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Abstract

Encouraged by the effectiveness of encoding temporal
dynamics within the frequency domain, recent human mo-
tion prediction systems prefer to first convert the motion
representation from the original pose space into the fre-
quency space. In this paper, we introduce two closer looks
at effective frequency representation learning for robust mo-
tion prediction and summarize them as: decompose more
and aggregate better. Motivated by these two insights,
we develop two powerful units that factorize the frequency
representation learning task with a novel decomposition-
aggregation two-stage strategy: (1) frequency decompo-
sition unit unweaves multi-view frequency representations
from an input body motion by embedding its frequency fea-
tures into multiple spaces; (2) feature aggregation unit de-
ploys a series of intra-space and inter-space feature aggre-
gation layers to collect comprehensive frequency represen-
tations from these spaces for robust human motion predic-
tion. As evaluated on large-scale datasets, we develop a
strong baseline model for the human motion prediction task
that outperforms state-of-the-art methods by large margins:
8%~12% on Human3.6M, 3%~7% on CMU MoCap, and
7%~10% on 3DPW.

1. Introduction

3D skeleton-based human motion prediction system
forecasts future poses given a past motion. It helps ma-
chines understand human behavior and plan their own re-
sponses, which is crucial in many real-world applications,
including intelligent surveillance [1 1, 40], human-machine
interaction [16, 17] and autonomous driving [18, 32]. The
core challenge behind this task lies in developing a powerful
mapping function that effectively bridges past body motion
to the future [23, 25, 27, 30, 33].

*Corresponding author.
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Figure 1. Diverse frequency distributions of body poses. As for
a human action, the differences in temporal smoothness between
different body joints and motion samples enlarge the representa-
tion gap in its frequency space.

Earlier prediction algorithms tend to extract motion pat-
terns from the original pose space [7, 9, 10, 22, 34, 43].
Due to the subject-specific nature of pose space, their em-
bedding representations intertwine body motion informa-
tion and structure information jointly. In this case, they en-
capsulate an inductive bias on general human stature and
thus suffer from limited robustness against body shape per-
turbation. Inspired by the effectiveness of encoding tem-
poral smoothness in frequency domain, frequency space
encourages human motion prediction systems to focus on
trajectory-related cues [ 1, 42]. As an initial attempt, Mao et
al. [28] propose to convert the motion representation from
the pose space into the frequency space with discrete cosine
transform (DCT). Following this insight, recent methods
widely use DCT as a routine operation in the data prepro-
cessing stage and extract feature embeddings from the sin-
gle frequency space initialized by the DCT [21, 24, 26, 38].
In this context, the frequency features extracted from past
body motions dominate the future motion prediction. A
further investigation into developing a powerful frequency
representation learning framework for robust human motion
prediction remains fundamental yet under-explored.

As sketched in Figure 1, diverse frequency distributions
of body motions lie in intra-sample and inter-sample lev-
els: (1) intra-sample difference. Since the human skeleton
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Figure 2. Network Architecture. we factorize the frequency representation learning into two-stage decomposition-aggregation scheme:
Frequency Decomposition Unit (FDU) extracts multi-view frequency features from an input body motion by embedding its frequency
representations into K spaces; Feature Aggregation Unit (FAU) deploys L intra-space and inter-space feature aggregation layers to collect
comprehensive frequency representations for robust human motion prediction.

is a non-rigid articulated structure, different body joints ex-
hibit different frequency appearances in their motion trajec-
tories; (2) inter-sample difference. Different personal mo-
tion styles in the same activity brings subtle intra-class bias
to different data samples, enlarging the frequency represen-
tation gap between human motion samples. These diverse
frequency distributions make human motion prediction sys-
tems prone to be incapable of governing the input body tra-
jectories with unseen frequency variations. It prompts us to
develop multi-view augmentation learning into a promising
solution for robust human motion prediction. Instead of ex-
tracting features from a single frequency space initialized
by the DCT, we first introduce an input body motion into
multiple frequency spaces to enrich its spectral encoding.
Then, we collect richer multi-view frequency representa-
tions from these spaces for robust human motion prediction.

Specifically, as illustrated in Figure 2, we factorize
the frequency representation learning into two sequen-
tial stages: (1) Frequency Decomposition Unit (FDU) un-
weaves finer frequency representations from an input body
motion by tuning each body joint trajectory with multiple
versatile filters. By embedding the frequency representa-
tion into multiple feature spaces, FDU explores multi-view
frequency representations on input body poses; (2) Feature
Aggregation Unit (FAU) first deploys a series of adaptive
graph filters within each frequency space and then inter-
leaves feature-crossing layers to promote message exchange
between spaces. These intra-space and inter-space informa-
tion aggregations benefit FAU in extracting comprehensive
body features for robust body motion prediction. Integrat-
ing both FDU and FAU components, we reformulate the
frequency representation learning into a novel and powerful
decomposition-aggregation scheme.

The main contributions of this paper are summarized into
the following:

* We propose a frequency decomposition unit (FDU)
that develops multiple versatile filters to embed each
body joint trajectory into multiple frequency spaces.

By exploring multi-view frequency representations on
an input body motion, FDU enriches its encodings in
the spectral domain.

e Pairing with FDU, we design a feature aggregation unit
(FAU) that deploys a series of intra-space and inter-
space feature aggregation layers to extract comprehen-
sive representations from multiple frequency spaces.
By promoting message propagation within and be-
tween different spaces, FAU collects richer multi-view
body features for robust motion prediction.

* Integrating FDU with FAU, we develop a power-
ful motion prediction system that factorizes the fre-
quency representation learning into a decomposition-
aggregation scheme. As verified on three datasets, it
significantly outperforms state-of-the-art methods in
short-term and long-term motion predictions.

2. Related Work
2.1. Human Motion Prediction

Traditional human motion prediction methods adopt
shallow state models, such as Gaussian Processes [39], Hid-
den Markov Models [19], Restricted Boltzmann Machine
[35], to propagate the state of neural cells for pose repre-
sentation learning. Notably, these methods impose strong
assumptions such as Gaussian distribution on the body dy-
namics, suffering from the potential generalization limita-
tion [4, 14]. Recently, since the topology of human skele-
ton is a nature graph, some feed-forward networks intro-
duce graph convolution layers to discover motion patterns
across space and time, such as DMGNN [22], MSR-GCN
[7], STSGCN [34], PGBIG [24], and GAGCN [43]. Moti-
vated by the effectiveness of self-attention mechanism [36]
in long-range dependency modeling, some methods adopt
Transformer-based backbones to encourage wide-range re-
ceptive fields and make distant neighbors reachable, such
as MRT [38], ST-Trans [2], PJP-Trans [6], and POTR [29].
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However, since most of them focus on learning motion pat-
terns from the original and direct pose space, their embed-
ding features intertwine the body joint trajectory cues and
body shape structure cues jointly. In this case, they have
an inductive bias on general human stature and suffer from
limited robustness against body shape perturbation.

2.2. Frequency Representation Learning

Inspired by the effectiveness of encoding temporal
smoothness in the frequency domain, frequency represen-
tation learning purifies trajectory-related information from
body poses and compacting them into a more abstract repre-
sentation [ 1, 3, 20, 41]. As an initial attempt, Mao et al. [28]
propose to convert the motion representation from the origi-
nal pose space into the frequency space with discrete cosine
transform (DCT). Following this insight, recent works tend
to extract features from the frequency space and widely use
DCT as a routine operation in the data preprocessing stage
[6, 8, 12, 21, 24, 38]. However, they focus on learning em-
beddings from the single frequency space initialized by the
DCT. Besides, they rarely rethink to develop a dedicated
and powerful feature encoder for frequency-specific repre-
sentation learning. In this context, a closer look at powerful
feature extraction for robust human motion prediction re-
mains fundamental and under-explored. In this work, we
propose a novel scheme that factorizes frequency represen-
tation learning into a decomposition-aggregation strategy.
We hope it will develop into a strong baseline and inspire
more investigations and explorations in the community.

3. Methodology

In this section, we first introduce a problem formulation
and its related notations for the human motion prediction
task. Then, we briefly analyze the scheme-wise difference
between the conventional frequency representation learning
strategy and ours. Finally, we elaborate on the technical
details of the key components proposed in our scheme.

3.1. Problem Formulation

Human motion prediction system aims at forecasting the
future body poses from given motion history. Mathemat-
ically, let X € RPXT*J denotes an input body motion
sequence at past 71" time steps in the D-dimensional pose
space, where a skeleton at each frame contains J body joints
and here D is 3. Considering X as a set of N body joint
trajectories, x represents the 7-frame motion trajectory of
arbitrary one of NV joints, where x € X and N = J x D.
The main challenge of developing a powerful motion pre-
diction system lies in formulating an effective predictor
Fprea that maps X to future poses X’ in next 7" frames

X" = Fpred(X) to approximate its ground-truth X

3.2. Paradigm Review

Conventional Scheme. Previous attempts on frequency
representation learning for motion prediction tend to extract
the embedding from the single frequency space initialized
by the DCT. Mathematically, the generic formulation they
followed can be summarized as:

Frea(X) = Fiver (Fone(Focr(X))). ()

where Fpcr denotes a DCT operation that converts body
representations from the original pose space into the fre-
quency domain. Fep. denotes feature encoding (e.g., graph
neural networks). Fipcr is an inverse DCT that recovers the
pose space.

Proposed Scheme. In this work, we introduce a novel
scheme that factorizes the frequency representation learning
into a decomposition-aggregation strategy as:

-Fpred(X) == -F.IDCT(-Fenc(Xla ﬁQv e ;XK))

AN - (2)
where X, = Fr. (Foer(X))

In the first decomposition stage, K different filters
(Fr » Fi&) unweave multi-view frequency frequency
representations from an input body motion by embedding
its frequency features into K different spaces. In the fol-
lowing aggregation stage, we propose a powerful encoder
Fenc that extracts comprehensive body features from these
spaces with a serious of intra-space and inter-space infor-
mation aggregations. In the following sections, we intro-
duce these stages in detail.

3.3. Decompose More: Frequency Decomposition Unit

Taking the historical motion X as the input, we first
apply the discrete cosine transform (DCT) along the time
axis to convert its temporal dynamics from the original pose
space into the frequency space as X = Fpcr(X). Accord-
ingly, Fpcr compacts the body joint trajectory x into an
abstract frequency representation X. Instead of extracting
feature embeddings from the single frequency space initial-
ized by the DCT, we propose a frequency decomposition
unit (FDU) to enrich the spectral encoding of a body mo-
tion with introducing X into multiple frequency spaces.

As proven in the digital signal processing theory [5, 31],
the frequency resolution of an input signal affects its spec-
tral appearances, such as temporal smoothness. It inspires
us to explore multi-view representations on body motions
by encoding X within different frequency resolution con-
texts. Furthermore, according to the theoretical analyses on
frequency resolution, its influencing factors lie in two as-
pects: sampling window size, and sampling interval. There-
fore, with different sampling window and interval configu-
rations for different filtered signals, we introduce X into
multiple frequency resolution contexts and encode its multi-
view features.
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Mathematically, as shown in Eq.2, FDU develops K
context-sensitive filters (F, -+ , &) on X and embeds
it into K -view representations (Xl, X27 e ,)/i ). In gen-
eral, each filter Fy), deploys a trainable filtering signal £
on X and performs discrete signal convolution between its
each node frequency feature X and f as:

]:hlt( R 3)

)
where X =f*xx, X € X.

Specially, different F5;; develop the generic filtering for-
mulation in Eq. 3 into different specific instantiations by
choosing different sampling window w and sampling inter-
val i for f. Taking F%, as an example, it embeds X into
X and sampling window and interval of f;, is denoted as
wy, and i, respectively. The specific filtering operation be-
tween f;, € R¥* and X € R at time ¢ is defined as:

Wi

SR+ mip)f(m) (@)

m=1

X (t) = (fe % X)(t) =

As an adaptive filter, the elements of f are learnable , which
can be optimized by the BP algorithm. We provide mul-
tiple choices of window size w and sampling interval ¢ as
w € {wy,wa,...,ww}t, i € {i1,d2,...,47}. Supposing
that there are totally K = W x I configuration combina-
tions of (w, ¢), FDU introduces X into K different resolu-
tion contexts. With deploying an adaptive filter within each
context, FDU unweaves K-view frequency representations
X1,Xg, -+, X from X, developing the initial frequency
space into multiple ones.

3.4. Aggregate Better: Feature Aggregation Unit

After embedding X into K spaces, the issue of how to
extract their features naturally arises. We propose a power-
ful feature aggregation unit (FAU) to extract comprehensive
body features by promoting message propagation within
and between these spaces. As a powerful feature encoder
Fencs FAU interleaves L intra-space aggregation layers and
L inter-space aggregation layers on X, Xy, -, X to
collect a richer feature X for robust motion prediction as:

X = Fene(X1,Xa, -, Xg). (5)

Specifically, since different frequency spaces reflect dif-
ferent body node correlations, each intra-space aggrega-
tion layer develops K adaptive graph propagation filters to
promote information flows between body nodes within K
spaces. Then, inter-space aggregation layers encourage in-
formation interchanges between spaces by feature crossing.
Taking X, as an example, we introduce its operations in the
[-th intra-space aggregation layer and [/-th inter-space aggre-

gation layer. Denoting its input at the [-th layer as )A((l), we

first deploy an adaptive graph filter A,(Cl) € RV*N on it and
perform a graph convolution between )A(g) and Ag) as:
ﬁ}(jﬂ) _ U(Al(cl)ﬁg)@g))v ©)
where o(+) is an activation function, and 9,(5) is a trainable
weight matrix at layer [. In the following [-th inter-space in-

formation aggregation layer, we encourage feature crossing
between neighboring spaces as:

A(z+1) n X(Hl) if k=1,
X+ = X(l+1) n X(l“) +XUY i 1<k <K,
X(z+1) + X(l+1) if k=K.

)
Stacking these L intra-space and inter-space feature aggAre-
gation layers sequentlally, FAU updates Xl, Xg, o Xk
into X1 X2 iy X% and then concatenates them as:

X = [XF XE ... XE). (8)

To predict the future human motion in next 7" time steps,
we first deploy a MLP with one hidden layer to compact
X into a T’-dimensional frequency space. Then, an inverse
DCT (IDCT) converts X back to the pose space as:

X" = Fioer(X). €))

3.5. Loss Function

During training, we consider /5 loss to minimize the dis-
tance between the predicted 3D motion X’ and its ground-

truth K’. Hence, the loss function is defined as:

L= ’ : (10)

T'N H

All the trainable parameters in components are optimized
end-to-end, including all node filters f and graph filters A.

4. Discussion

In this section, we give in-depth analysis of our pro-
posed decomposition-aggregation scheme. It can be in-
tuitively interpreted as enforcing a multi-view augmenta-
tion in frequency domain. Different (w,?) pairs of fil-
ter f affect the spectral encoding of input X, augment-
ing versatile frequency spaces for multi-view representa-
tion learning. Specifically, as for the case w = ¢ = 1, it
can be viewed as incorporating the original frequency fea-
ture space initialized by the DCT into ours. As varied in
the experiments (section 5.3), the proposed decomposition-
aggregation scheme benefits from enriching the spectral di-
versity of an input body motion, making it less prone to
overfitting on the limited motion samples.
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Table 1. Comparisons of short-term prediction on H3.6M. Results at 80ms, 160ms, 320ms, 400ms in the future are shown. The best results

are highlighted in bold, and the second best are marked by underline.

scenarios walking eating smoking discussion
millisecond 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms
DMGNN [22] | 17.3 30.7 54.6 65.2 11.0 21.4 36.2 439 9.0 17.6 32.1 40.3 17.3 34.8 61.0 69.8
MSR-GCN [7] | 12.2 22.7 38.6 452 8.4 17.1 33.0 40.4 8.0 16.3 31.3 38.2 12.0 26.8 57.1 69.7
PGBIG [24] 10.2 19.8 34.5 40.3 7.0 15.1 30.6 38.1 6.6 14.1 28.2 34.7 10.0 23.8 53.6 66.7
SPGSN [21] 10.1 194 34.8 41.5 7.1 149 30.5 379 6.7 13.8 28.0 34.6 10.4 23.8 53.6 67.1
Ours 8.8 16.9 31.5 37.0 6.3 13.7 29.1 36.3 5.1 9.1 21.3 29.9 74 17.1 429 50.4
scenarios directions greeting phoning posing
millisecond 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms
DMGNN [22] | 13.1 24.6 64.7 81.9 233 50.3 107.3 132.1 12.5 25.8 48.1 58.3 15.3 29.3 71.5 96.7
MSR-GCN [7] 8.6 19.7 433 53.8 16.5 37.0 77.3 934 10.1 20.7 41.5 51.3 12.8 29.4 67.0 85.0
PGBIG [24] 7.2 17.6 40.9 51.5 15.2 34.1 71.6 87.1 83 18.3 38.7 48.4 10.7 25.7 60.0 76.6
SPGSN [21] 74 171 398 503 | 146 326 706 864 8.7 183 38.7 485 | 107 253 59.9 76.5
Ours 6.6 16.4 39.6 50.1 13.0 30.7 63.1 78.2 7.8 17.2 37.5 47.3 7.5 19.3 47.1 62.0
scenarios purchases sitting sittingdown takingphoto
millisecond 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms
DMGNN [22] | 214 38.7 75.7 92.7 11.9 25.1 44.6 50.2 15.0 329 77.1 93.0 13.6 29.0 46.0 58.8
MSR-GCN [7] | 14.8 324 66.1 79.6 10.5 22.0 46.3 57.8 16.1 31.6 62.5 76.8 9.9 21.0 44.6 56.3
PGBIG [24] 125 28.7 60.1 73.3 8.8 19.2 424 53.8 13.9 27.9 574 71.5 8.4 189 42.0 533
SPGSN [21] 12.8 28.6 61.0 74.4 9.3 19.4 423 53.6 14.2 2717 56.8 70.7 8.7 189 41.5 52.7
Ours 11.8 27.2 56.4 63.9 8.7 18.9 42.1 53.2 13.9 25.6 54.2 67.2 8.1 18.0 39.2 50.6
scenarios waiting walkingdog walkingtogether average
millisecond 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms | 80ms 160ms 320ms 400ms
DMGNN [22] 122 242 59.6 71.5 47.1 93.3 160.1 1712 | 143 26.7 50.1 63.2 17.0 33.6 65.9 79.7
MSR-GCN [7] | 10.7 23.1 48.3 59.2 20.7 42.9 80.4 93.3 10.6 20.9 37.4 43.9 12.1 25.6 51.6 62.9
PGBIG [24] 8.9 20.1 43.6 54.3 18.8 39.3 73.7 86.4 8.7 18.6 344 41.0 10.3 227 474 58.5
SPGSN [21] 92 198 431 541 | 182 373 713 842 | 89 182 338 409 | 104 223  47.1 583
Ours 8.2 18.4 41.3 52.1 14.5 32.7 63.8 76.0 7.4 15.2 30.0 36.4 9.3 19.7 41.0 51.1

5. Experiments
5.1. Datasets and Model Configuration

Human 3.6m (H3.6M). H3.6M dataset [13] collects 15
types of human actions performed by 7 subjects. A pose
at each time step consists of 32 body joints. Following the
common-used setups [21, 24], we only use 22 key joints and
downsample the frame rate from 50 fps to 25 fps. Following
the recommended official evaluation protocol, the model is
trained on 6 subjects and tested on the 5-th subject.

CMU Motion Capture (CMU Mocap). CMU MoCap *
collects 8 general types of human actions. A pose at each
time step is represented by 38 body joints. Following the
common-used setups [21, 24], we only use 25 joints and
downsample the frame rate to 25 fps. The division of train-
ing and testing data samples is also consistent with the rec-
ommended official evaluation protocol.

3D Pose in the Wild (3DPW). 3DPW [37] collects 51k
frames with 3D human poses, including general indoor and
outdoor activities. A pose at each time step contains 26
body joints, and we use 23 of them. The evaluation proto-
cols we adopted are following the official suggestion.

Implementation Details. To validate the proposed
method, we report its performances on both short-term
(80~400 ms) and long-term (560~ 1000 ms) motion predic-
tion on H3.6M, CMU Mocap and 3DPW datasets. We give
400-milliseconds history (7'=10) as input and predict the
future human motions in future 1 seconds (7”=25). In the
FDU, we choose five window sizes, and they range from 1
to T with step of 2 (i.e., w € {1,3,5,7,9}). As for each w,

*http://mocap.cs.cmu.edu/

its choices of sampling interval ¢ range from 1 to 5 with step
of 2 (i.e.,i € {1,3,5}). Therefore, there are totally K = 15
filters with different configuration combinations of (w, 7).
In the FAU, we stack 12 graph propagation layers and 12
feature-crossing layers for intra-space and inter-space fea-
ture aggregation (i.e., L = 12). Their feature dimensions
are both 64. Finally, we implement the prediction system
with PyTorch 1.4 on one NVIDIA RTX-3090Ti GPU. We
use Adam optimizer [15] to train it with setting batch size
as 32 and epoch number 100. The initial learning rate is
0.001 with a 0.96 decay for every two epochs.

5.2. Evaluation Metrics and Baselines

Evaluation Metrics. Following the standard evaluation
metric commonly used in previous methods [21, 24, 26],
we adopt Mean Per Joint Position Error (MPJPE) as a met-
ric for quantitatively evaluating 3D human motion predic-
tion. Specifically, MPJPE report the average Euclidean dis-
tance between the predicted joints and target ones over all
N nodes. We report the MPJPE performance at different
time steps (milliseconds) in millimeters.

Comparison Baselines. We compare the our predic-
tion system with many state-of-the-art methods, includ-
ing DMGNN [22], MSR-GCN [7], PGBIG [24], SPGSN
[21]. In the following section, we analyze their prediction
performances with comprehensive quantitative and qualita-
tive comparisons, including short-term, long-term, and few-
sample predictions.
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Table 2. Comparisons of long-term prediction on H3.6M. Results at 560ms and 1000ms in the future are shown.

scenarios

walking eating smoking discussion directions greeting phoning posing
millisecond 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms
DMGNN [27] 73.4 95.8 58.1 86.7 50.9 722 81.9 138.3 110.1 115.8 152.5 157.7 78.9 98.6 163.9 310.1
MSR-GCN [7] 52.7 63.0 52.5 77.1 49.5 71.6 88.6 117.6 71.2 100.6 116.3 147.2 68.3 104.4 116.3 174.3
PGBIG [24] 48.1 56.4 51.1 76.0 46.5 69.5 87.1 118.2 69.3 100.4 110.2 143.5 65.9 102.7 106.1 164.8
SPGSN[21] | 469  53.6 | 498 734 | 467  68.6 897 1186 | 70 1005 | 111.0 1432 | 667 1025 | 1103 1654
Ours 45.2 50.3 49.0 71.1 40.6 59.3 59.5 92.3 68.1 97.2 109.4 141.8 65.1 96.7 93.3 149.5
scenarios purchases sitting sittingdown takingphoto waiting walkingdog walkingtogether average
millisecond 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms | 560ms 1000ms
DMGNN [22] 118.6 153.8 60.1 104.9 122.1 168.8 91.6 120.7 106.0 136.7 194.0 182.3 83.4 1159 103.0 137.2
MSR-GCN [7] | 101.6 139.2 78.2 120.0 102.8 155.5 779 1219 76.3 106.3 111.9 148.2 529 65.9 81.1 1142
PGBIG [24] 953 1333 74.4 116.1 96.7 147.8 74.3 118.6 722 103.4 104.7 139.8 519 64.3 76.9 110.3
SPGSN [21] 96.5 133.9 75.0 116.2 98.9 149.9 75.6 118.2 73.5 103.6 1024 138.0 49.8 60.9 774 109.6
Ours 94.8 130.7 72.3 114.5 94.3 145.3 72.2 116.1 70.0 101.2 94.6 123.1 47.9 58.7 67.2 100.3
Table 3. Comparisons of average prediction errors on CMU Mo- MPIJPE
cap at 80ms, 160ms, 320ms, 400ms, 560ms, and 1000ms. 120 @ DMGNN |
MSR-GCN
millisecond 80ms 160ms 320ms 400ms 560ms  1000ms 110 : PGBIG |
DMGNN [22] 13.6 24.1 47.0 58.8 77.4 112.6 “PEEN |
MSR-GCN [7] | 8.1 15.2 30.6 38.6 53.7 83.0 100 O
ws
PGBIG [24] 7.6 14.3 29.0 36.6 50.9 80.1 o0
SPGSN [21] 8.3 14.8 28.6 37.0 51.2 717.8
Ours 6.4 13.9 279 36.0 50.1 75.4 80
70
Table 4. Comparisons of average prediction errors on 3DPW at 60
200ms, 400ms, 600ms, 800ms, and 1000ms. 0
millisecond 200ms 400ms 600ms 800ms  1000ms
DMGNN 0] | 373 678 945 1097 1236 10% 30% 50% 70% %0% Sample
ci
MSR-GCN[7] | 378 713 939 1108 1215 rachon
PGBIG [24] 29.3 58.3 79.8 94.4 104.1
SPGSN [21] 32.9 64.5 91.6 104.0 111.1 Figure 4. Prediction performances with fewer training samples on
Ours 26.1 54.2 72.3 87.2 94.5 H3.6M.
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Figure 3. Performance gains on each body joint (H3.6M). Consid-
ering PGBIG and SPGSN as two baselines, we report our predic-
tion accuracy improvements on each joint in predicting “posing”.

5.3. Quantitative Comparison

Short-term and Long-term Prediction. We report the
MPIJPE results at different time steps to evaluate the perfor-
mances of short-term and long-term motion prediction. As
verified in Table 1 and Table 2, we develop a strong baseline
that outperforms all state-of-the-art methods on the H3.6M
dataset for both short-term and long-term prediction. Be-
sides, Table 3 and Table 4 indicate that it also shows consis-
tent superiority on the CMU Mocap and 3DPW datasets. To
further investigate the key factor behind our prediction per-

Figure 5. Visualization comparison on a H3.6M data sample for
both short-term and long-term prediction.

formance gains on the “posing”, we consider PGBIG and
SPGSN as two baselines and plot the prediction accuracy
improvements of our method on each body joint in Figure
3. As can be seen, we achieve higher performance gains on
limbs, including hands and feet. We conjecture that, com-
pared with central body joints (e.g., abdomen), more distant
joints (e.g., feet and hands) have more diversified motion
frequency patterns. Our prediction system has the advan-
tage of extracting effective frequency representations from
these body joints and thus substantially facilitates robust hu-
man motion prediction.

Prediction with Fewer Samples. To investigate the ro-
bustness of our prediction system on a limited number of
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Table 5. The prediction and efficiency performances of FDU with
different number of filters.

Table 7. The prediction performances of FAU with different con-
figurations of graph propagation layers.

Number of Filters # Params (M) MPJPEs Graph Propagation MPJPE
K w i 80ms  160ms  320ms  400ms inter-space-shared | intra-space-shared | L | 80ms 160ms 320ms 400ms
1 {1} {1} 3.1 14.6 26.0 51.3 62.7 4 11.4 21.6 452 54.7
5 | {1,357.9} {1} 59 117 226 468 569 X 12] 93 197 410 511
9 {1,3,5} {1,3,5} 10.9 9.9 20.4 43.7 53.9 20 9.1 19.9 403 53.4
15 | {1,3,57,9} {1,3,5} 153 9.3 19.7 41.0 51.1 X 7 163 257 33.6 612
25 | {1,3,579} | {1.3,5,7,9} 29.6 9.1 19.5 39.7 51.0 v 12 | 141 223 50.2 59.3

Table 6. The prediction performances of FDU with different per-
mutations of filters.

Permutation of Filters MPJPEs
setup w i 80ms 160ms 320ms 400ms
I {1,3,5,7.9} | {1,3,5} 9.3 19.7 41.0 51.1
I {1,539,7} | {1.3,5} 94 19.6 41.1 512
I {1,9.5,7.3} | {1.3,5} 9.2 19.8 41.3 51.3
v {1,3,577.9} | {3.5.1} 9.4 19.7 41.2 51.1
A% {1,357.9} | {5.1,3} 9.3 19.8 41.0 51.1

samples, we first retrain these prediction methods by ran-
domly sampling a fraction of the H3.6M training dataset
and then evaluate their prediction performance on the orig-
inal test dataset. As verified in Figure 4, our method signif-
icantly outperforms these baseline methods when training
with 10%, 30%, 50% data samples. It indicates that the
multi-view frequency representation augmentation enriches
the spectral diversity of body motions and prevents the pre-
diction system from overfitting on limited training samples.

5.4. Qualitative Comparison

We visualize the predicted human motion samples of
our method, SPGSN, PGBIG, MSR-GCN, and DMGNN on
the H3.6M dataset. As shown in Figure 5, compared with
these baselines, our system clearly enhances the accuracy of
long-term motion prediction without leading to divergent or
freezing predictions. These results indicate that we develop
a powerful and robust human motion prediction system for
long-term prediction.

5.5. Ablation Study

We thoroughly analyze the individual components and
their configurations in the final architecture. Unless stated,
the performances reported in the following section are aver-
age MPJPE results on the H3.6M dataset.

5.5.1 Component Studies on FDU

Effects of the number of filters. The intention that moti-
vates us to tune the number of filters is twofold: (I) verify
the effectiveness of multiple filters; (I) investigate the op-
timal number of multiple filters. Therefore, as shown in
Table 5, we provide five different configuration choices for
filters in FDU (i.e., K = 1,5,9,15,25). Taking K = 25
as an example, we first chooses five different w. Then, five
different ¢ are chosed with each w. Particularly, in the case

20 | 13.6 21.0 48.9 57.8
4 17.9 26.1 54.9 63.0

X 12| 163 255 528 61.1

v 20 | 154 267 55.7 64.6
4 | 199 283 589 69.1

v 12 | 183 276 59.1 70.3

20 | 17.6 29.0 59.7 72.1

of K = 1, we focus on extracting features from single fre-
quency space initialized by the DCT without multi-view fre-
quency augmentations. Considering K = 1 as a baseline,
enriching the frequency representation with multiple filters
(i.e., K>1) brings clear performance gains, verifying the
effectiveness of the FDU component. Then, we further in-
vestigate the optimal number of multiple filters. Table 5
reports that using 25 filters () = 25) achieves the best pre-
diction performance. However, compared with K = 15,
the performance gains are limited given additional compu-
tational cost brought by more filters. Therefore, we choose
K = 15 to balance the prediction performance with com-
putational efficiency.

Effects of the permutation of filters. As presented in sec-
tion 3.4, FAU develops a series of feature-crossing layers to
aggregate the features between spaces. In this case, differ-
ent deployment orders of filters in FDU will result in dif-
ferent permutations of inter-space feature aggregations in
FAU. Therefore, we tune the deployment order of filters to
investigate whether their different permutations will affect
the final prediction performance. As shown in Table 6, we
provide 5 different deployment orders for 15 filters (setup
I ~ V). Specifically, these setups can be divided into two
comparison groups: setup I II, and III investigate the effects
of different permutations of w; setup I, IV, and V investigate
the effects of different permutations of i. As verified in Ta-
ble 6, our prediction performance is insensitive to the differ-
ent deployment orders between multiple filters. Therefore,
for simplicity, we choose setup I as the default configuration
in the final model deployment.

5.5.2 Component Studies on FAU

Effects of intra-space graph propagation. The intention
that motivates us to tune the configuration of intra-space
graph propagation layers is twofold: (1) investigate the ef-
fect of developing adaptive graph propagation layers into
intra-space-shared or inter-space-shared ones; (2) choose
the optimal number of graph propagation layers. To this
end, as shown in Table 7, we first consider all the graph
propagation layers from two aspects: with the inter-space-
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Table 8. The prediction performances of FAU with different con-
figurations of feature-crossing layers.

Feature Crossing MPJPE
Crossing Branches | Crossing Interval 80ms 160ms 320ms  400ms
1 1 12.8 23.5 46.1 58.2
1 9.8 20.4 42.6 53.7
2 2 10.3 20.9 43.0 54.2
3 10.2 20.9 432 54.4
1 9.3 19.7 41.0 51.1
3 2 9.2 20.0 41.2 51.7
3 9.4 20.4 413 51.5
1 9.3 19.7 41.1 513
4 2 9.4 19.9 41.2 51.5
3 9.5 20.1 413 51.6

shared setup, a graph propagation filter is shared among K
feature spaces; with the intra-space-shared setup, a graph
propagation filter is shared among L layers in one feature
space. Then, we further provide L with 3 choices to explore
the optimal number of graph propagation layers. Table 7
verifies that different spaces and different layers both reflect
different node correlations. Therefore, we deploy K x L
adaptive graph propagation layers to promote intra-space
feature aggregation within K spaces. Furthermore, as Ta-
ble 7 suggested, we adopt L = 12 as the optimal number of
graph propagation layers.

Effects of inter-space feature crossing. As presented in
section 3.4, we deploy a feature-crossing layer behind each
intra-space graph propagation layer to collect the informa-
tion from three branches and promote inter-space feature
aggregation. Our intentions behind tuning the configura-
tions of these feature-crossing layers lie in two aspects: (1)
investigate the effects of the breadth of feature aggregation;
(2) investigate the effects of the depth of feature aggrega-
tion. To this end, as shown in Table 8, we first change
the breadth of feature aggregation by tuning the number of
branches aggregated by each feature-crossing layer from 1
to 4. Particularly, we consider the one-branch feature cross-
ing as a baseline, since it deploys a residual connection
within a space without introducing inter-space information
flows. Then, we further change the depth of feature aggre-
gation by tuning the interval between two feature-crossing
layers from 1 to 3. Following the suggestion in Table 8, we
deploy three-branch one-interval feature-crossing layers in
FAU, as described in the default model configuration.

5.5.3 Node Feature and Correlation Visualization

We visualize the node features and correlations to analyze
their responses in different spaces and layers. We sepa-
rately normalize the values of node features and correla-
tions in different spaces and layers and plot them in Figure
6. The visualizations verify two key observations: (1) Dif-
ferent frequency spaces reflect different body joint features,
enriching the spectral diversity of body motions for robust
human motion prediction; (2) Different spaces and different
layers in the same space reflect different node correlations,
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Figure 6. Visualization of node features and correlations in dif-
ferent spaces and layers. The darker color represents the higher
response.

bringing better flexibility to inter-space and intra-space fea-
ture aggregation.

6. Limitation and Future Work

In this section, we analyze the limitation of our approach
to inspire its further development. We consider our scheme
in current version is a static model that has fixed compu-
tation flows and parameters at the inference stage. For ex-
ample, the number of filters (i.e., K), the number of graph
propagation layers (i.e., L), and their parameters are fixed
across different input motion samples. In the future work,
we will develop it into dynamic ones that can adapt its
network structure and parameters to different input motion
samples, leading to notable advantages in terms of accuracy,
computation efficiency, adaptability, etc.

7. Conclusion

In this work, we introduce two closer looks at effective
frequency representation learning for human motion predic-
tion. We develop two powerful components that factorize
the frequency representation learning into a decomposition-
aggregation scheme. First, the frequency decomposition
unit explores multi-view frequency representations on an
input body motion to enrich its spectral encodings. Then,
the feature aggregation unit promotes intra-space and inter-
space message propagation to collect comprehensive body
features for robust motion prediction. As evaluated on
three datasets, our model outperforms state-of-the-art pre-
diction methods by large margins. The strength of this
decomposition-aggregation scheme suggests that, despite a
recent surge in interest, frequency representation learning in
body motions remains under-explored.
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