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Abstract

In the context of incremental class learning, deep neu-
ral networks are prone to catastrophic forgetting, where the
accuracy of old classes declines substantially as new knowl-
edge is learned. While recent studies have sought to address
this issue, most approaches suffer from either the stability-
plasticity dilemma or excessive computational and param-
eter requirements. To tackle these challenges, we propose a
novel framework, the Diverse Knowledge Transfer Trans-
former (DKT), which incorporates two knowledge trans-
fer mechanisms that use attention mechanisms to transfer
both task-specific and task-general knowledge to the current
task, along with a duplex classifier to address the stability-
plasticity dilemma. Additionally, we design a loss func-
tion that clusters similar categories and discriminates be-
tween old and new tasks in the feature space. The pro-
posed method requires only a small number of extra param-
eters, which are negligible in comparison to the increas-
ing number of tasks. We perform extensive experiments
on CIFAR100, ImageNet100, and ImageNet1000 datasets,
which demonstrate that our method outperforms other com-
petitive methods and achieves state-of-the-art performance.
Our source code is available at https://github.com/MIV-
XJTU/DKT.

1. Introduction
Deep neural networks have demonstrated notable suc-

cess in the domain of class-fixed classification problems,
wherein the object classes are predetermined and constant
throughout the training and testing phases [12, 13]. Never-
theless, in practical scenarios, these models are frequently
employed in an ever-changing and dynamic environment,
necessitating the incorporation of capabilities to enable
them to learn and identify new classes that arise contin-
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Figure 1. The accuracy and parameters number comparisons
of different methods on CIFAR100 10-step. We report the final
parameter number and accuracy. The height of the green pillars
represents the number of final parameters, the polyline represents
the average accuracy of different methods. We can see that DKT
surpasses state-of-the-art methods with much fewer parameters.

uously. This challenge, commonly known as the Class-
Incremental Learning (CIL) problem [4, 27], is of utmost
significance.

Numerous recent studies [9, 10, 15, 27, 36, 41, 44, 45]
have endeavored to address the challenges associated with
Class-Incremental Learning (CIL). Among these methods,
some [15,27,41,45] have adopted the concept of knowledge
distillation [14], which entails transferring prior knowledge
from a teacher model to a student model, to retain the previ-
ous knowledge encoded in the output logits of the network.
Meanwhile, other methods [10, 36, 44] have employed dy-
namic expandable networks to overcome the CIL issues.
These techniques involve dynamically augmenting the net-
work architectures, such as feature extractors, by utilizing
supplementary parameters and memory. Despite recent ad-
vancements in addressing the CIL problem, several chal-
lenges persist. Firstly, knowledge distillation techniques,
as demonstrated in the literature [14], exhibit significant
feature degradation [44], leading to reduced performance
when transferring knowledge from prior to new tasks. Sec-
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ondly, networks must be stable enough to preserve existing
knowledge [23,26] while simultaneously exhibiting plastic-
ity to acquire new information, creating a stability-plasticity
dilemma [3]. Lastly, dynamic expandable networks de-
mand significant additional parameters, memory storage,
and computational resources, hindering their practical ap-
plication in real-world scenarios.

We introduce a new approach, named the Diverse
Knowledge Transfer Transformer (DKT), to address the
aforementioned challenges. DKT comprises two innovative
attention blocks and a duplex classifier. Firstly, to mitigate
feature degradation and catastrophic forgetting, we propose
two novel attention blocks: the General Knowledge Trans-
fer Attention Block (GKAB) and the Specific Knowledge
Transfer Attention Block (SKAB). These attention blocks
can transfer previous knowledge by utilizing a unified task-
general token and a set of task-specific tokens from a to-
ken pool. For each task, the token pool initializes a new
task-specific token to accumulate task-specific knowledge
and update the unified task-general token storing the gen-
eral knowledge of previous tasks. Unlike other dynamic
expandable networks that use a feature extractor network,
we initialize a task-specific token for each task, which is a
1 × 384 trainable vector. This design reduces the number
of extra parameters and computational requirements signif-
icantly. We demonstrate the relationship between parame-
ters and performance in Figure 1. Notably, DKT achieves
state-of-the-art performance with only 1/10 of the param-
eters of the competitive DER w/o P method [44] and sig-
nificantly outperforms other representative methods. Sec-
ondly, to address the stability-plasticity dilemma, we pro-
pose a duplex classifier comprising a stability classifier to
maintain the model’s stability on old categories and a plas-
ticity classifier to learn the knowledge of new categories.
Additionally, we propose a cluster-separation loss to pull
features belonging to the same categories together and push
features between old and new tasks apart. This encourages
the model to learn diverse task-specific knowledge in differ-
ent tasks.

We conduct extensive experiments on three widely-used
image classification benchmarks, namely CIFAR100, Im-
ageNet100, and ImageNet1000, to showcase the effective-
ness of our proposed method. We compare our DKT with
other state-of-the-art methods, including Dytox [10] and
DER [44]. Dytox is the first attempt to utilize the trans-
former architecture for CIL, while DER uses extra parame-
ters to achieve state-of-the-art performance. Our proposed
approach outperforms Dytox [10] and sets a new state-of-
the-art performance surpassing DER [44]. Our ablation
study confirms the efficacy of our proposed method. In
summary, our key contributions include:

• We propose a novel framework, DKT, that comprises
the GKAB and SKAB attention blocks to facilitate di-

verse knowledge transfer and mitigate catastrophic for-
getting in continual learning scenarios.

• We introduce a duplex classifier that enables a model
to maintain stability in recognizing old categories
while retaining plasticity in learning new categories.

• We develop a cluster-separation loss that clusters fea-
tures belonging to the same categories and discrimi-
nates features between old and new tasks to encourage
the model to learn diverse task-specific knowledge.

• We conduct extensive experiments on three bench-
marks, and our approach achieves a new state-of-the-
art performance with fewer parameters on the CIL
benchmarks.

2. Related Work
First we briefly review how existing incremental learn-

ing solves the catastrophic forgetting problem and then in-
troduce the current situation of the vision transformer.

2.1. Incremental Learning

According to recent studies, the most significant research
interest of incremental learning is solving catastrophic for-
getting. These methods can be divided into rehearsal, archi-
tectural, and regularization methods.

Regularization methods can be divided into two main
sides, designing loss functions to limit the changes in crit-
ical parameters during the learning of new tasks like EWC
[16] and using distillation to prevent the modification of
models like LwF [18].

Architectural methods aimed at addressing catas-
trophic forgetting focus on assigning various model sub-
structures. Traditional methods are fixing some parameters
of the previous model, such as PackNet [21] and CCGN [1].

Rehearsal methods allow the model to store a subset of
old data to replay. iCaRL [27] selects samples using herd-
ing and trains a nearest-class-mean classifier. BiC [41] adds
a bias correction layer to alleviate the unbalanced outputs
between old classes and new classes. WA [45] focuses on
Weight Aligning to balance the outputs. TOPIC [32] and
ERL [7] utilize topology preservation to maintain old-class
knowledge. Recent work [2] proposes cross-space clus-
tering and controlled transfer to cluster the feature. Our
cluster-separation loss is inspired by this work. Usually,
rehearsal methods can get a better performance in continual
learning so recent works [10, 36, 43, 44] try to combine the
rehearsal methods with architectural methods.

Dynamic Expandable Networks mean that the model
creates a new network architecture when facing a new task.
Recently, DER [44] designs a new model which can dynam-
ically expand the representation by adding an extra feature
extractor for every task. Then the features are concatenated
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Figure 2. In task t, we first initialize two tokens (task general token and task specific token) in token pool. Subsequently, the image is
processed through patch embedding and partitioned into multiple patches, which are then input into four SABs to obtain feature map e4.
e4 is concatenated with Gt as the key and value for GKAB. The resulting tensor eG is concatenated with S1 to St as the key and value,
and St is used as query. The output tensor eS is fed into both the stability classifier and plasticity classifier independently. Subsequently,
the outputs from the two classifiers are concatenated into a single output, which serves as the final output. In addition, we present the
GKAB and SAKB structures in the figure, with green, blue, and pink rectangles indicating that they are selected from the token pool. Blue
rectangles denote fixed tokens, while green and pink rectangles indicate trainable tokens during model training.

and fed into a single and expandable classifier. DER [44]
obtains state-of-the-art performance and shows the advan-
tages over the classical methods based on knowledge dis-
tillation [15, 27, 41, 45]. However, this method has three
inevitable defects: (i) In the real situation, the continual
expansion of the feature extractor makes the overhead un-
affordable. (ii) It uses the HAT [29] procedure to prune
the booming parameters, which needs a lot of computing
resources. Although dynamic networks can reach a won-
derful performance, these defects hamper the application in
the real world and further improvement. Our work designs
a novel architecture to meet the challenge.

2.2. Vision Transformers

Transformer [35], firstly is designed for machine trans-
lation tasks. Original transformers have encoder and de-
coder layers and quickly become state-of-the-art models
for most natural language processing tasks [6, 24]. After
NLPs, researchers demonstrated that transformers can per-
form great in computer vision by splitting the image into
small tokens [8]. Based on its potential ability in classifi-
cation, a lot of works developing from ViT [8] have been
designed, including Deit [33], Swin [20], RVT [22] and so
on. These improvements focus on various aspects, includ-

ing designing a better architecture [20, 40], getting more
knowledge from tokens [28,30], modifying the training pro-
cedures [31] and so on. Although ViTs [8,20,22,33,42] get
great success in classification, using ViT [8] for CIL is not
deep and successful as other computer vision fields. Dy-
tox [10] uses task tokens, a divided classifier to alleviate
catastrophic forgetting. Method [38, 39] depend on a large
pre-train model (like ViT-B) with a prompt pool instead of
training from the beginning like our methods.

Different from previous works [10,37,38], we define two
novel tokens instead of a prompt pool to get general knowl-
edge in previous tasks and specific knowledge in every task.
We transfer the knowledge by GKAB and SKAB instead
of classical cross-attention. Besides our model was trained
from scratch, without the need for a large pre-trained model
or a large-scale pre-training dataset. These differences show
our knowledge transfer is novel.

3. Method
3.1. Problem Setting

In a class-incremental learning paradigm, we aim to in-
crementally adapt a unified model to new obtained classes.
For a dataset, we define a set of tasks T1, T2,...,Tt, where Tt
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= {(xi
t, yi

t)}Ni=1 is the t-th task with N samples, and xi
t

and yi
t is the i-th images and its label. Ct is a set of cate-

gories of the training task Tt. There is no overlap between
the categories of different tasks so that ∀i, j, Ci ∩Cj = ∅.
Only a few samples stored in a memory buffer from previ-
ous classes and Ct are available for the current task. The
model is evaluated on a combination of test sets Z1∼t =
Z1 ∪ · · · ∪ Zt and is expected to recognize all the classes
C1∼t = C1 ∪ · · · ∪Ct.

3.2. Overall Framework

Our model consists of two primary components: an en-
coder for feature extraction and a decoder for alleviating
catastrophic forgetting. In task t, given an input xi

t, patch
embedding outputs the tensor e0 ∈RM×D, where M denotes
the number of patches and D represents the dimension. e0 is
fed into Self-Attention Blocks (SABs) to extract the feature.

el
′
= el + SAl(LN(el)),

el+1 = el
′
+MLPl(LN(el

′
)),

(1)

where SA is the Self-Attention layer and MLP is the Multi-
Layer Perceptron, which are both in SAB. We repeat the
operation from l = 0 to l = 3 and the final SAB outputs e4.
e4 is fed into GKAB to mix the task general knowledge and
current knowledge from the task-general token. The output
of the GKAB module, eG ∈RM×D, is then passed to the
SKAB module to acquire task-specific knowledge through
training with task-specific tokens. The SKAB module out-
puts eS ∈R1×D, which is then used as input to both the
stability classifier and plasticity classifier, respectively.

y1:t−1 = s-clf(eS),
yt = p-clf(eS).

(2)

y1:t−1 and yt are merged as a single one y1:t to be the fi-
nal output. Initially, we train the model on the base class
training set with the binary-cross-entropy loss. Then we
incrementally expand the task-specific token in the Token
Pool for each task and update the task-general token. When
a task is completed, we merge the stability classifier and
plasticity classifier as a new stability classifier and create a
new plasticity classifier to adapt to the new task. Moreover,
we utilize a novel loss function, named cluster-separation
loss, to cluster the features belonging to the same classes
and discriminate the features between old and new tasks.
We elaborate on our method in the following subsections.

3.3. Diverse Knowledge Transfer

To mitigate catastrophic forgetting by leveraging knowl-
edge from previous tasks, we introduce two Attention
Blocks to transfer task-general and task-specific knowledge
to the current task.

Token Pool. We introduce a Token Pool to store both
task-specific and task-general tokens. The task-general to-
ken ∈ R1×1×D is employed to capture the general knowl-
edge and is initialized randomly before the first task. In
each task, it is updated to adapt to changes in the task’s
general knowledge. We establish a new task-specific token
∈ R1×1×D for every task to store the specific knowledge
in each task. Assuming training has 10 steps, the pool only
has 4224 parameters in the end and the average parameter
is 2304. Compared with the overall parameters (about 11
million), extra parameters almost can be ignored unlike the
DER [44]. So our method has more practical value than
other dynamic expandable networks [36, 44].

General Knowledge Transfer. To transfer the general
knowledge to the current task, we define a novel atten-
tion block, called GKAB in Figure 2. We initialize a task-
general token G0 in the first task to gain general knowledge,
which is then updated in the new task (G0 −→ G1 −→ · · · ).
GKAB focuses on transferring the general knowledge in
the task-general token to the current task to alleviate catas-
trophic forgetting. For a new task t, we concatenate the fea-
ture map e4 from the encoder with task-general token Gt:

zt = [e4, Gt]. (3)

After concatenation, token zt is used as key and value in
GKAB:

Qi = Wqe4,

Ki = Wkzt,

Vi = Wvzt,

Ai = Softmax(Qi ·KT
i /

√
D/h),

Oi = WoAiVi + bo,

(4)

where D means the embedding dimension. The h is the
number of heads. We utilize the feature map e4 to calculate
self-attention in order to acquire current knowledge. Since
there is a task-general token in zt, ei needs to compute the
cross-attention with Gt to transfer the general knowledge in
the previous tasks to the current task, which forces the at-
tention map to mix the task general knowledge and current
task knowledge. Extra task general knowledge can help the
model to reduce forgetting. The task-general token is train-
able in every task to update the general knowledge. More-
over, the task-general token is only added in key and value,
the knowledge transfer does not affect the self-attention of
ei, which ensures GKAB’s ability to extract the feature.

Specific Knowledge Transfer. SKAB focuses on trans-
ferring the specific knowledge in the previous tasks to re-
duce forgetting. Different from the GKAB, SKAB only use
a new task-specific token St instead of a feature map as the
query. The output eS collects the knowledge from other
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task-specific tokens and the feature map in the current data
stream. For a new task t, we combine the eG with task-
specific tokens = S1...St:

zt
′
= [S1, ..., St, eG]. (5)

After concatenating, tokens zt
′

is fed into SKAB:

Qi = WqSt,

Ki = Wkzt
′
,

Vi = Wvzt
′
,

Ai = Softmax(Qi ·KT
i /

√
d/h),

Oi = WoAiVi + bo.

(6)

Similar to GKAB, d means the embedding dimension and
h is the number of heads. Unlike GKAB, SKAB does not
employ the eG as a query but a new task specific token St.
Query computes the cross-attention with all task-specific to-
kens and feature map eG. Thus the output eS ∈ R1×1×D

mixes all previous task-specific knowledge and current task
knowledge. Building upon this design, SKAB emphasizes
on computing cross-attention to collect current knowledge
and transfer task-specific knowledge. This approach aids
the current model in recollecting previous tasks and miti-
gating the occurrence of catastrophic forgetting. Only one
query guarantees that the eS can be used to classify in clas-
sifiers without extra computing. Furthermore, SKAB has
a linear complexity as opposed to quadratic due to the ab-
sence of self-attention computation for the feature map.

3.4. Duplex Classifier

In order to achieve a balance between model plastic-
ity and stability, we propose a straightforward yet effective
classifier, named the Duplex Classifier, which comprises
both a stability classifier and a plasticity classifier. The sta-
bility classifier is made of a linear projection {Wt−1, bt−1},
with Wt−1 ∈ RC1:t−1×D and bt−1 ∈ RC1:t−1 . and the plas-
ticity classifier is made of a linear projection {Wt, bt}, with
Wt ∈ RCt×D and bt ∈ RCt .

y1:t−1 = σ(Wt−1LN(eS) + bt−1),

yt = σ(WtLN(eS) + bt).
(7)

For a feature eS generated from the SKAB in task t >
0, it is passed through the plasticity classifier and the sta-
bility classifier, respectively. During training, the stability
classifier is fixed by freezing the {Wt−1, bt−1}. Since the
old samples in a memory buffer can be accessed in the cur-
rent task, the stability classifier maintains the performance
in the old categories by limiting the change of feature eS
of the old samples. Besides, the plasticity classifier is train-
able to learn new categories to maintain the plasticity of the

model. Merge the two outputs y1:t−1 and yt as a single one
to be the final output of the model.

To address the bias caused by the unequal number of im-
ages from old and new categories, both the stability classi-
fier and plasticity classifier are trained during fine-tuning.
Upon completion of a task, the plasticity classifier and sta-
bility classifier are combined to create a new stability clas-
sifier. Subsequently, the model generates a new plasticity
classifier for the upcoming task’s classes.

3.5. Loss Function

The loss function consists of three different parts: (1):
the classification loss Lclf , a binary-cross entropy, used
to classify the new data, (2): the distillation loss includes
two portions, the knowledge distillation Lkd [14], (3): the
cluster-separation loss Lcs that we propose. The total loss
is in the following:

L = (1− α)Lclf + αLkd + µLcs. (8)

where α corresponds to the fraction of the number of old
classes over the number of new classes |C1:t−1|

|C1:t| . µ is hyper-
parameters, which is 0.003 for all tasks.

Cluster-Separation loss is inspired by [2]. We extended
the method and emphasized the differences between old and
new tasks to promote task-specific tokens to preserve di-
verse knowledge. The cluster-separation loss aims to pro-
mote feature discrimination between old and new tasks in
order to diversify task-specific knowledge, and cluster fea-
tures that belong to the same classes.

For pairs of samples xi and xj which are randomly se-
lected from the current data, xi is fed into the previous
model and xj is fed into the current model. We define the
feature extractor of the previous model as F t−1 and the cur-
rent model as F t. Aij represents the relationship of xi and
xj .

Lcs =
1

B

B∑
i=1

B∑
j=1

(1− cos(F t(xi), F
t−1(xj))) ∗Aij .

(9)
The relationships between xi and xj can be divided into

two sides. (1): When xi and xj belong to the same classes,
Aij is 4. The model is forced to minimize the cosine dis-
tance between F t(xi) and F t−1(xj) to cluster the features
belonging to the same classes. (2): If xi and xj belong to
different classes, there are two situations: one is that when
xi and xj belong to old tasks and new task respectively, Aij

is -4 to force the model to maximize the cosine distance
between F t(xi) and F t−1(xj) to increase the difference
between old tasks and new task to force the task-specific
knowledge to be more diverse; the other is that when xi and
xj both belong to the new task or old tasks, Aij is -1 to
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5 step 10 step 20 step
Methods #Paras Avg Last Paras Avg Last #Paras Avg Last
LUCIR [15] 11.22 62.77±0.82 46.85 11.22 58.66±0.71 43.39 11.22 58.17±0.30 40.63
iCaRL [27] 11.22 71.14±0.34 59.62 11.22 65.27±1.02 50.74 11.22 61.20±0.83 43.75
BiC [41] 11.22 73.10±0.82 61.53 11.22 68.80±1.20 53.54 11.22 66.48±0.32 47.02
WA [45] 11.22 72.81±0.28 60.18 11.22 69.46±0.29 53.78 11.22 67.33±0.15 47.31
PodNet [9] 11.22 66.70±0.64 51.52 11.22 58.03±1.27 41.05 11.22 53.97±0.85 35.02
Dytox global [10] 10.73 70.98 57.92 10.73 67.33 51.68 10.73 67.30 48.45
DKT 11.03 76.88±0.18 66.46 11.03 75.83±0.38 63.04 11.03 74.08±0.31 58.56

Table 1. Results on CIFAR100 over three different steps setting. We use the global memory accuracy reported by Dytox in erratum-
distributed.md. We report the last parameter number (#Paras), the average accuracy (Avg), the Last accuracy (Last).

Figure 3. Performance evolution on CIFAR100. We report the top-1 accuracy after the learning task. Left is 5 steps on CIFAR100. The
middle is 10 steps in CIFAR100. Right is 20 steps in CIFAR100.

separate features from different categories to improve the
performance of clustering.

4. Experiments
4.1. Experiment Benchmark and Implementation

Datasets. Our experiment is based on three common
incremental learning datasets: CIFAR100 [17], Ima-
geNet100/1000 [5]. CIFAR100: CIFAR100 is a small
dataset, which consists of 100 classes with 500 images per
class for training and 100 images per class for evaluation.
ImageNet100: ImageNet100 is composed of 100 classes
chosen from the ImageNet1000 dataset randomly like pre-
vious methods [10,36,44]. ImageNet1000: ImageNet1000
has more than 1.2 million RGB images for training and
50000 RGB images for validation.

Benchmark. To verify the effectiveness of our methods,
we test our methods on CIFAR100, ImageNet100, and Im-
ageNet1000 without initialization classes. We design dif-
ferent settings like previous works [10, 44, 45]. The stan-

dard continual setting in ImageNet has 10 steps: we add 10
new classes per step in ImageNet100 and 100 new classes
per step in ImageNet1000. In CIFAR100, we train the 100
classes with 5, 10, 20 classes per step. We compare our
model with other methods by top-1 accuracy in CIFAR100
and ImageNet, and top-5 accuracy in ImageNet. We vali-
date our method in three standards. We report the number
of parameters after the final step (#Paras), the last accuracy
after the final step (Last), and the average accuracy (Avg)
that we average the accuracy of each step.

Implementation Details. We have 4 Self-Attention
Blocks, 1 GKAB, 1 SKAB, and 1 Duplex Classifier. For
the model, the embedding dimension is set to 384 and Self-
Attention has 12 attention heads. To compare with other
classical methods which are using ResNet18 [11] as the
backbone, we use the SABs modified from RVT [22] to
satisfy the requirement of parameters. This architecture al-
lows the model to train on a small dataset (like CIFAR100).
The model in CIFAR100 has 11.03M parameters, slightly
less than ResNet18 (11.22M) [11]. Also, the patch size
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ImageNet100 10 steps ImageNet1000 10 steps
top-1 top-5 top-1 top-5

Methods #Paras Avg Last Avg Last #Paras Avg Last Avg Last
iCaRL [27] 11.22 67.11 50.81 83.60 63.80 11.68 38.40 22.70 63.70 44.00

BiC [41] 11.22 65.13 42.33 90.60 84.40 11.68 - - 84.00 73.20

WA [45] 11.22 68.60 54.84 91.00 84.10 11.68 65.67 55.60 86.60 81.10

PodNet [9] [44] 11.22 64.03 45.43 84.06 68.18 11.22 – – – –
DyTox global [10] 11.01 71.85 57.94 90.72 87.98 11.36 68.14 59.75 87.03 82.93
DKT 11.78 78.20 68.66 93.72 88.72 11.81 70.44 58.26 88.46 81.98

Table 2. Results on ImageNet-100 and ImageNet-1000 datasets, learned with 10 steps of respectively 10 and 100 new classes. We show
the top-1 accuracy and top-5 accuracy in Table. We use the global memory accuracy reported by Dytox in erratum-distributed.md. Similar
to CIFAR100, We report the last parameter number (#Paras), the average accuracy (Avg), the Last accuracy (Last).

Figure 4. We report the performance evolution on ImageNet100,
where DKT significantly outperforms other methods. Note that at
the initial step, our model has performance comparable to other
baselines. The performance in the last task shows that our method
achieves a better performance in reducing catastrophic forgetting.

of ImageNet is larger so the parameters are 11.78M and
11.81M, slightly larger than ResNet18 (11.22M). Besides,
we utilize rehearsal methods to store 2000 images as a fixed
memory buffer for CIFAR100 and ImageNet100, and 20000
images for ImageNet1000, to compare with other methods
fairly [9, 10, 15, 27, 41, 45]. More information will be pro-
vided in the Appendix.

4.2. Quantitative Results

CIFAR100. Table 1 summarizes the results of the
CIFAR100-B0 benchmark. Experiments show that our
method far outperforms other classical methods with simi-
lar parameters in all three settings on CIFAR-100. In ’Avg’,
DKT surpasses the second-best methods by up to 3.78%,
6.37% and 6.75% and Dytox [10] which uses the vision
transformer as the backbone by up to 5.90%, 8.50% and
6.75%. In ’Last’, DKT surpasses the second-best meth-
ods by up to 4.93%, 9.50% and 10.11% and Dytox [10]

by up to 8.54%, 11.36% and 10.11%. These Experiments
prove that DKT applies the Vision Transformer to the CIL
problem effectively and gets state-of-the-art performance
compared with previous methods with a similar parameter
number. It is worth noting that as the number of steps in-
creases, which means that reducing the forgetting becomes
more difficult, the margin between DKT and the second-
best methods continuously increases. Moreover, compared
with other methods, the last accuracy has significantly im-
proved simultaneously. The above phenomenons show that
the improvement of performance is achieved by alleviating
catastrophic forgetting, which fully demonstrates the effec-
tiveness of our method on solving CIL problems to alleviate
catastrophic forgetting.

ImageNet. Table 2 summarizes the results of the
ImageNet100/1000-B0 benchmark. On ImageNet100, DKT
achieves an average accuracy of 78.2% and the last ac-
curacy of 68.66% in the top-1 setting, which both signif-
icantly surpass previous models with similar parameters
and obtain the state-of-the-art performance. In compari-
son, the second-best method Dytox [10] achieves an av-
erage accuracy of 71.85% and 57.94%. Our DKT outper-
forms the Dytox [10] with about 6.35% (71.85%−→78.2%)
for the ’Avg’ and 10.72% (57.94%−→68.66%) for the
’Last’. In top-5 setting, DKT outperforms the second-best
method by 2.72% (91.00%−→93.72%) for the ’Avg’ and
0.74% (87.98%−→88.72%) for the ’Last’. Specifically, we
report the performance evolution displayed in the top-1 set-
ting in Fig 4. It is worth noting that in the beginning, DKT
has a similar performance compared to other baselines. As
the tasks increase, DKT still has a satisfactory performance
compared with other methods which fall into serious catas-
trophic forgetting. This phenomenon proves that DKT has
a strong ability to prevent forgetting on ImageNet100.

On ImageNet1000, in ’Avg’ accuracy, DKT achieves
70.44% and outperforms the state-of-the-art method Dytox
in top-1 setting with about 2.30% (68.14%−→70.44%) for
the ’Avg’, and performs similar to Dytox [10] for the ’Last’.
Critically, DKT is significantly above other baselines.
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CIFAR100 ImageNet100 ImageNet1000
5 steps 10 steps 10 steps 10 steps

Methods #Paras Avg #Paras Avg #Paras Avg #Paras Avg
RPSNet [25] 60.60 70.50 56.50 68.60 – – – –
Simple-DER [19] – – – – – – 28.00 66.63
DER w/o P [44] 56.10 76.80 112.27 75.36 112.27 77.18 116.89 68.84
DER [44] – 75.55 – 74.64 – 76.12 – 66.73
DKT 11.03 76.88 11.03 75.83 11.78 78.20 11.81 70.44

Table 3. We compare our model with other methods which contain
much more parameters. Results all come from their respective pa-
pers. DER w/o P is for the DER without pruning. DER needs to set
sensitive hyperparameters and a large amount of computation to
prune the booming parameters. Its reported parameters count was
an average over all steps so we can not get the number of the final
parameters. We can see that DKT surpasses other methods with
much fewer parameters to obtain state-of-the-art performance.

4.3. Comparison with large Parameters Methods

We show the comparison results between DKT and other
methods which have more Parameters in Table 3. We re-
port the final parameters and the average accuracy in the
5 and 10 steps setup on CIFAR100, 10 steps on Ima-
geNet100 and 10 steps on ImageNet1000. Even though
other methods have much more parameters than our model,
we obtained state-of-the-art performance on several bench-
marks. On ImageNet100, DKT outperforms DER w/o P
[44] by 1.02% (77.18%−→78.20% in Avg), which contains
10 ResNet18 in parallel and 112.27M parameters. On CI-
FAR100, DKT both reach the best performance, surpass-
ing DER [44] by 1.33% and 1.29% in the 5 and 10 steps
setup and obtain state-of-the-art performance. On Ima-
geNet1000, DKT obtains state-of-the-art performance and
surpasses DER w/o P [44] and Simple-DER [19] by 1.60%
and 3.81%.

It is worth noting that the parameter number of DER
boosts when tackling a large number of tasks (56.10M
in 5 steps vs 112.27M in 10 steps). Thus DER needs
a large amount of computation and adjusts the com-
plex hyperparameters to prune the boosting parameters.
Since DER reports the average parameter number over
all steps instead of the final parameter number (necessar-
ily much higher). Based on this phenomenon, we have
not reported the parameter number of DER in the table.
Besides, when DER faces complex datasets (like Ima-
geNet1000), the pruning becomes less efficient and more
complex. Pruning leads to more severe accuracy loss in Im-
ageNet1000 (68.84%−→66.73%) compared with other sim-
pler datasets (CIFAR100 and ImageNet100). The aver-
age parameters number doubles while tackling the same
amount of tasks on ImageNet1000 and ImageNet100 (re-
ports 7.67M vs 14.52M). In contrast, DKT can handle
a large number of tasks with only a few extra parame-
ters (+0.004% per step). Moreover, DKT has a better ability
to handle complex datasets and obtains state-of-the-art per-
formance in ImageNet1000.

Baseline GKAB SKAB CS Loss D-Clf Avg Last
✓ 67.20 43.64
✓ ✓ 69.43 47.34
✓ ✓ ✓ 71.70 51.57
✓ ✓ ✓ ✓ 73.85 57.93
✓ ✓ ✓ ✓ ✓ 75.83 63.04

Table 4. Ablations of the different components in DKT. We report
the accuracy in 10 steps on CIFAR100. Baseline combines with
five basic SABs, one cross-attention block, a single classifier and
loss except for cluster-separation loss.

4.4. Ablation Study

To highlight the effectiveness of our contribution points,
we design a series of experiments in Table 4. We divide our
model into a baseline vision transformer model and several
various components. We modify the fifth SAB into GKAB
and add SKAB, Duplex Classifiers (D-Clf), and Cluster-
Separate loss (CS Loss) in turns.

Baseline combines with five basic SABs, a cross atten-
tion block [34], a single classifier, bce loss and kd loss. As
can be seen, the baseline obtains 43.64% accuracy in the
last, which means that the model falls into serious catas-
trophic forgetting.

We modify the fifth SAB into GKAB and add SKAB in
turns, which significantly improves the performance of re-
ducing forgetting. Then, we add cluster-separation Loss to
the model, which significant improvement in performance.
Finally, we add the Duplex Classifier to balance the plastic-
ity and stability of the mode. As you can see we succeeded
in improving the stability of the model without hampering
its plasticity of the model too much.

5. Conclusion
In the paper, we propose DKT, a novel structure con-

sisting of 4 SABs, 1 GKAB, 1 SKAB, and 1 duplex clas-
sifier. GKAB and SKAB transfer the general knowledge
and the specific knowledge in each task to the current train-
ing process to alleviate catastrophic forgetting. To solve the
stability-plasticity dilemma, we design a simple but useful
classifier to reach a better stability-plasticity trade-off. Be-
sides, we define a novel cluster-separation loss to cluster the
features belonging to the same categories and discriminate
the feature between old and new tasks to force the task-
specific knowledge to be more diverse. Extensive experi-
ments on three incremental learning benchmarks show that
our method obtains state-of-the-art performance.

Acknowledgments
This work was funded by the National Key Research

and Development Project of China under Grant No.
2020AAA0105600, and by the National Natural Science
Foundation of China under Grant No. U21B2048 and No.
62006183. Thanks to Huawei’s support.

24243



References
[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone

Calderara, Rita Cucchiara, and Babak Ehteshami Bejnordi.
Conditional channel gated networks for task-aware contin-
ual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3931–
3940, 2020.

[2] Arjun Ashok, KJ Joseph, and Vineeth Balasubramanian.
Class-incremental learning with cross-space clustering and
controlled transfer. arXiv preprint arXiv:2208.03767, 2022.

[3] Gail A Carpenter and Stephen Grossberg. A massively par-
allel architecture for a self-organizing neural pattern recog-
nition machine. Computer vision, graphics, and image pro-
cessing, 37(1):54–115, 1987.

[4] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
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