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Abstract

Image super-resolution (SR) has attracted increasing atten-
tion due to its widespread applications. However, current SR
methods generally suffer from over-smoothing and artifacts,
and most work only with fixed magnifications. This paper in-
troduces an Implicit Diffusion Model (IDM) for high-fidelity
continuous image super-resolution. IDM integrates an im-
plicit neural representation and a denoising diffusion model
in a unified end-to-end framework, where the implicit neu-
ral representation is adopted in the decoding process to learn
continuous-resolution representation. Furthermore, we design
a scale-adaptive conditioning mechanism that consists of a
low-resolution (LR) conditioning network and a scaling fac-
tor. The scaling factor regulates the resolution and accordingly
modulates the proportion of the LR information and generated
features in the final output, which enables the model to accom-
modate the continuous-resolution requirement. Extensive ex-
periments validate the effectiveness of our IDM and demon-
strate its superior performance over prior arts. The source
code will be available at https://github.com/Ree1s/
IDM .

1. Introduction
Image super-resolution (SR) refers to the task of generating

high-resolution (HR) images from given low-resolution (LR)
images. It has attracted increasing attention due to its far-
reaching applications, such as video restoration, photography,
and accelerating data transmission. While significant progress
has been achieved recently, existing SR models predominantly
suffer from suboptimal quality and the requirement for fixed-
resolution outputs, leading to undesirable restrictions in prac-
tice.

Regression-based methods [21, 23] offer an intuitive way to
establish a mapping from LR to HR images. LIIF [6] specifi-
cally achieves resolution-continuous outputs through implicit
neural representation. However, these methods often fail to
generate high-fidelity details needed for high magnifications
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Figure 1. Visual comparison, where training is on 8× SR and testing
on 2×, 8×, and 10×. (a) EDSR [23] and (b) LIIF [6] are regression-
based models; (c) SR3 [35] and (d) IDM (ours) are generative models.
Among them, LIIF and IDM employ the implicit neural representa-
tion.

(see Fig. 1(a) and (b)) since their regression losses tend to cal-
culate the averaged results of possible SR predictions. Deep
generative models, including autoregressive [30, 43], GAN-
based [15,16,18,26], flow-based [8,24] and variational autoen-
coders (VAEs) [17, 42], have emerged as solutions that enrich
detailed textures. Still, they often exhibit artifacts and only ap-
ply to pre-defined fixed magnifications. Despite the ability to
generate realistic images with high perceptual quality with the
help of extra priors, GAN-based models are subject to mode
collapse and struggle to capture complex data distributions,
yielding unnatural textures. Recently, Diffusion Probabilistic
Models (DMs) [12, 39] have been used in image synthesis to
improve the fidelity of SR images and have shown impressive
performance. Nonetheless, DM-based methods are still lim-
ited to fixed magnifications, which would result in corrupted
output once the magnification changes (see Fig. 1(c)). There-
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(a) Low-Resolution (b) ESRGAN (c) GLEAN (d) IDM (ours) (e) Ground-Truth

Figure 2. Examples of 16 × super-resolution. (a) LR input. (b) ESRGAN [45] which trains a simple end-to-end structure GAN, and loses the
inherent information. (c) GLEAN [4] which achieves more realistic details through additional StyleGAN [16] priors, but still generates unnatural
textures and GAN-specific artifacts. (d) With implicit continuous representation based on a scale-adaptive conditioning mechanism, IDM generates
the output with high-fidelity details and retains the identity of the ground-truth. (e) The ground-truth.

fore, they turn to a complicated cascaded structure [13] or two-
stage training strategies [10, 33, 34] to achieve multiple com-
bined magnifications, or retrain the model for a specific resolu-
tion [35], which brings extra training cost.

To address these issues, this paper presents a novel Implicit
Diffusion Model (IDM) for high-fidelity image SR across a
continuous range of resolutions. We take the merit of diffu-
sion models in synthesizing fine image details to improve the fi-
delity of SR results and introduce the implicit image function to
handle the fixed-resolution limitation. In particular, we formu-
late continuous image super-resolution as a denoising diffusion
process. We leverage the appealing property of implicit neural
representations by encoding an image as a function into a con-
tinuous space. When incorporated into the diffusion model, it
is parameterized by a coordinate-based Multi-Layer Perceptron
(MLP) to capture the resolution-continuous representations of
images better.

At a high level, IDM iteratively leverages the denoising dif-
fusion model and the implicit image function, which is im-
plemented in the upsampling layers of the U-Net architecture.
Fig. 1(d) illustrates that IDM achieves continuously modu-
lated results within a wide range of resolutions. Accordingly,
we develop a scale-adaptive conditioning mechanism consist-
ing of an LR conditioning network and a scaling factor. The
LR conditioning network can encode LR images without pri-
ors and provide multi-resolution features for the iterative de-
noising steps. The scaling factor is introduced for controlling
the output resolution continuously and works through the adap-
tive MLP to adjust how much the encoded LR and generated
features are expressed. It is worth noting that, unlike previ-
ous methods with two-stage synthesis pipelines [9, 13, 33] or
additional priors [4, 26, 44], IDM enjoys an elegant end-to-end
training framework without extra priors. As shown in Fig. 2,
we can observe that IDM outperforms other previous works in
synthesizing photographic image details.

The main contributions of this paper are summarized as fol-
lows:

• We develop an Implicit Diffusion Model (IDM) for
continuous image super-resolution to reconstruct photo-
realistic images in an end-to-end manner. Iterative im-
plicit denoising diffusion is performed to learn resolution-
continuous representations that enhance the high-fidelity
details of SR images.

• We design a scale-adaptive conditioning mechanism to
dynamically adjust the ratio of the realistic information
from LR features and the generated fine details in the dif-
fusion process. This is achieved through an adaptive MLP
when size-varied SR outputs are needed.

• We conduct extensive experiments on key benchmarks for
natural and facial image SR tasks. IDM exhibits state-
of-the-art qualitative and quantitative results compared to
the previous works and yields high-fidelity resolution-
continuous outputs.

2. Related Work
Implicit Neural Representation. In recent years, implicit
neural representations have shown extraordinary capability in
modeling 3D object shapes, synthesizing 3D surfaces of the
scene, and capturing complicated 3D structures [3, 27–29, 36–
38]. Particularly, methods based on Neural Radiance Fields
(NeRF) [2, 28] utilize Multi-Layer Perceptrons (MLPs) to ren-
der 3D-consistent images with refined texture details. Because
of its outstanding performance in 3D tasks, implicit neural rep-
resentations have been extended to 2D images. Instead of pa-
rameterizing 2D shapes with an MLP with ReLU as in early
works [31, 40], SIREN [37] employs periodic activation func-
tions to model high-quality image representations with fast
convergence. LIIF [6] significantly improves the performance
of representing natural and complex images with local latent
code, which can restore images in an arbitrary resolution. How-
ever, the high-resolution results generated by LIIF are con-
strained by prior LR information, resulting in over-smoothing
with high-frequency information lost.
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Figure 3. Overview of the IDM framework. Upper Part: Overall process of the inference. Lower Part: Detailed illustration of a denoising step,
where the U-Net decoder is omitted for conciseness.

In our method, we introduce the denoising diffusion model
to yield realistic details missed by LIIF while retaining the su-
periority of the implicit continuous image function. Based on
the controllable scaling factor, IDM can dynamically maintain
a balance between the LR information and generated fine de-
tails while meeting the size-varied requirement of output im-
ages.

Generative Image Super-Resolution Models. In image
super-resolution, regression-based methods, such as EDSR
[23], RRDB [45], and SWinIR [21], directly learn a mapping
from LR to HR images with an MSE loss. Based on these al-
gorithms, [6, 14, 19] further achieve continuous image super-
resolution with meta-learning or implicit neural representation.
While impressive PSNR results have been shown, they often
suffer from duller edges and over-smoothing details in percep-
tual outputs. On the other hand, GAN-based and flow-based
models, variational autoencoders (VAEs), and autoregressive
models (ARMs) have been proposed to improve the fine de-
tails of SR images. SRGAN [18] uses an adversarial loss and
the perceptual loss [48], rather than a pixel-wise loss (e.g., L2
loss), to optimize the output. SFTGAN [51] and GLEAN [4]
design new structures to fuse semantics and StyleGAN [16] pri-
ors to generate rich and realistic texture features. Moreover,
flow-based models [22, 24] and VAEs [17, 42] introduce nor-

malization flow and stochastic variational inference into im-
age generation, respectively, but their sample quality underper-
forms GAN-based methods. Despite the strong performance
in learning complex distributions, ARMs [30, 43] are limited
to low-resolution images because of the high training cost and
sophisticated sequential sampling process.

Recently, Diffusion Probabilistic Models (DMs) [12] have
shown state-of-the-art results in image and speech synthesis
[5], and time series forecasting [32], for example. Likewise,
some diffusion frameworks have been applied to low-level
vision tasks. For example, SR3 exhibits impressive perfor-
mance on image SR after repeated refinement, LDM [34] em-
ploys the cross-attention conditioning mechanism for generat-
ing high-resolution images, and CDM [13] introduces the class
condition and a cascaded structure to achieve realistic multi-
resolution results. However, some drawbacks of existing mod-
els remain to be solved, including but not limited to unnatural
artifacts, fixed magnification ratios, and complicated two-stage
pipelines. In this paper, IDM combines the merits of diffusion
models and implicit neural representations in a practical end-
to-end framework, thereby obtaining photo-realistic SR images
with continuous resolutions.
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3. Method
This section presents the IDM approach, a simple end-to-

end framework with an effective scale-adaptive conditioning
mechanism and an implicit diffusion process, to generate high-
fidelity resolution-continuous outputs. The architecture of IDM
is shown in Fig 3.

3.1. Problem Statement

Given an LR-HR image pair denoted as (xi,yi) and a scal-
ing factor s, where xi is degraded from yi and s controls the
resolution of the output in a continuous manner, IDM aims
to learn a parametric approximation to the data distribution
p(y | x) through a fixed Markov chain of length T . Follow-
ing [35], we define the forward Markovian diffusion process q
by adding Gaussian noise as:

q (y1:T | y0) =

T∏
t=1

q (yt | yt−1) ,

q (yt | yt−1) = N
(
yt |

√
1− βtyt−1, βtI

)
,

(1)

where βt ∈ (0, 1) are the variances of the Gaussian noise in T
iterations. Given y0, the distribution of yt can be represented
by:

q (yt | y0) = N (yt |
√
γty0, (1− γt)I) , (2)

where γt =
∏t

i=1 (1− βi). In the inverse diffusion process,
IDM learns the conditional distributions pθ (yt−1 | yt,x) to
denoise the latent features sequentially during training. For-
mally, the inference process can be conducted as a reverse
Markovian process from Gaussian noise yT ∼ N (0, I) to a
target image y0 as:

pθ (y0:T | x) = p (yT )

T∏
t=1

pθ (yt−1 | yt,x) ,

p (yT ) = N (yT | 0, I) ,
pθ (yt−1 | yt,x) = N

(
yt−1 | µθ (x,yt, t) , σ

2
t I
)
.

(3)

As shown in Fig. 3, we adopt a U-Net architecture as the de-
noising model similar to the vanilla DDPM [12] that encodes
the noisy image yt into multi-resolution feature maps u(i),
where i ∈ {1, · · · , N}, and N is the number of depths in the
U-Net backbone. Meanwhile, we introduce the implicit image
function in the decoding part of the U-Net to generate realistic
resolution-continuous images. IDM unifies the iterative diffu-
sion refinement process and the implicit image function in an
end-to-end framework.

3.2. Scale-Adaptive Conditioning Mechanism

LR Conditioning Network. Inspired by GLEAN [4] and
GCFSR [11], we utilize a CNN, which is stacked by convo-
lutional layers with a bilinear filtering downsampling operation
and a leaky ReLU [25] activation, as the conditioning network

to extract conditioning features in multiple resolutions from the
LR image. To accomplish this, we first employ EDSR [23] to
establish the initial LR feature f (0) and make its resolution the
same as yt’s by bilinear interpolation. Then, we concatenate
f (0) and yt and feed the result into the U-Net for preliminary
conditional guidance. Meanwhile, f (0) is also sent to the CNN,
where the feature is progressively downsampled as:

f (i) = Conv
(
f (i−1)

)
, (4)

where Conv denotes the convolution layer with the bilinear
filtering downsampling operation and a leaky ReLU activa-
tion. Unlike GAN-based methods that rely on additional pri-
ors [4, 44], our conditioning network only provides encoded
multi-resolution features. It sends them into the U-Net without
extra priors to model latent representations.

Scaling Factor Modulation. To lift the limitation of fixed
magnification ratios, we introduce a scaling factor s as a condi-
tion for the diffusion process to enable magnification with con-
tinuous resolution. We first define an interval (1,M ], where
M is the maximum magnification ratio, and randomly select
s from the interval during training. We then reshape yt ac-
cording to s to control the resolution of generated images, as
shown in the yellow part of Fig. 3. The scaling factor s
is used to adjust the ratio of the original input information
f i from the conditioning network and the output ui from the
denoising network. As shown at the bottom of Fig. 3, un-
like the cross-attention mechanism [34] and the concatenat-
ing operation [20], we map s to a set of scaling vectors α ={
α
(1)
1 , α

(1)
2 , . . . , α

(i)
1 , α

(i)
2 , . . . , α

(N)
1 , α

(N)
2

}
with an adaptive

MLP, where i represents the depth index with different resolu-
tion outputs from the conditioning network and the denoising
network. Next α(i)

1 and α
(i)
2 are normalized by the L2 norm,

and then used to modulate f (i) and u(i) channel-wisely and
fuse them adaptively. In general, we conduct the modulation
process with the scaling factor s as follows:

α = Reshape(MLP(s)), (5)

ᾱ
(i)
1 =

∣∣∣α(i)
1

∣∣∣√
α
(i)2

1 + α
(i)2

2 + δ

, (6)

ᾱ
(i)
2 =

∣∣∣α(i)
2

∣∣∣√
α
(i)2

1 + α
(i)2

2 + δ

, (7)

h(i) = ᾱ
(i)
1 · f (i) + ᾱ

(i)
2 · Concat

(
uup

(i),udown
(i)
)
, (8)

where δ = 1e − 8 to avoid zero denominators, and uup
(i) and

udown
(i) are the feature maps from the decoder and encoder of

the U-Net, respectively. The modulation result h(i) is shown in
Fig. 3.
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Table 1. Datasets used in our experiments.

Training Testing
Human faces FFHQ [16] CelebA-HQ [15]

General scenes DIV2K [1] DIV2K-validate [1]
Cats LSUN-train [47] CAT [50]

Bedrooms LSUN-train [47] LSUN-validate [47]
Towers LSUN-train [47] LSUN-validate [47]

3.3. Implicit Neural Representation

Considering that prevailing SR methods are often burdened
by a complicated cascaded pipeline [13] or two-stage training
strategies [33,34] to produce outputs with multiple resolutions,
we innovate the implicit neural representation to learn contin-
uous image representations, simplifying IDM. As shown in the
blue box in Fig. 3, we insert several coordinate-based MLPs
into the upsampling of the U-Net architecture to parameterize
the implicit neural representations, which can restore LR im-
ages with high-fidelity quality in a continuous scale range. Like
LIIF [6], with the assumed continuous coordinates of multi-
resolution features c =

{
c(1), . . . , c(i), . . . , c(N)

}
as a refer-

ence, which is obtained from the denoising network using the
scaling factor s, we input the current features around the coor-
dinates and then calculate the target features. Given the features
h(i+1) and the corresponding coordinates c(i+1), we formulate
the implicit representation process as follows:

u(i)
up = Di

(
ĥ(i+1), c(i) − ĉ(i+1)

)
, (9)

where Di is a 2-layer MLP with hidden dimensionality 256,
and ĥ(i+1) and ĉ(i+1) are interpolated by calculating the near-
est Euclidean distance from h(i+1) and c(i+1) in the (i+ 1)-th
depth, respectively.

3.4. Optimization

IDM aims to infer the target image y0 with a sequence of
denoising steps. To this end, we optimize the denoising model
ϵθ which is equivalent to restoring the target image y0 from
a noisy target image ỹt =

√
γty0 +

√
1− γtϵ. Meanwhile,

to achieve resolution-continuous outputs, the denoising model
ϵθ (x, t, s, ỹt, γt) should apply to arbitrary scales through train-
ing while ensuring the validity of the predicted noise ϵ. To con-
clude, we optimize the denoising network with

E(x,y)Eϵ,γt,t,s ∥ϵ− ϵθ(x, t, s, ỹt, γt)∥11 , (10)

where ϵ ∼ N (0, I), t ∼ {1, · · · , T}, s ∼ U(1,M ], and (x,y)
is sampled from the training set of LR-HR image pairs.

4. Experiments
In addition to the extensive experiments described in this

section, we also provide more results with more magnifications
and resolutions in the supplementary materials.

Low-Resolution SR3 IDM (ours) Ground-Truth

Figure 4. Qualitative comparison on 8× SR on CelebA-HQ [15]. The
results of IDM maintain higher fidelity and more credible identities
close to the ground-truth, generating more realistic facial components
(e.g., eyes, teeth, and hair).

4.1. Implementation Details

Datasets. We conduct our experiments on face datasets, nat-
ural image datasets, and a general scene dataset (DIV2K [1]),
which are listed in Table 1. For face datasets, we train and
evaluate IDM on FFHQ [16] and CelebA-HQ [15], respec-
tively, which is the same as with SR3 [35]. We use DIV2K for
general scenes to compare with various state-of-the-art (SOTA)
methods based on other generative models. Finally, similar to
GLEAN [4], we train and test our model on the LSUN [47]
dataset.

Training Details. We train our IDM in an end-to-end man-
ner. We set a milestone to 1M iterations, where the training is
with a fixed downsampling scale to M×, and after the mile-
stone, the training is conducted for 0.5 M iterations with HR
images randomly resized according to the uniform distribution
U(1,M). Following the vanilla DDPM [12], we use the Adam
optimizer with a fixed learning rate of 1e-4 for the former and
2e-5 for the latter. We utilize a dropout rate of 0.2 and two
24GB NVIDIA RTX A5000 GPUs for all experiments.

4.2. Qualitative Comparisons

We conduct qualitative comparisons with SOTA methods on
both face and natural image SR.

Face Super-Resolution. Fig. 4 shows the qualitative com-
parison with the SOTA DM-based method (SR3) on the 16×16
→ 128×128 face SR task. Although both SR3 and IDM can
improve the diversity of generated outputs, SR3 loses many
face attributes, so it is quite different between the identities of
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(a) Low-Resolution (b) GLEAN (c) IDM (Ours) (d) Ground-Truth

Figure 5. Results of 16× SR on the LSUN dataset. IDM achieves
more consistent textures with the ground-truth.

Table 2. Quantitative comparison (PSNR and SSIM) with several
baselines on 16×16 → 128×128 face super-resolution. Consistency
measures the MSE

(
×10−5

)
between LR and downsampled SR im-

ages.

Method PSNR↑ SSIM↑ Consistency↓
PULSE [26] 16.88 0.44 161.1
FSRGAN [7] 23.01 0.62 33.8
Regression [35] 23.96 0.69 2.71
SR3 [35] 23.04 0.65 2.68
IDM 24.01 0.71 2.14

the SR3 outputs and the ground-truth. For instance, the teeth
and eyes are discrepant, and the wrinkles are not retained. In
contrast, IDM maintains the identities and high-fidelity face de-
tails.

Natural Image Super-Resolution. Fig. 5 shows the qualita-
tive comparison with the SOTA GAN-based method (GLEAN)
on the 16× natural image SR task, including Cats, Towers, and
Bedrooms. We directly take the examples provided in GLEAN
for comparison. Although GLEAN can produce realistic SR re-
sults, it does not perform well on some detailed textures, such
as the nose and eyes in the first row, the windows and doors in
the send row, and the curtain, wall picture, and two lamps in
the last row. IDM is more effective in reconstructing them and
exhibits excellent fine details.

4.3. Quantitative Comparisons

Face Super-Resolution. Following SR3, we evaluate IDM
on 100 face images extracted from CelebA-HQ [15] and com-
pute the PSNR, SSIM [46], and Consistency metrics. Table
2 shows the PSNR, SSIM, and Consistency results on the 8×

Table 3. Quantitative comparison (PSNR and LPIPS) on LSUN [47]
with 16× SR.

Method Cats Bedrooms Towers
PULSE [26] 19.78/0.5241 12.97/0.7131 13.62/0.7066
ESRGAN+ [45] 19.99/0.3482 19.47/0.3291 17.86/0.3132
GLEAN [4] 20.92/0.3215 19.44/0.3310 18.41/0.2850
IDM 21.52/0.3131 20.33/0.3290 19.44/0.2549

Table 4. Quantitative comparison of 4× SR on the DIV2K [1] vali-
dation set. D+F means the training datasets include both DIV2K and
Flicker2K [41], and D means that IDM is only trained on DIV2K.
Red and blue colors indicate the best and the second-best performance
among generative models, respectively.

Method Datasets PSNR↑ SSIM↑
Bicubic D+F 26.7 0.77

Reg.-based EDSR [23] D+F 28.98 0.83
LIIF [6] D+F 29.00 0.89

GAN-based ESRGAN [45] D+F 26.22 0.75
RankSRGAN [49] D+F 26.55 0.75

Flow-based SRFlow [24] D+F 27.09 0.76
HCFlow [22] D+F 27.02 0.76

Flow+GAN HCFlow++ [22] D+F 26.61 0.74
VAE+AR LAR-SR [10] D+F 27.03 0.77
Diffusion IDM D 27.10 0.77
Diffusion IDM D+F 27.59 0.78

face super-resolution task. GAN-based models are up to par
with human perception when the super-resolution magnifica-
tion is large [4]. Nevertheless, their poor Consistency values
show that their SR results deviate from the LR images. Com-
pared with the diffusion model-based SR3, IDM obtains better
results in all metrics (0.97 dB higher in PSNR, 0.06 higher in
SSIM, and 0.53 lower in Consistency).

Natural Image Super-resolution. To demonstrate the per-
formance of IDM on natural image SR, we provide the quanti-
tative comparison in Table 3. We select 100 images in the vali-
dation dataset and compute the average PSNR and LPIPS [48].
Because PULSE generates SR objects incorrectly, its PSNR
and LPIPS are significantly lower than other methods. Al-
though GLEAN achieves better results with the pretrained la-
tent banks, IDM outperforms it in all categories, with 0.60 dB,
0.89 dB, and 1.03 dB improvements in PSNR, respectively.
Likewise, IDM decreases LPIPS in all categories whose SR
results align more with human perception.

4.4. Comparison on a General Scene Dataset

We conduct comprehensive comparisons with various prior
arts, including regression-based and generative methods, on the
general scene dataset DIV2K. EDSR and LIIF are trained with
the pixel-wise loss. Fig. 7 shows the qualitative comparison
with LIIF on the 4× general scene SR task. LIIF generates
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Table 5. Quantitative comparison (PSNR/LPIPS) of continuous SR results on CelebA-HQ [15] when training on 8× LR-HR pairs. Each method
is trained on 8× face SR. “− ” indicates the model is completely invalid with the magnification.

Method in-distribution out-of-distribution
5.3× 7× 10× 10.7× 12×

LIIF [6] 27.52/0.1207 25.09/0.1678 22.97/0.2246 22.39/0.2276 21.81/0.2332
SR3 [35] − 21.15/0.1680 20.26/0.2856 − 19.48/0.3947

IDM 23.34/0.0526 23.55/0.0736 23.46/0.1171 23.30/0.1238 23.06 /0.1800

10×9×7.5×6×2×Low-Resolution Ground-Truth

Figure 6. Visualization of continuous SR results on CelebA-HQ when training on 8× LR-HR training pairs, where the ground-truth has a resolution
of 128×128. We specially select three arbitrary magnifications within the training range (1, 8] and another two out of the range (i.e., 9× and 10×).

Figure 7. Two pairs of visual results by the regression-based method
LIIF [6] (left part of each pair) and our IDM (right part of each pair)
for 4× general scene SR.

clear, high-resolution outputs. However, its simple pixel inter-
polation leads to an obvious loss of realistic textures. In Ta-
ble 4, the results of the GAN-based models (ESRGAN [45]
and RankSRGAN [49]), flow-based models (SRFlow [24] and
HCFlow [22]), and mixed generative models (HCFlow++ [22]
and LAR-SR [10]) are from [10]. Table 4 demonstrates that
our IDM outperforms other generative methods with a signifi-
cant improvement (0.50dB on PSNR and 0.03 on SSIM). Even
with less training data (800 images in ours vs. 2800 images in

others), IDM still outperforms prior arts on both metrics.

4.5. Comparison of Continuous SR

Quantitative Results. Table 5 shows the quantitative com-
parisons on CelebA-HQ dataset with LIIF and SR3. LIIF and
IDM are trained within the magnification range (1, 8] and tested
on in-distribution and out-of-distribution scales, respectively.
For in-distribution scales, although LIIF reports higher PSNR,
our IDM exhibits much better performance in terms of LPIPS,
demonstrating that the generated images of IDM are much
more consistent with human perception. For out-of-distribution
scales, IDM outperforms other methods in terms of both PSNR
and LPIPS despite the variation of scales.

Visualization. To demonstrate the continuous SR achieved
by IDM, we visualize some results with arbitrary testing mag-
nifications when training on 8× face SR in Fig. 1 and Fig.
6. Fig. 1 shows that the regression-based models can achieve
resolution-continuous results via implicit neural representation,
but they suffer from the typical over-smoothing issue (second
row). The generative model (SR3) performs well on the 8×
magnification, consistent with that in training, but it encounters
extreme distortions once the magnification changes (third row).
In contrast, as shown in the fourth row of Fig. 1, IDM success-
fully synthesizes realistic results with the continuous resolu-
tion. In Fig. 6, even if the magnification is out of the training
range (1, 8], i.e., 9× and 10×, IDM still demonstrates outstand-
ing effectiveness in representing continuous SR images.
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Low-Resolution s on 1.7× s on 3.1× s on 4.5× s on 5.9× s on 7.3× Ground-Truth

Figure 8. Visualization with different values of the scaling factor s when training on 8× face SR, where the ground-truth has a resolution of
128×128, and s takes the values of other magnifications.

(a) Concatenating (b) Concatenating 
w/ encoder

(c) LR conditioning 
network

Figure 9. Effect of the LR conditioning network. (a) Conditioning our
model via the concatenating operation in SR3 [35]. (b) Conditioning
our model by adding an encoder [20]. (c) Our LR conditioning net-
work.

4.6. Ablation Studies

Importance of the Scaling Factor. To demonstrate the sig-
nificance of the scaling factor s, we provide qualitative visual
results with different values of s when training on 8× face SR
in Fig. 8. Specifically, we assign s with the value from other
specific magnifications. For example, the third column in Fig.
8 is obtained using s on 3.1× face SR. Evidently, for 8× face
SR, using the scaling factor assigned by smaller magnification
leads to blurred textures. As the corresponding magnification
increases, IDM synthesizes more fine details. It illustrates that
the scaling factor is inclined to allocate more weights to gen-
erated features on large-magnification SR. Overall, the scaling
factor effectively dynamically adjusts the proportion between
LR condition and generated details.

Effect of the LR Conditioning Network. We conduct qual-
itative experiments on Cats with 16× SR to validate the ef-
fect of our LR conditioning network. Specifically, we con-
struct two comparison models by replacing the scale-adaptive
conditioning network in IDM with two types of conditioning
mechanisms that concatenate (1) the upsampled LR image or
(2) the LR features encoded by the EDSR encoder with the
ground-truth, and feed them to the denoising model, where (1)
is adopted by SR3 [35]. As shown in Fig. 9(a), directly using
the upsampled LR image as the condition often leads to blurred
textures. While introducing an encoder to extract features in
advance can slightly alleviate this issue (Fig. 9(b)), it still per-
forms poorly in generating high-fidelity details, such as eyes
and hair. In contrast, the proposed scale-adaptive condition-
ing network develops a parallel architecture providing multi-
resolution LR features for the denoising model, to enrich the
texture information. Fig. 9(c) shows the superior performance
over the others.

5. Conclusion
This paper presents an Implicit Diffusion Model (IDM) for

achieving high-fidelity image super-resolution with continuous
resolution. Specifically, we introduce the implicit image func-
tion in the decoding part of the diffusion denoising model. This
practical end-to-end framework adopts an iterative process of
diffusion denoising and implicit neural representation. We fur-
ther design a scale-adaptive conditioning mechanism, which
takes a low-resolution image as a condition to adjust the pro-
portion between LR information and generated details dynam-
ically. Extensive experiments illustrate that our IDM exhibits
state-of-the-art performance.
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