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Abstract

To build Video Question Answering (VideoQA) systems
capable of assisting humans in daily activities, seeking
answers from long-form videos with diverse and complex
events is a must. Existing multi-modal VQA models achieve
promising performance on images or short video clips,
especially with the recent success of large-scale multi-
modal pre-training. However, when extending these meth-
ods to long-form videos, new challenges arise. On the
one hand, using a dense video sampling strategy is com-
putationally prohibitive. On the other hand, methods rely-
ing on sparse sampling struggle in scenarios where multi-
event and multi-granularity visual reasoning are required.
In this work, we introduce a new model named M ulti-
modal Iterative Spatial-temporal Transformer (MIST) to
better adapt pre-trained models for long-form VideoQA.
Specifically, MIST decomposes traditional dense spatial-
temporal self-attention into cascaded segment and region
selection modules that adaptively select frames and image
regions that are closely relevant to the question itself. Vi-
sual concepts at different granularities are then processed
efficiently through an attention module. In addition, MIST

iteratively conducts selection and attention over multiple
layers to support reasoning over multiple events. The exper-
imental results on four VideoQA datasets, including AGQA,
NExT-QA, STAR, and Env-QA, show that MIST achieves
state-of-the-art performance and is superior at efficiency.
The code is available at github.com/showlab/mist.

1. Introduction
One of the ultimate goals of Video Question Answering

(VideoQA) systems is to assist people in solving problems
in everyday life [13, 27, 41], e.g., helping users find some-
thing, reminding them what they did, and assisting them
while accomplishing complex tasks, etc. To achieve such
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Multi-event: 
Q1. Did the person interact with a doorknob before or after putting 
something on a table? Answer: After

Multi-grained Visual Concepts: 
Q2. Which object were they touching between drinking from a bottle 
and picking up a book?    Answer: Phone

Causality: 
Q3. Why does the person put the bottle on a table?
Answer: She has finished drinking

Figure 1. Main challenges of long-form VideoQA. The ques-
tions for long-form VideoQA usually involve multi-event, multi-
grained, and causality reasoning.

functions, the systems should be able to understand and
seek the answer from long-form videos with diverse events
about users’ activities.

Compared to understanding and reasoning over short
videos, many unique challenges arise when the duration of
the video increases, as shown in Fig. 1: 1) Multi-event rea-
soning. The long-form videos usually record much more
events. The questions about these videos thus naturally re-
quire the systems to perform complex temporal reasoning,
e.g., multi-event reasoning (Q1 in Fig. 1), causality (Q3),
etc. 2) Interactions among different granularities of visual
concepts. The questions of short-clip videos usually involve
the interactions of objects or actions that happened simulta-
neously, while questions for long-form videos could involve
more complex interactions of objects, relations, and events
across different events, e.g., Q2 in Fig. 1.

Current vision-language methods [2, 7, 10, 24, 29, 31,
32, 51, 52] excel at QA over images or short clips span-
ning several seconds. In other words, they excel at learn-
ing multi-modal correspondences between a single cap-
tion with one or few events. Their tremendous progress
over these years is fueled by 1) pre-training on large-
scale image-language [22, 37, 38] and short-clip-language
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Figure 2. Diagrammatic illustration of MIST . It revises a
standard spatial-temporal self-attention layer into two modules:
a cascade selection module that dynamically eliminates question-
irrelevant image regions, and a self-attention layer reasoning over
multi-modal multi-grained visual concepts. The proposed mod-
ules further iterate multiple times to reason over different events.

datasets [2, 33], and 2) end-to-end multi-modal Transform-
ers [1–3, 10, 37, 40], which is superior at learning the align-
ments between images with texts.

However, these multi-modal Transformers rely on the
dense self-attention with the computation cost increasing
exponentially over time especially when adapting to long-
form videos. To make the dense self-attention computation-
ally feasible in processing videos, almost all current state-
of-the-art pre-trained Transformers are sparse sample-based
methods, e.g., [2, 40] only sample 3 or 4 frames per video
regardless of its length. If we simply adapt these pre-trained
models to long-form videos with the same sampling strat-
egy, there will be a domain gap between the pre-training and
downstream VideoQA tasks. In pre-training, the sparsely
sampled frames of a short video depict a coherent action,
while they are likely to be random shots for part of events
in a long video. Recently, some early attempts process the
video hierarchically [5], which splits the video into several
segments and performs QA only on aggregated segment-
level features. It can ease the efficiency issue, but is still
hard to capture complex interactions among multi-grained
concepts. Thus, leveraging the advantages of models pre-
trained from images or short videos and addressing the chal-
lenges of long-form VideoQA is worth exploring.

In this paper, we propose a new model, named M ulti-
modal Iterative Spatial-temporal Transformer (MIST), as

shown in Fig. 2. MIST comes from a simple finding that
for long-form VideoQA, it is not necessary to consider the
details of all events in a video, like what dense self-attention
over all patches do. The model only needs to consider
the general content of all events and focuses on the de-
tails of a few question-related events. Thus, MIST de-
composes dense joint spatial-temporal self-attention into a
question-conditioned cascade segment and region selection
module along with a spatial-temporal self-attention over
multi-modal multi-grained features. The cascade selection
reduces the computation cost and benefits the performance
by focusing on the question-related segments and regions.
The self-attention over segments and image patches, bet-
ter captures interactions among different granularities of vi-
sual concepts. In addition, through iteratively conducting
selection and self-attention, MIST can reason over multiple
events and better perform temporal and causal reasoning.

We conduct experiments on several VideoQA datasets
with relatively longer videos, AGQA [14], NExT-QA [44],
STAR [42], and Env-QA [11], with an average video du-
ration varies from 12s to 44s. The experimental results
show that our approach achieves state-of-the-art perfor-
mance. Further ablation studies verify the effectiveness of
the key components. Moreover, quantitative and qualitative
results also show that our method provides higher efficiency
and reasonable evidence for answering questions.

2. Related Work
Video question answering. Video Question Answer-

ing is one typical type of vision-language task studied for
many years. Some datasets [20, 47] focus on short clips
about daily human activities, e.g., sports, household work,
etc. Some others, such as TVQA [25], MovieQA [39],
and Social-IQ [50], mainly focus on long videos cropped
from movies or TV series for evaluating the understanding
of the plot and social interactions, where subtitles play an
essential role. Recently, [11, 14, 42, 44] aim to evaluate
more complex spatial-temporal reasoning over long-form
videos, e.g., causality, sequential order, etc. Current works
achieve promising results on the first two types of bench-
marks, while struggle on the last one, which is our focus.

In terms of methodology, early-stage works proposed
various LSTM or Graph Neural Network-based models to
capture cross-modal [28, 35, 54] or motion-appearance in-
teraction [12, 23]. One recent work [45] integrates graph
modeling into Transformers to explicitly capture the objects
and their relations in videos. In addition, with the great
success of pre-trained vision-language Transformers, many
works [2,10,40] directly fine-tune the pre-trained model on
downstream VideoQA tasks. [5] proposes a simple yet ef-
fective fine-tuning strategy to hierarchically process videos
with pre-trained Transformers.

Compared to previous works, this paper is an early at-
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tempt to specifically focus on the challenges of long-form
VideoQA for Transformers-based methods. Specifically,
we revise the self-attention mechanism to better perform
multi-event, multi-grained visual concepts reasoning.

Transferring pre-trained models to downstream
tasks. Many works try to transfer pre-trained vision-
language Transformers, such as CLIP [37], into down-
stream tasks, e.g., object detection [15], image gen-
eration [36], and video-text retrieval [9, 32, 48, 53].
CLIP4Clip [32] proposes various aggregation methods for
CLIP features, e.g., mean pooling, Transformer, to better
represent a video. CLIP2Video [9] proposes a temporal dif-
ference block to better capture motion information. Sim-
ilar to the above methods, we preserve the strengths of
pre-trained models and improve their weaknesses on down-
stream tasks, but this works focus on another one, long-
form VideoQA, where the main focus is on multi-event and
multi-granularity reasoning.

Long-form video modeling. With the great success of
short-term video understanding in recent years, some pio-
neer works [8, 43] have started to focus on long-form video
modeling for action recognition or localization tasks. They
mainly focus on increasing the efficiency of processing long
video features. [8] proposes short-term feature extraction
and long-term memory mechanisms that can eliminate the
need for processing redundant video frames during training.
[30] proposes to replace parts of the video with compact
audio cues to succinctly summarize dynamic audio events
and are cheap to process. [16] introduces structured multi-
scale temporal decoder for self-attention to improve effi-
ciency. The above methods utilize the natural characteris-
tics of videos to reduce the computation. In contrast, this
paper considers the characteristics of QA tasks to use the
question as a guide to reduce computation.

Iterative Attention. Many existing works [4, 6, 17, 34]
are for improving computation efficiency. Some of them
propose similar iterative attention mechanisms to ours. [34]
proposes a recurrent image classification model to itera-
tively attending on a sequence of regions at high resolution.
Perceiver [17] revises self-attention in Transformer to an
asymmetric attention to iteratively distill inputs into a tight
feature, allowing it to handle large inputs. TimeSformer [4]
proposes various self-attention schemes for video classifica-
tion models to separately apply temporal and spatial atten-
tion. Our model differs in utilizing multi-modal correspon-
dence (i.e., vision and question) to guide iterative attention.

3. Method
The goal of a VideoQA task is to predict the answer y

for a given video V and a question q, formulated as follows:

ỹ = argmax
y∈A

Fθ(y|q,V,A), (1)

where ỹ is the predicted answer chosen from the candidate
answers (i.e., answer vocabulary or provides choices), de-
noted as A, and θ is the set of trainable parameters of a
VideoQA model F .

In Fig. 3, we present the pipeline of our proposed M ulti-
Modal Iterative Spatial-temporal Transformer, MIST.
MIST answers the question in three steps: 1) utilize a pre-
trained model to extract the input features, 2) iteratively per-
form self-attention over a selected set of features to perform
multi-event reasoning, 3) predict the answer based on the
obtained video, question, and answer features.

3.1. Input Representation

Existing vision-language Transformers are good at rep-
resenting images or short clips. To adapt them to handle
the long-form video, we first split the video into K uniform
length segments, where each segment contains T frames.
In addition, each frame is divide into N patches. Note that,
for the simplicity of notation, the [CLS] token for image
patches and frames are counted in N and T .

The vision-language Transformer, like CLIP, All-in-one,
with frozen parameters, extracts patch-level features of all
segments, x = {x1, x2, ..., xK}, where xk ∈ RT×N×D is
the feature of k-th segment, where D is the dimension of
each patch-level feature. The patch-level visual token fea-
tures will be used to obtain frame and segment features in
the following modules. Since the segment features are sep-
arately extracted, to indicate their temporal positions in the
whole video, we add position embedding Pt ∈ {ϕt(i)|i ∈
[0,K · T ]} for each token with their frame index.

For the text part, the question is tokenized as a sequence
of words, and then fed into the vision-language Transformer
to get word-level features Xw = {w1, ..., wM}, where w1

corresponds to [CLS] and w2, ..., wM are words in question.

3.2. Iterative Spatial-Temporal Attention Layer

The Iterative Spatial-Temporal Attention layer (ISTA)
aims to iteratively select the segments and regions among
a long video conditioned on questions and then perform
multi-event reasoning over selected ones. Specifically,
ISTA contains three steps: segment selection, region selec-
tion, and spatial-temporal self-attention, as shown in Fig. 4.

Segment Selection. Given a set of image patch features
x, we calculate the features of segments and the question,
then select the patch features of Topk segments by perform-
ing cross-modal temporal attention and differentiable top-k
selection.

Specifically, to perform temporal attention, the frame
features are first obtained by pooling the features in spa-
tial dimension: the t-th frame feature in k-th segment is
calculated as fk

t = pool(xk
t,1, x

k
t,2, ..., x

k
t,N ), where xk

t,n in-
dicates n-th patch at t-th frame of k-th segment. Then, the
segment features are obtained by pooling frames features
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Figure 3. Architecture of MIST . MIST first divides video into several segments and utilizes the pre-trained (PT) video encoder to
extract the feature of each one. Then, MIST iteratively performs self-attention over a selected set of features to reason over multiple events.
Finally, it predicts the answer by comparing the combination of video and question features with answer candidate features. Note that the
"PT Video Encoder" in the figure can also be image-based encoders.
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Figure 4. Key components of Iterative Spatial-Temporal Atten-
tion Layer. Since region selection follows the same architecture
as segment selection, we only show its inputs and outputs.

along the temporal dimension: sk = pool(fk
1 , f

k
2 , ..., f

k
T ).

The question feature is similarly obtained by pooling the
word features, q = pool(w1, ..., wM ). The pooling func-
tions can be chosen from mean pooling, first token pooling,
simple MLP layer, etc., according to the specific type of
used vision-language Transformer. For example, for image-
language Transformers, like CLIP, the first token pooling
can be used for extracting frame and question features and
mean pooling over frames for obtaining segment features.

Given the segment features S = {sk}Kk=1, patch features

X = {xk}Kk=1, and question features q, we first perform
cross-modal temporal attention among S given q, and then
conduct top-k feature selection over X, as formulated:

Q = gq(q),K = gs(S),V = X, (2)

Xt = selector
Topk

(softmax(
QKT

√
dk

),V), (3)

where gq and gs are linear projection layers for different
types of features, selector is a differentiable top-k selec-
tion function to choose the spatial features of Topk seg-
ments. The top-k selection can be implemented by expand-
ing the Gumbel-Softmax trick [18] or based on optimal-
transport formulations [46] for ranking and sorting. In
this paper, we simply conduct Gumbel-Softmax sampling
Topk times with replacement to achieve top-k selection.
Note that we sample the segments with replacement be-
cause, in some cases, the question could only involve one
segment. We hope the model learns to enhance the most
related segment in such cases by re-sampling it, instead of
forcing it to select an irrelevant segment, as sampling with-
out replacement will do. See supplementfor more discus-
sion about Top-k selection. The output of the module is
Xt = {xk|k ∈ B} ∈ RTopk×T×N×D, where B is the set of
selected Topk segments’ indexes.

Region Selection. For the τ -th sampled frame, we want
to select its most relevant patches with the question. Given
its region feature of one frame Xτ = {xk

τ,n|n ∈ [1, N ], k ∈
B} along with question q, we perform cross-model atten-
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tion over spatial patches of the τ -th sampled frame and se-
lect the Topj most related patches. This can be formulated
as:

Q = hq(q),K = hx(Xτ ),V = Xτ , (4)

X′
τ = selector

Topj

(softmax(
QKT

√
dk

),V), (5)

where hq and hx are embedding layers for linear feature
projection. The output of the given each frame is X′

τ ∈
RTopj×D. Finally, we stack the selected patch features of
all selected frames to obtain Xst = {X′

τ |τ ∈ [1, T opk ×
T ]}.

Spatial-Temporal Self-Attention. Given the selected
frames and selected regions, along with the question, we
aim to employ a self-attention layer to reason out a fused
feature vector to jointly represent the question and video.

Regarding the inputs of self-attention, since the main
computation cost comes from too many patches (K×T×N ,
about thousands of patches), we only keep the selected ones.
While for temporal information, we keep all segments as the
total number is only K (usually less than 10), which doesn’t
bring heavy cost and can benefit more comprehensive multi-
event reasoning.

Specifically, we first add type embedding to indicate the
types feature, e.g., image region, segment or word. The type
embedding is formulated Ph ∈ {ϕh(h)|h ∈ [1, 3]} to each
feature for indicating where ϕh is a trainable embedding
layer. Then, a standard multi-head attention is performed to
obtain the contextual features of all input tokens, formulated
as:

X(i)
o = MultiHead([ϕs(S);ϕx(Xst);ϕw(Xw)]), (6)

where ϕs, ϕx, and ϕw are linear transformation.
Iterative Execution of ISTA. A stack of L ISTA lay-

ers is used for modelling multi-event interactions between a
given question and video, where the updated segment fea-
tures and word features are fed into next layer. The output
of each layer {X(l)

o }Ll=1 is used for answer prediction.

3.3. Answer Prediction

Specifically, we mean pool the token features of all ISTA
layers, Xo = MeanPool(X

(1)
o , ...,X

(L)
o ). In addition, fol-

lowing the work [49], we calculate the similarity between
the Xo and the feature of all candidate answers XA =
{xa|a ∈ A} obtained by using the pre-trained model. Fi-
nally, the candidate answer with the maximal similarity is
considered as the final prediction ỹ.

ỹ = argmax
y∈A

(Xo(XA)
T ). (7)

During training, we optimize the softmax cross-entropy loss
between the predicted similarity scores and ground truth.

4. Experiments
4.1. Datasets

We evaluate our model on four recently proposed
challenging datasets for the long-form VideoQA, namely
AGQA [14], NExT-QA [44], STAR [42] and Env-QA [11].

AGQA is an open-ended VideoQA benchmark for com-
positional spatio-temporal reasoning. We use its v2 version,
which has a more balanced distribution, as the dataset cre-
ator recommended. It provides 2.27M QA pairs over 9.7K
videos with an average length of 30 seconds. NExT-QA
is a multi-choice VideoQA benchmark for causal and tem-
poral reasoning. It contains a total of 5.4K videos with
an average length of 44s and about 52K questions. STAR
is another multi-choice VideoQA benchmark for Situated
Reasoning. STAR contains 22K video clips with an aver-
age length of 12s along with 60K questions. Env-QA is an
open-ended VideoQA benchmark for dynamic environment
understanding. It contains 23K egocentric videos with an
average length of 20 seconds collected on virtual environ-
ment AI2THOR [21] along with 85K questions.

For each benchmark, we follow standard protocols out-
lined by prior works [1, 5, 11, 14] for dataset processing,
metrics, and settings. Please see supplementfor details.

4.2. Implementation Details

Our proposed method can be built upon most of the pre-
trained multi-modal Transformers. In our experiments, we
try two typical types of pre-trained models, CLIP (ViT-
B/32) [37] for image-language pre-training models and All-
in-One-Base [40] for video-language pre-training model,
denoted as MIST -CLIP and MIST -AIO respectively. In
MIST , we set Topk = 2 and Topj = 12 in cascade selec-
tion module and the layer of ISTA L = 2. For all videos,
we sample 32 frames per video, and split them into K = 8
segments. AdamW is utilized to optimize model training.
Our model is trained on NVIDIA RTX A5000 GPUs and
implemented in PyTorch.

4.3. Comparison with State-of-the-arts

We compare our model with the state-of-the-art (SOTA)
methods on four VideoQA datasets (i.e., AGQA v2, NExT,
STAR, and Env-QA), as shown in Tab. 1, 2, 3, and 4 re-
spectively. We can see that our proposed method achieves
state-of-the-art performances and outperforms the existing
methods on all datasets. The performance gain is relatively
limited on Env-QA, because its videos are recorded in a
virtual environment, AI2THOR. There is a domain gap for
CLIP feature, while previous SOTA uses the features pre-
trained on virtual environment data.

Notably, among SOTAs, TEMP[ATP] [5] uses the same
feature, CLIP (ViT-B/32), as MIST -CLIP. And All-in-
one [40] and MIST -AIO also use the same feature, All-

14777



Question Types Most Likely PSAC HME HCRN [23] AIO [40] Temp[ATP] [5] MIST - AIO MIST - CLIP

Object-relation 9.39 37.84 37.42 40.33 48.34 50.15 51.43 51.68
Relation-action 50.00 49.95 49.90 49.86 48.99 49.76 54.67 67.18
Object-action 50.00 50.00 49.97 49.85 49.66 46.25 55.37 68.99
Superlative 21.01 33.20 33.21 33.55 37.53 39.78 41.34 42.05
Sequencing 49.78 49.78 49.77 49.70 49.61 48.25 53.14 67.24
Exists 50.00 49.94 49.96 50.01 50.81 51.79 53.49 60.33
Duration comparison 24.27 45.21 47.03 43.84 45.36 49.59 47.48 54.62
Activity recognition 5.52 4.14 5.43 5.52 18.97 18.96 20.18 19.69

All 10.99 40.18 39.89 42.11 48.59 49.79 50.96 54.39

Table 1. QA accuracies of state-of-the-art (SOTA) methods on AGQA v2 test set.

Method Causal Temporal Descriptive All

HGA 44.22 52.49 44.07 49.74
CLIP (single frame) 46.3 39.0 53.1 43.7
VQA-T [49] 49.60 51.49 63.19 52.32
AIO [40] 48.04 48.63 63.24 50.60
Temp[ATP] [5] 48.6 49.3 65.0 51.5
Temp[ATP]+ATP [5] 53.1 50.2 66.8 54.3
VGT [45] 52.28 55.09 64.09 55.02

MIST - AIO 51.54 51.63 64.16 53.54
MIST - CLIP 54.62 56.64 66.92 57.18

Table 2. QA accuracies of SOTA methods on NExT-QA val set.

Method Interaction Sequence Prediction Feasibility Mean

ClipBERT [24] 39.81 43.59 32.34 31.42 36.7
CLIP [37] 39.8 40.5 35.5 36.0 38.0
RESERVE-B [51] 44.8 42.4 38.8 36.2 40.5
Flamingo-9B [1] - - - - 43.4
AIO [40] 47.53 50.81 47.75 44.08 47.54
Temp[ATP] [5] 50.63 52.87 49.36 40.61 48.37

MIST - AIO 53.00 52.37 49.52 43.87 49.69
MIST - CLIP 55.59 54.23 54.24 44.48 51.13

Table 3. QA accuracies of SOTA methods on STAR val set.

Method Attribute State Event Order Number All

CNN-LSTM 38.21 42.26 29.94 53.37 38.12 38.05
ST-VQA [19] 41.66 48.98 33.87 54.09 38.54 41.97
STAGE [26] 39.49 49.93 34.52 55.32 37.98 42.53
AIO [40] 41.78 52.98 37.57 55.16 38.50 44.86
Temp[ATP] [5] 42.87 53.49 38.35 55.25 38.65 45.43
TSEA [11] 42.96 56.73 39.84 55.53 39.35 47.06

MIST -AIO 43.63 55.17 40.99 55.44 39.54 47.19
MIST -CLIP 44.05 58.13 42.54 56.83 40.32 48.97

Table 4. QA accuracies of SOTA methods on Env-QA test set.

in-One-Base. Compared to these methods, it can be found
that our two versions of models, which build upon differ-
ent types of pre-trained models, achieve substantial perfor-
mance gains on all datasets.

Moreover, from the question type breakdown of each
dataset, we can see that compared with AIO and
Temp[ATP], our model obtains a much more significant per-
formance boost on questions that require multi-grained vi-
sual concepts reasoning (i.e., Rel.-act., Obj.-act. on AGQA
v2) than those which mainly require information within
one frame (i.e., Obj.-rel. on AGQA v2 and Descriptive
on NExT-QA). In addition, we can see that our model sur-

Method AGQA v2 NExT-QA
Binary Open All C. T. D. All

MeanPool 49.26 34.01 41.58 47.87 45.22 58.01 48.59
Trans.-Frame 54.03 45.66 49.66 50.77 49.96 65.27 52.76
Trans.-Patch 55.09 47.08 51.05 52.58 50.42 64.55 53.74
Divided STA 55.93 46.88 51.37 52.03 50.24 64.31 53.36

MIST - CLIP 58.28 50.56 54.39 54.62 56.64 66.92 57.18

Table 5. QA accuracies of variants of MIST on AGQA v2 and
NExT-QA.

passes these models with large margin on questions requir-
ing causality or multi-event reasoning, e.g., Sequencing in
AGQA v2, Causal & Temporal in NExT-QA, Interaction
& Prediction in STAR, and Event in Env-QA. These re-
sults demonstrate that our proposed model can effectively
address the unique challenges of long-form video QA.

4.4. Comparison with Baselines

Here we devise several alternative solutions for long-
form video modeling to replace our proposed ISTA. Specif-
ically, in our CLIP-based MIST framework, we compare
ISTA against other solutions, by fine-tuning the same pre-
training input representation on AGQA v2 dataset.

• MeanPool: It simply takes the average of frame features
as the representation of the whole video.

• Trans.-Frame: We follow the seqTransf type in
CLIP4Clip, utilizing a Transformer to perform self-
attention over frame features to represent the video.

• Trans.-Patch: This model is similar to Trans.-Frame, but
it performs self-attention over all patch tokens.

• Divided STA: We follow TimeSformer [4] in the video
classification model to perform uni-modal two-step
Space-Time Attention over image patches.

From the results in Tab. 5, we can see that ISTA achieves
substantial improvement over other variants with larger than
3% improvement on the overall accuracy. In addition, we
find that for long-form VideoQA, the Transformer-based
answer prediction models are much better than the Mean-
Pool method, while in the video-text retrieval field, some-
times mean pooling is even better. The reason could be that
the content of a long-form video is often complex and di-
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Method AGQA v2 NExT-QA
Binary Open All C. T. D. All

MIST w/o. SS 55.37 47.50 51.40 51.24 51.39 65.43 53.49
MIST w/o. RS 58.18 50.14 54.13 54.32 56.14 66.56 56.81
MIST w/o. STA 50.93 36.75 43.79 48.99 43.92 60.37 49.12

MIST - CLIP 58.28 50.56 54.39 54.62 56.64 66.92 57.18

Table 6. Ablations results of ISTA on AGQA v2 and NExT-QA.

verse, and a simple method for aggregating all frame fea-
tures, such as mean pooling, may cause information loss.
And long-form video QA requires more powerful temporal
and spatial reasoning ability to focus on some details of a
video, while mean pooling only performs well on capturing
overall content.

Moreover, we can see that it is helpful to consider region
information in long-form QA (Divided STA and Trans.-
Path outperform Trans.-Frame). But, neither dense self-
attention nor divided STA considers the interaction among
multi-grained concepts; thus, the performance improvement
is limited. And after integrating different granularities of vi-
sual concepts during reasoning, our method benefits the per-
formance. All the above findings show that our method is
effective, and transferring pre-trained transformers to long-
form video QA is a challenging topic worth exploring.

4.5. Ablation Study

In this section, we propose several sets of variants of
MIST to show the effectiveness of its key components.

Effect of each component in ISTA. We ablate key mod-
ules in ISTA layer, i.e., Segment Selection, Region Se-
lection, or Self-attention layer, denoted as MIST w/o.
SS/RS/STA, respectively:
• MIST w/o. SS: It removes the Segment Selection mod-

ule, and only performs region selection. Patch features
with word features are fed into the self-attention module.

• MIST w/o. RS: It removes Segment Selection module.
All region features within selected segments are fed into
self-attention layer.

• MIST w/o. STA: The segment features and selected
region features are mean pooled as the output of ISTA.
The results of these variants on AGQA v2 and NExT-QA

are shown in Tab. 6. We can see that removing Segment Se-
lection causes a larger than 3% accuracy drop. The reason
could be that removing it will introduce a lot of irrelevant re-
gion information when predicting the answer and thus hurt
the performance. Tab. 6 also shows that Segment Selection
is important for multi-event reasoning because removing it
hurts the performances on questions requiring temporal rea-
soning, i.e., Causal and Temporal.

In addition, the performance drop on both datasets is
significant when removing Spatial-temporal self-attention.
The reason may be similar to MeanPool. We need a power-
ful model to capture multi-grained reasoning.

Moreover, we can see that removing spatial attention

(d)(c)

(e) (f)

(a) (b)

Figure 5. Performances of MIST with different settings. (a-e)
Performances of MIST with different hyper-parameters on AGQA
v2. (f) Performance of variants of MIST under different GFLOPs
on AGQA v2, where GFLOPs rise with the number of sampled
frames increase.

doesn’t hurt performance too much. The number of objects
in the video frames is relatively small (compared with natu-
ral scene images in image QA), and after temporal attention,
the patch number has already been greatly reduced. So, the
existing model is able to effectively focus on the appropri-
ate objects. But, It is worth mentioning that we can reduce
the computation cost by using a spatial selection module. It
may be useful when we face high-resolution or extremely
complex videos in the future.

Effects of different ISTA configurations. In this part,
we try different configurations of model architecture, in-
cluding a number of selected segments Topk, select patches
Topj , ISTA layers L, and the number of segments K. The
results are shown in Fig. 5 (a-d).

First, Fig. 5 (a) shows that the performance is relatively
good under the small Topk. The performance slightly drops
if Topk further increases. The reason could be that large k
will introduce either some incorrect segments or repeated
segments. Incorrect segments will bring misleading infor-
mation causing performance drops. Repeated segments lead
to a larger number of repeated region features, causing it
difficult for the model to focus on question and segment
information. For the number of selected patches Topj , as
shown in Fig. 5 (b), we can see that with the increase of
Topj , the performance first increases and then reaches sta-
bility. The reason for this phenomenon could be that when
selecting too few image regions, it may incorrectly filter
some regions used for answering questions. And when the
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Q2: how does the lady show affection to the baby? 
A0 (Ground Truth): pat head  A1: move it towards the baby  A2: kiss the baby  A3: put baby on her lap A4: caress baby head

Q1: what does the baby do after letting go of the cart?
A0: open her eyes  A1 (Ground Truth): move toward the slides  A2: touch the toy A3: turn to his back A4: lean forward and put head down Prediction: A1   

Prediction: A3 ×

√

Figure 6. Qualitative results of MIST on NExT-QA dataset. We visualize its prediction results along with spatial-temporal attention,
where the frames with purple and red outlines indicate the highest temporal attention score in the first and second ISTA layers, respectively.

selected regions increase, though it introduces some irrele-
vant regions, since the patch number after segment selection
is already relatively small, the self-attention module can ef-
fectively attend to relevant regions.

For the number of ISTA layers, as shown in Fig. 5 (c),
with the increase of L, the performance increases first and
then reaches stability or slightly drops. It shows that stack-
ing several layers of ISTA can benefit multi-event reason-
ing. In addition, the performance doesn’t constantly in-
crease with larger L. This is probably due to (1) the datasets
are not large enough to train a deeper network and (2) the
questions usually only involving two or three events, so con-
sidering more events may not bring more benefits. Fig. 5
(d) shows that when varying the number of video segments,
performance tends to suffer when the videos are under-
segmentation, because, in this case, each segment spans a
relatively long duration, and hence the Segment Selection
module is useless. More importantly, all those findings im-
ply that MIST is effective in multi-event reasoning by at-
tending to multiple segments.

4.6. Computation Efficiency

In Fig. 5 (e), we can see that the accuracy increases sig-
nificantly when sampling more frames. It indicates that
sampling more frames for long video QA tasks could be
necessary. Though current datasets don’t provide videos
with several minutes or hours duration, such long videos
are likely to be encountered in real application scenarios.
Efficiency issues thus could be a more crucial consideration
in such cases. In Fig. 5 (f), we compare GFLOPs vs. ac-
curacy for ours against other long-form video QA methods.
It can be seen that the standard Transformer over patches
is computationally expensive. The frame-based method is
lightweight in computation, but its performance is limited.
Our method requires only a little extra computation but
achieves much better performance. It is also worth men-
tioning that MIST doesn’t enlarge model size for higher ef-
ficiency. Compared with other methods, it only contains
some extra shallow networks for spatial-temporal attention.

4.7. Qualitative Results

We visualize some success and failure cases from the
NExT-QA dataset in Fig. 6. It can be seen that our model
can explicitly select video clips and image regions relevant
to the question. We can also find that it is difficult for the
model to correctly select segments and regions, when the
question mainly involves some concepts related to social
emotions. Existing pre-trained models may not well un-
derstand the correspondence between abstract concepts and
videos. However, we believe that these issues can be allevi-
ated by proposing better pre-trained models on short videos,
and our method is easy to build upon the stronger ones.

5. Conclusion and Future Work

This paper introduces M ulti-modal Iterative Spatial-
temporal Transformer for long-form VideoQA, which de-
composes dense self-attention into a cascade segment and
region selection module to increase the computation effi-
ciency along with a self-attention layer to reason over vari-
ous grained visual concepts. In addition, by iteratively con-
ducting selection and attention over layers, MIST better
performs multi-event reasoning. Experimental results on
four VideoQA datasets show its effectiveness and advan-
tages in efficiency and interpretability. For future work, al-
though MIST has increased the number of sample frames,
the ability to capture high-frequency motion may still need
to be improved. In addition, patch features naturally have
some limitations in complex object-level reasoning. Re-
cently, there have been some pre-trained models for specifi-
cally modeling actions and objects. It may be interesting to
try more types of pre-trained models or even combine many
of them to achieve more general reasoning.
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