target domain. In contrast, pre-
vious model adaptation approaches, such as Tent [56] and
BUFR [5], degrade on too little data (small batches), on de-
pendent data (non-random order), or on mixed data (multi-
ple corruptions). See Sec. 4.3 for our examination of these
data regimes. In this way, DDA addresses practical deploy-
ments that are not already handled by model adaptation.

3.1. Background: Diffusion for Image Generation

Diffusion models have recently achieved state-of-the-art
image generation by iteratively refining noise into samples
from the data distribution. Given an image sampled from
the real data distribution x0 ∼ q(x0), the forward diffu-
sion process defines a fixed Markov chain, to gradually add
Gaussian noise to the image x0 over T timesteps, producing
a sequence of noised images x1, x2, · · · , xT . Mathemati-

cally, the forward process is defined as

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1),

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
,

(1)

where the sequence, β1, ..., βT , is a fixed variance schedule
to control the step sizes of the noise.

We can further sample xt from x0 in a closed form,

q(xt|x0) :=
√
ᾱtx0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, 1), (2)

where αt := 1− βt and αt :=
∏t

s=1 αs.
On the other hand, given the Gaussian noise sampled

from the distribution XT ∼ N (0, I), the reverse diffusion
process iteratively removes the noise to generate an image
in T timesteps. The reverse process is formulated as a
Markov chain with Gaussian transitions:

p(x0:T ) := p(xT )

T∏
t=1

p(xt−1|xt),

pθ (xt−1 | xt) := N
(
xt−1;µθ (xt, t) , σ

2
t (xt, t) I

)
.

(3)

Denoising diffusion probabilistic models (DDPM) [11]
set σt (xt, t) = σtI to time-dependent constants. µθ is
parameterized by a linear combination of xt and ϵθ(xt, t),
where ϵθ(xt, t) is a function that predicts the noise. The
parameters of µθ (xt, t) are optimized by the variational
bound on the negative log-likelihood E[− log pθ(x0)]. With
this parameterization and following DDPM [11], the train-
ing loss Lsimple simplifies to the mean-squared error be-
tween the actual noise ϵ ∼ N (0, I) in xt and the predicted
noise

Lsimple := ||ϵθ(xt, t)− ϵ||2. (4)

Since their loss derives from a bound on the negative log-
likelihood E[− log pθ(x0)], diffusion models are optimized
to learn a generative prior of the training data.

3.2. Diffusion for Input Adaptation

We now detail our diffusion-driven adaptation method.
A diffusion model is trained on the source domain to learn a
generative prior of the input distribution for a source classi-
fier. Once trained, it can be applied to project single/multi-
target domain data to the source domain, by running the
forward process followed by the reverse process.

Given an input image x0 from the target domain and an
unconditional diffusion model trained on the source domain,
we first run the forward process (Eqn. 2, the green arrow
in Fig. 2) of the diffusion model, i.e., perturb the image
with Gaussian noise. We denote the image sequence de-
rived by N forward steps as x0, x1, · · · , xN , where N is a
hyper-parameter (“diffusion range”) controlling the amount
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Figure 2. DDA projects target inputs back to the source domain. Adapting the input during testing enables direct use of the source
classifier without model adaptation. The projection adds noise (forward diffusion, green arrow) then iteratively updates the input (reverse
diffusion, red arrow) with conditioning on the original input (guidance, purple arrow). For reliability, we ensemble predictions with and
without adaptation depending on their confidence.

Algorithm 1 Diffusion-Driven Adaptation

1: Input: Reference image x0

2: Output: Generated image xg
0

3: N : diffusion range, ϕD(·) : low-pass filter of scale D
4: Sample xN ∼ q (xN | x0) ▷ perturb input
5: xg

N ← xN

6: for t← N . . . 1 do
7: x̂g

t−1 ∼ pθ
(
xg
t−1 | x

g
t

)
▷ unconditional proposal

8: x̂g
0 ←

√
1
ᾱt
xg
t −

√
1
ᾱt
− 1ϵθ(x

g
t , t)

9: xg
t−1 ← x̂g

t−1 −w∇xt
∥ϕD (x0)− ϕD (x̂g

0)∥2
10: end for
11: return xg

0

of noise added to the input image. Then the reverse process
(Eqn. 3, the red dotted arrow in Fig. 2) starts with the noised
image xN , then removes noise for N steps to generate the
denoised image sequence xg

N−1, x
g
N−2, · · · , x

g
0. Since the

diffusion model has learned a generative prior of the source
domain, the generated image xg

0 should be more likely un-
der the distribution of the source data.

However, we notice a trade-off between preserving
classes while translating domains when choosing different
diffusion ranges N . If N is too large and too much noise
is added to the image, the diffusion model will not be able
to preserve the class information in the input image. On
the contrary, if N is too small and too little noise is added,
there are not enough diffusion steps to project images from
the target to the source. Our goal is to translate the domain
from target to source, while preserving the class information
as much as possible. Unfortunately, class and domain infor-
mation are commonly entangled with each other, making it
difficult to find a trade-off for sufficient domain translation
and class preservation.

To address this trade-off, we provide structural guidance
during the reverse process. We design an iterative latent re-
finement step (denoted by the purple dotted arrow in Fig. 2)
conditioned on the input image in the reverse process, so
that the image structure and class information can be pre-
served when translating images across domains.

Inspired by ILVR [1], we add a linear low-pass filter im-
plemented by ϕD(·), a sequence of downsampling and up-
sampling operations with a scale factor of D, to capture the
image-level structure. We iteratively update the diffusion
sample xg

t to reduce the structural difference of generated
sample as measured by D.

At each step of reverse process, we can obtain an esti-
mate of x0, x̂g

0, from the noisy image at the current step xg
t .

x̂g
0 =

√
1

ᾱt
xg
t −

√
1

ᾱt
− 1ϵθ(x

g
t , t). (5)

Therefore, we can avoid conflicting with the diffusion up-
date by using the direction of similarity between the refer-
ence image x0 and x̂g

0, not the one between xt and xg
t . At

each step t in the reverse process, we force xg
t to move in

the direction that decreases the distance between ϕD(x0)
and ϕD(x̂g

0):

xg
t−1 = x̂g

t−1 −w∇xt
∥ϕD (x0)− ϕD (x̂g

0)∥2 , (6)

with a scaling hyperparameter w to control the step size of
guidance. For simplicity, we neglect the difference between
t and t − 1 and update x̂g

t−1 based on xg
t ’s gradient, and

spare an extra reverse step.
In summary, we first perturb the input image from the

target domain with noise in the forward process of the dif-
fusion model, and then in the reverse process, we adapt the
input with iterative guidance to generate an image that is
more like source data without altering the class information
too much. Algorithm 1 outlines the projection of target data
back to the source by diffusion.

3.3. Self-Ensembling Before & After Adaptation

Adapting target inputs back to the source by diffusion
helps our source-trained recognition model to make more
reliable predictions. In most cases, diffusion generates an
image that improves accuracy, because it has preserved the
class information while projecting out the target shift (at
least partially). However, the diffusion model is not perfect,
and can sometimes generate an image that is less recogniz-
able to the classifier than the original target input.
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Motivated by this possibility, we propose a self-
ensembling scheme to aggregate the prediction results from
the original and adapted inputs. Since we have the test in-
put x0 and adapted input xg

0 from diffusion, we can run
the classification model on both images. We make the fi-
nal prediction based on the average confidence of both, i.e.,
argmaxc

1
2 (pc + pgc), where c ∈ {1, . . . , C}, and the con-

fidence of the C categories is p ∈ RC and pg ∈ RC .
This self-ensembling scheme enables the automatic se-

lection of how much to weigh the original and adapted in-
puts to further increase robustness.

4. Experiments
4.1. Setup

We summarize the data, settings, adaptation methods,
and classification models studied in our experiments. Full
implementation detail is provided by the code in the sup-
plementary material and the documentation of hyperparam-
eters in the Appendix.

Datasets ImageNet-C (IN-C) [10] and ImageNet-C (IN-
C̄) [27] are standard benchmarks for robust large-scale im-
age classification. They consist of synthetic but natural cor-
ruptions (noise, blur, digital artifacts, and different weather
conditions) applied to the ImageNet [43] validation set of
50,000 images. IN-C has 15 corruption types at 5 severity
levels. IN-C has 10 more corruption types, selected for their
dissimilarity to IN-C, at 5 severity levels. We measure ro-
bustness as the top-1 accuracy of predictions on the most
severe corruptions (level 5) on IN-C and IN-C. We evaluate
DDA with the same hyperparameters across each dataset ex-
cept as noted for ablation and analysis.

Adaptation Settings We consider two settings with more
and less knowledge of the target domains. Independent
adaptation is the standard setting for robustness experiments
on ImageNet-C, where adaptation and evaluation are done
independently for each corruption type. Joint adaptation is
a more realistic and difficult setting, where adaptation and
evaluation are done jointly over all corruptions by combin-
ing their data. Experimenting with both settings allows stan-
dardized comparison with existing work and exploration of
adaptation without knowledge of target domain boundaries.

Methods We compare DDA to an ablation without
self-ensembling, model adaptation by MEMO [58] and
Tent [56], and input adaptation by the adversarial defense
DiffPure [30]. MEMO adapts to each input by augmenta-
tion and entropy minimization: it minimizes the entropy of
the predictions w.r.t. the model parameters over different
augmentations of the input, then resets. By relying on data

Table 1. DDA is more robust in the episodic setting. Episodic
inference is independent across inputs, and includes the source-
only model without adaptation, model updates by MEMO, and
input updates by DiffPure and DDA (ours). We evaluate accuracy
on standard ImageNet and the corruptions of ImageNet-C.

IN ImageNet-C Accuracy
Model Acc. Source-Only MEMO DiffPure DDA

ResNet-50 76.6 18.7 24.7 16.8 29.7
Swin-T 81.2 33.1 29.5 24.8 40.0
ConvNeXt-T 82.1 39.3 37.8 28.8 44.2
Swin-B 83.4 40.5 37.0 28.9 44.5
ConvNeXt-B 83.9 45.6 45.8 32.7 49.4

augmentation, MEMO avoids trivial solutions to optimiz-
ing so many parameters on a single input. Tent adapts on
batches of inputs by updating a small number of statistics
and parameters by entropy minimization, but unlike MEMO
it does not reset, and its updates compound across batches.
DiffPure and DDA rely on the same unconditional diffusion
model [2] but differ in their reverse steps and guidance. Diff-
Pure simply adds a given amount of noise (t = 150) and
then reverses to t = 0.

Classifiers We experiment with multiple classifiers to as-
sess general improvement. We select ResNet-50 [8] as a
standard architecture, plus Swin [25] and ConvNeXt [26]
to evaluate the state-of-the-art in attentional and convolu-
tional architectures. Experimenting with Swin and Con-
vNeXt sharpens our evaluation of adaptation as these archi-
tectures already improve robustness.

4.2. Benchmark Evaluation: Independent Targets

Input updates are more robust than model updates
with episodic adaptation. We begin by evaluating source-
only inference (without adaptation), model adaptation with
MEMO, and input adaptation with DiffPure or our DDA.
Each method is “episodic”, in making independent predic-
tions for each input, for a fair comparison. Table 1 sum-
marizes each source classifier and compares the robustness
of each method. DDA achieves consistently higher robust-
ness than MEMO and DiffPure. On the latest Swin-T and
ConvNeXt-T models DDA still delivers a ∼5 point boost.

DDA consistently improves on IN-C corruption with-
out catastrophic failure. Figure 3 analyzes robustness
across each corruption type of IN-C. DDA is the most ro-
bust overall, although DDA without self-ensembling can im-
prove over the source-only model on most high-frequency
corruptions. As for low-frequency corruptions, our self-
ensembling automatically selects how much to adapt, and
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Table 2. Diffusion vs. Other Corruptions. We measure ro-
bustness to corruption on ImageNet-C, which is designed to differ
from ImageNet-C, by accuracy at maximum severity (level 5).

Method ResNet-50 Swin-T ConvNeXt-T

Source-Only 25.8 44.2 47.2
DiffPure [30] 19.8 28.5 32.1
DDA (ours) 29.4 43.8 46.3

compensates for the current failures of diffusion to avoid
drops on more global corruptions like fog and contrast.

Although DiffPure likewise adapts the input by diffusion,
its specialization to adversarial attacks makes it unsuitable
for input corruptions. Its average accuracy on IN-C is worse
than the accuracy without adaptation. This drop underlines
the need for the particular design choices of DDA that spe-
cialize it to natural shifts like corruptions, which are unlike
the norm-bounded attacks DiffPure is designed for.

DDA is not sensitive to small batches or ordered data.
The amount and order of the data for each corruption may
vary in practical settings. For the amount, source-free meth-
ods use the entire test set at once, while test-time methods
may choose different batch sizes. For the order of the target
data, it is commonly shuffled (as done by Tent and other test-
time methods). We evaluate at different batch sizes, with
and without shuffling, to understand the effect of these data
regimes. Figure. 4 plots sensitivity to these factors. DDA,
MEMO, and DiffPure are totally unaffected, being episodic,
but Tent is extremely sensitive. Controlling the amount and
order of data during deployment may not always be possi-
ble, but Tent requires it to ensure improvement.

DDA maintains accuracy on the corruptions of IN-C.
Table 2 compares input adaptation by DiffPure and DDA on
IN-C. These corruption types are more difficult, as they are
designed and selected to differ from natural images and the
corruptions of IN-C. While DDA does not improve robust-
ness in this case, it averts the large drops caused by DiffPure,
which are even larger than its drops on IN-C.

4.3. Challenge Evaluation: Joint Targets

The joint adaptation setting combines the data for all cor-
ruption types to present a new challenge. The amount, order,
and mixture of the data can be varied to complicate adapta-
tion for methods that depend on the batching or ordering of
domains. DDA and MEMO can both address small batches,
ordered data, and mixed domains, because they are episodic
methods, which adapt to each input independently. How-
ever, non-episodic methods like Tent have no such guaran-
tee, because of its cumulative updates across inputs.

Table 3. DDA is reliably more robust when the target data is
limited, ordered, or mixed. Deployment may supply target data
in various ways. To explore these regimes, we vary batch size and
whether or not the data is ordered by class or mixed across corrup-
tion types. We compare episodic adaptation by input updates with
DDA (ours) and by model updates with MEMO against cumula-
tive adaptation with Tent. DDA and MEMO are invariant to these
differences in the data. However, Tent is highly sensitive to batch
size and order, and fails in the more natural data regimes.

Method Mixed
Classes

Mixed
Types

Batch
Size

ResNet-50 Swin-T ConvNeXt-T

Source-Only

N/A N/A

18.7 33.1 39.3
MEMO [58] 24.7 29.5 37.8
DiffPure [30] 16.8 24.8 28.8
DDA (ours) 29.7 40.0 44.2

Tent [56]

7 7 1 / 64 2.2 / 0.4 0.2 / 0.2 0.1 / 1.4
7 3 1 / 64 1.6 / 0.5 0.2 / 0.5 0.3 / 1.6
3 7 1 / 64 3.0 / 7.6 0.1 / 43.3 0.2 / 48.8
3 3 1 / 64 2.3 / 3.9 0.3 / 44.1 0.3 / 51.9

DDA is more robust on joint targets where Tent and
other cumulative updates degrade. Table 3 compares
episodic adaptation by DDA, MEMO, and DiffPure with
cumulative adaptation by Tent in the joint setting. The re-
ported results are an average under multiple experiments to
avoid randomness though we find that there is almost no
difference among different seeds.

While the episodic methods are all invariant to the joint
setting, this is not the case for Tent. Tent can adapt the best
when its assumptions of large enough batches and randomly
ordered data are met, but it can otherwise harm robustness.
In contrast, the accuracy of DDA is independent of batch
size and data order, and helps robustness in each setting.

For further comparison to model updates in the joint set-
ting, we evaluate batch normalization (BN) on the target
data [46] and source-free adaptation of feature histograms
by BUFR [5]. We evaluate with ResNet-50, as it is a stan-
dard architecture for IN-C, and the focus of [46]. Although
BN is competitive in the independent setting, sharing the
mean and variance across all corruptions in the joint set-
ting cannot adapt well: it achieves worse than source model
performance at 10.3% accuracy vs. the 29.7% accuracy of
DDA. BUFR does not report results with ImageNet scale,
nor with ResNet-50, and our tuning could not achieve bet-
ter than source-only accuracy.

4.4. Analysis & Ablation of Diffusion Updates

Timing As diffusion models are computationally intense,
we compare the time for model adaptation by MEMO and
input adaptation by DiffPure and DDA. We measure the
wall clock time for single input inference with ResNet-50
on the same hardware (GeForce RTX 2080 Ti) and average
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Figure 3. DDA reliably improves robustness across corruption types. We compare DDA with the source-only model, state-of-the-art
diffusion for adversarial defense (DiffPure), and a simple ablation of DDA (DDA w/o Self-Ensembling (SE)). DDA is the best on average,
strictly improves on DiffPure, and improves on simple diffusion in most cases. Our self-ensembling prevents catastrophic drops (on fog or
contrast, for example).
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Figure 4. DDA is invariant to batch size and data order while Tent is extremely sensitive. To analyze sensivity to the amount and order
of the data we measure the average robustness of independent adaptation across corruption types. DDA does not depend on these factors
and consistently improves on MEMO. Tent fails on class-ordered data without shuffling and degrades at small batch sizes.

over the test set of 50, 000 inputs. Table 4 reports our pro-
filing. While this experimentally verifies the current cost of
diffusion modeling, it underlines the importance of design
choices: DDA is more robust to corruption and faster than
DiffPure. Furthermore, we confirm the potential for speed-
up by applying accelerated sampling with DEIS [60].

Ablation We ablate the different diffusion steps that up-
date the input. As described in Sec. 3.2, our diffusion-
driven adaptation method is composed of a forward pro-
cess, reverse process, and guidance. We experiment with
three settings as follows: (1) We first run the forward pro-
cess (i.e., add Gaussian noise) on the input image and then

Table 4. DDA balances time and robustness. Diffusion by DDA
or DiffPure is slower than entropy minimization by MEMO, but
DDA is the most robust and faster than DiffPure. Accelerating
diffusion by DEIS can trade time and robustness for DDA.

MEMO [58] DiffPure [30] DDA (ours) DDA (+DEIS)

Runtime (s) 0.7 31.7 13.5 2.4
IN-C Acc. (%) 24.7 16.8 29.7 27.0

run the reverse process of the diffusion model to denoise,
without our iterative guidance. This setting is denoted as
“forward+reverse”. (2) We start from a random noise and
run the reverse process of the diffusion model with iterative
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Table 5. Ablation of diffusion updates justifies each step. We
ablate the forward, reverse, and refinement updates of DDA. We
omit self-ensembling to focus on the input updates. Forward adds
noise, reverse denoises by diffusion, and refinement guides the re-
verse updates. DDA is best with all steps, but forward and reverse
or reverse and refinement help on their own.

ResNet-50 Swin-T ConvNeXt-T

(a
)e
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ic forward+reverse 24.5 24.9 25.8
reverse+guidance 17.7 23.0 24.8
DDA (ours) 32.3 38.9 41.2

(b
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r forward+reverse 13.9 14.4 15.0

reverse+guidance 7.6 11.5 13.4
DDA (ours) 12.0 17.6 19.9
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reverse+guidance 20.7 24.0 26.9
DDA (ours) 48.7 53.2 57.3

corrupted forward reverse+ DDA original
image +reverse refinement (both) image

(a
)e

la
st

ic
(b

)g
la

ss
bl

ur
(c

)s
ho

tn
oi

se

Figure 5. Visualization of updates for ablations of diffusion.

guidance, which we denote as “reverse+guidance”. (3) Our
DDA model combines both, i.e., we run the forward pro-
cess on the input image and then run the reverse process of
the diffusion model with iterative guidance. Figure 5 shows
the performance of “forward-reverse”, “reverse-guidance”,
and our DDA approach which includes the forward process,
reverse process, and iterative guidance. The results demon-
strate that each step contributes to the robustness of adapta-
tion.

5. Discussion
DDA mitigates shift by test-time input adaptation with

diffusion modeling. Our experiments on ImageNet-C con-
firm that diffusing target data back to the source domain
improves robustness. In contrast to test-time model adap-
tation, which can struggle with scarce, ordered, and mixed
data, our method is able to reliably boost accuracy in these
regimes. In contrast to source-free model adaptation, which
can require re-training to each target, we are able to freely

scale adaption to multiple targets by keeping our source
models fixed. These practical differences are due to our con-
ceptual shift from model adaptation to input adaptation and
our adoption of diffusion modeling.

Having examined whether to adapt by input updates or
model updates, we expect that reconciling the two will de-
liver more robust generalization than either alone.

Limitations The strengths and weaknesses of input adap-
tation complement those of modal adaptation. Although our
method can adapt to a single target input, it must adapt from
scratch on each input, and so its computation cannot be
amortized across the deployment. In contrast, model adap-
tation by TTT [51] or Tent [56] can update on each batch
while cumulatively adapting the model more and more. Al-
though diffusion can project many targets to the source data,
and does so without expensive model re-training, it can fail
on certain shifts. If these shifts arise gradually, then model
adaptation could gradually update too [18], but our fixed
diffusion model cannot.

We rely on diffusion, and so we are bound to the qual-
ity of generation by diffusion. Diffusion does have its fail-
ure modes, even though our positive results demonstrate its
present use and future potential. In particular, diffusion
models may not only translate domain attributes but other
image content, given their large model capacity. Our use
of image guidance helps avoid this, but at the cost of re-
straining adaptation on certain corruptions. New diffusion
architectures or new guidance techniques specific to adap-
tion could address these shortcomings.

At present, diffusion takes more computation time than
classification, so ongoing work to accelerate diffusion is
needed to reduce inference time [45]. Our design choices
bring DDA to 19× the time as MEMO, while DiffPure takes
∼ 45× the time, but both diffusion methods are still slower
than model updates. Accelerating diffusion sampling by
DEIS [60] reduces the time to <4× but sacrifices∼3 points
of robustness. Further speed-up may require more funda-
mental changes to diffusion sampling and training.

Societal Impact While our work seeks to mitigate dataset
shift, we must nevertheless remain aware of dataset bias.
Because our diffusion model is trained entirely on the
source data, biases in the data may be reflected or ampli-
fied by the learned model. Having learned from biased data,
the diffusion model is then liable to project target data to
whatever biases are present, and may in the process lose im-
portant or sensitive attributes of the target data. While this
is a serious concern, diffusion-driven adaptation at least al-
lows for interpretation and monitoring of the translated im-
ages, since it adapts the input rather than the model. Even
so, making good use of this capacity requires diligence and
more research into automated analyses of generated images.
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