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Abstract

We introduce the OBJECTFOLDER BENCHMARK, a
benchmark suite of 10 tasks for multisensory object-centric
learning, centered around object recognition, reconstruc-
tion, and manipulation with sight, sound, and touch. We
also introduce the OBJECTFOLDER REAL dataset, in-
cluding the multisensory measurements for 100 real-world
household objects, building upon a newly designed pipeline
for collecting the 3D meshes, videos, impact sounds, and
tactile readings of real-world objects. We conduct system-
atic benchmarking on both the 1,000 multisensory neural
objects from OBJECTFOLDER, and the real multisensory
data from OBJECTFOLDER REAL. Our results demon-
strate the importance of multisensory perception and reveal
the respective roles of vision, audio, and touch for differ-
ent object-centric learning tasks. By publicly releasing our
dataset and benchmark suite, we hope to catalyze and en-
able new research in multisensory object-centric learning
in computer vision, robotics, and beyond. Project page:
https://objectfolder.stanford.edu

1. Introduction
Computer vision systems today excel at recognizing ob-

jects in 2D images thanks to many image datasets [3,17,35,
40]. There is also a growing interest in modeling an object’s
shape and appearance in 3D, with various benchmarks and
tasks introduced [8, 28, 44, 45, 54, 61]. Despite the exciting
progress, these studies primarily focus on the visual recog-
nition of objects. At the same time, our everyday activities
often involve multiple sensory modalities. Objects exist not
just as visual entities, but they also make sounds and can be
touched during interactions. The different sensory modes of
an object all share the same underlying object intrinsics—
its 3D shape, material property, and texture. Modeling the
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complete multisensory profile of objects is of great impor-
tance for many applications beyond computer vision, such
as robotics, graphics, and virtual and augmented reality.

Some recent attempts have been made to combine mul-
tiple sensory modalities to complement vision for various
tasks [2,6,39,58,59,63,70,73]. These tasks are often studied
in tailored settings and evaluated on different datasets. As
an attempt to develop assets generally applicable to diverse
tasks, the OBJECTFOLDER dataset [23, 26] has been intro-
duced and includes 1,000 neural objects with their visual,
acoustic, and tactile properties. OBJECTFOLDER however
has two fundamental limitations. First, no real objects are
included; all multisensory data are obtained through simula-
tion with no simulation-to-real (sim2real) calibration. Sec-
ond, only a few tasks were presented to demonstrate the
usefulness of the dataset and to establish the possibility of
conducting sim2real transfer with the neural objects.

Consequently, we need a multisensory dataset of real ob-
jects and a robust benchmark suite for multisensory object-
centric learning. To this end, we present the OBJECT-
FOLDER REAL dataset and the OBJECTFOLDER BENCH-
MARK suite, as shown in Fig. 1.

The OBJECTFOLDER REAL dataset contains multisen-
sory data collected from 100 real-world household objects.
We design a data collection pipeline for each modality: for
vision, we scan the 3D meshes of objects in a dark room
and record HD videos of each object rotating in a lightbox;
for audio, we build a professional anechoic chamber with
a tailored object platform and then collect impact sounds
by striking the objects at different surface locations with an
impact hammer; for touch, we equip a Franka Emika Panda
robot arm with a GelSight robotic finger [18,71] and collect
tactile readings at the exact surface locations where impact
sounds are collected.

The OBJECTFOLDER BENCHMARK suite consists of 10
benchmark tasks for multisensory object-centric learning,
centered around object recognition, reconstruction, and ma-
nipulation. The three recognition tasks are cross-sensory
retrieval, contact localization, and material classification;
the three reconstruction tasks are 3D shape reconstruc-
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Figure 1. The OBJECTFOLDER BENCHMARK suite consists of 10 benchmark tasks for multisensory object-centric learning, centered
around object recognition, reconstruction, and manipulation. Complementing the 1,000 multisensory neural objects from OBJECT-
FOLDER [26], we also introduce OBJECTFOLDER REAL, which contains real multisensory data collected from 100 real-world objects,
including their 3D meshes, video recordings, impact sounds, and tactile readings.

tion, sound generation of dynamic objects, and visuo-tactile
cross-generation; and the four manipulation tasks are grasp
stability prediction, contact refinement, surface traversal,
and dynamic pushing. We standardize the task setting for
each task and present baseline approaches and results.

Experiments on both neural and real objects demonstrate
the distinct value of sight, sound, and touch in different
tasks. For recognition, vision and audio tend to be more re-
liable compared to touch, where the contained information
is too local to recognize. For reconstruction, we observe
that fusing multiple sensory modalities achieve the best re-
sults, and it is possible to hallucinate one modality from the
other. This agrees with the notion of degeneracy in cog-
nitive studies [60], which creates redundancy such that our
sensory system functions even with the loss of one compo-
nent. For manipulation, vision usually provides global po-
sitional information of the objects and the robot, but often
suffers from occlusion. Touch, often as a good complement
to vision, is especially useful to capture the accurate local
geometry of the contact point.

We will open-source all code and data for OBJECT-
FOLDER REAL and OBJECTFOLDER BENCHMARK to fa-
cilitate research in multisensory object-centric learning.

2. Related Work

Object Datasets. A large body of work in computer vi-
sion focuses on recognizing objects in 2D images [27, 29,
30, 34]. This progress is enabled by a series of image
datasets such as ImageNet [17], MS COCO [40], Object-
Net [3], and OpenImages [35]. In 3D vision, datasets
like ModelNet [68] and ShapeNet [8] focus on modeling
the geometry of objects but without realistic visual tex-
tures. Recently, with the popularity of neural rendering ap-
proaches [46,57], a series of 3D datasets are introduced with
both realistic shape and appearance, such as CO3D [54],
Google Scanned Objects [19], and ABO [14]. Unlike all
datasets above that focus only on the visual modality, we
also model the acoustic and tactile modalities of objects.

Our work is most related to OBJECTFOLDER [23, 26],
a dataset of 1,000 neural objects with visual, acoustic, and
tactile sensory data. While their multisensory data are ob-
tained purely from simulation, we introduce the OBJECT-
FOLDER REAL dataset that contains real multisensory data
collected from real-world household objects.

Capturing Multisensory Data from Real-World Objects.
Limited prior work has attempted to capture multisensory
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data from the real world. Earlier work models the mul-
tisensory physical behavior of 3D objects [48] for virtual
object interaction and animations. To our best knowledge,
there is no large prior dataset of real object impact sounds.
Datasets of real tactile data are often collected for a particu-
lar task such as robotic grasping [6,7], cross-sensory predic-
tion [39], or from unconstrained in-the-wild settings [70].
Our OBJECTFOLDER REAL dataset is the first dataset that
contains all three modalities with rich annotations to facili-
tate multisensory learning research with real object data.

Multisensory Object-Centric Learning. Recent work
uses audio and touch in conjunction with vision for a se-
ries of new tasks, including visuo-tactile 3D reconstruc-
tion [26, 58, 59, 63], cross-sensory retrieval [2, 23], cross-
modal generation [36, 39, 73], contact localization [26, 42],
robotic manipulation [6,7,37,38], and audio-visual learning
from videos [1, 9, 11, 24, 25, 47, 74]. While they only focus
on a single task of interest in tailored settings, each with a
different set of objects, we present a standard benchmark
suite of 10 tasks based on 1,000 neural objects from OB-
JECTFOLDER and 100 real objects from OBJECTFOLDER
REAL for multisensory object-centric learning.

3. OBJECTFOLDER REAL

The OBJECTFOLDER dataset [26] contains 1,000 multi-
sensory neural objects, each represented by an Object File,
a compact neural network that encodes the object’s intrin-
sic visual, acoustic, and tactile sensory data. Querying it
with extrinsic parameters (e.g., camera viewpoint and light-
ing conditions for vision, impact location and strength for
audio, contact location and gel deformation for touch), we
can obtain the corresponding sensory signal at a particular
location or condition.

Though learning with these virtualized objects with sim-
ulated multisensory data is exciting, it is necessary to have a
benchmark dataset of multisensory data collected from real
objects to quantify the difference between simulation and
reality. Having a well-calibrated dataset of real multisen-
sory measurements allows researchers to benchmark differ-
ent object-centric learning tasks on real object data without
having the need to actually acquire these objects. For tasks
in our benchmark suite in Sec. 4, we show results on both
the neural objects from OBJECTFOLDER and the real ob-
jects from OBJECTFOLDER REAL when applicable.

Collecting real multisensory data densely from real ob-
jects is very challenging, requiring careful hardware design
and tailored solutions for each sensory modality by tak-
ing into account the physical constraints (e.g., robot joint
limit, kinematic constraints) in the capture system. Next,
we introduce how we collect the visual (Sec. 3.1), acoustic
(Sec. 3.2), and tactile (Sec. 3.3) data for the 100 real objects
shown in Fig. 1. Please also visit our project page for inter-
active demos to visualize the captured multisensory data.

3.1. Visual Data Collection

We use an EinScan Pro HD 2020 handheld 3D Scanner1

to scan a high-quality 3D mesh and the corresponding color
texture for each object. The scanner captures highly accu-
rate 3D features by projecting a visible light array on the ob-
ject and records the texture through an attached camera. The
minimum distance between two points in the scanned point
cloud is 0.2 mm, enabling fine-grained details of the ob-
ject’s surface to be retained in the scanned mesh. For each
object, we provide three versions of its mesh with differ-
ent resolutions: 16K triangles, 64K triangles, and Full res-
olution (the highest number of triangles possible to achieve
with the scanner). Additionally, we record an HD video of
each object rotating in a lightbox with a professional camera
to capture its visual appearance, as shown in Fig. 2a.

3.2. Acoustic Data Collection

We use a professional recording studio with its walls
treated with acoustic melamine anechoic foam panels and
the ceiling covered by absorbing acoustic ceiling tiles, as
shown in Fig. 2b. The specific setup used to collect audio
data varies with the object’s weight and size. Most objects
are placed on a circular platform made with thin strings,
which minimally affects the object’s vibration pattern when
struck. Light objects are hung with a thin string and hit
while suspended in the air. Heavy objects are placed on top
of an anechoic foam panel to collect their impact sounds.

For each object, we select 30–50 points based on its
scale following two criteria. First, the points should roughly
cover the whole surface of the object and reveal its shape;
Second, we prioritize points with specific local geometry or
texture features, such as the rim/handle of a cup. For each
selected point, we collect a 5-second audio clip of striking
it along its normal direction with a PCB2 impact hammer
(086C01). The impact hammer is equipped with a force
transducer in its tip, providing ground-truth contact forces
synchronized with the audio recorded by a PCB phantom-
powered free-field microphone (376A32). It is made of
hardened steel, which ensures that the impacts are sharp
and short enough to excite the higher-frequency modes of
each object. We also record the accompanying video with a
RealSense RGBD camera along with each impact sound.

3.3. Tactile Data Collection

Fig. 2c illustrates our setup for the tactile data collection.
We equip a Franka Emika Panda robot arm with a GelSight
touch sensor [18, 71] to automate the data collection pro-
cess. GelSight sensors are vision-based tactile sensors that
measure the texture and geometry of a contact surface with
high spatial resolution through an elastomer and an embed-

1https://www.einscan.com
2https://www.pcb.com
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(a) Visual data collection (b) Acoustic data collection (c) Tactile data collection
Figure 2. Illustration of our multisensory data collection pipeline for the OBJECTFOLDER REAL dataset. We design a tailored hardware
solution for each sensory modality to collect high-fidelity visual, acoustic, and tactile data for 100 real household objects.

ded camera. We use the R1.5 GelSight tactile robot finger3,
which has a sensing area of 32× 24mm2.

We mount a RealSense RGBD camera at each corner of
the robot frame. After camera calibration, we use the Re-
alSense ROS package to get a point cloud estimation of the
target object. We also extract a point cloud from the scanned
3D mesh of the object. In order to align the two point
clouds, we first manually select four roughly corresponding
points on both point clouds to provide an initial registration.
Next, we use the Iterative Closest Point (ICP) [5] algorithm
for point cloud alignment. We add a manual adjustment step
for cases where the ICP alignment is not accurate.

We collect tactile data at the same set of surface points
where the impact sounds are collected for each object. For
each point of interest, we provide the robot with the tar-
get position and orientation of the GelSight robot finger;
we then use position control to automatically reach the tar-
get point following the normal direction of the target point.
The robot finger stops when the tactile sensor cannot de-
form further. We collect a video of the tactile RGB images
that record the gel deformation process. We also use an in-
hand camera and a third-view camera to capture two videos
of the contact process for each point.

4. ObjectFolder Benchmark Suite
Our everyday activities involve the perception and ma-

nipulation of various objects. Modeling and understanding
the multisensory signals of objects can potentially benefit
many applications in computer vision, robotics, virtual re-
ality, and augmented reality. The sensory streams of sight,
sound, and touch all share the same underlying object in-
trinsics. During interactions, they often work together to re-
veal the object’s category, 3D shape, texture, material, and
physical properties.

Motivated by these observations, we introduce a suite of
10 benchmark tasks for multisensory object-centric learn-
ing, centered around object recognition (Sec. 4.1, 4.2, and
4.3), object reconstruction (Sec. 4.4, 4.5, and 4.6), and ob-

3https://www.gelsight.com

ject manipulation (Sec. 4.7, 4.8, 4.9, and 4.10), as shown
in Fig. 1. In the sections below, we first present the moti-
vation for each task. Then, we standardize the task setting,
define evaluation metrics, draw its connection to existing
tasks, and develop baseline models leveraging state-of-the-
art components from the literature. In the end, we show a
teaser result for each task. Please see Supp. for the com-
plete results, baselines, and experimental setups.

4.1. Cross-Sensory Retrieval
Motivation When seeing a wine glass, we can mentally
link how it looks to how it may sound when struck or feel
when touched. For machine perception, cross-sensory re-
trieval also plays a crucial role in understanding the relation-
ships between different sensory modalities. While existing
cross-modal retrieval benchmarks and datasets [13, 50–53]
mainly focus on retrieval between images and text, we per-
form cross-sensory retrieval between objects’ visual im-
ages, impact sounds, and tactile readings.

Task Definition. Cross-sensory retrieval requires the
model to take one sensory modality as input and retrieve
the corresponding data of another modality. For instance,
given the sound of striking a mug, the “audio2vision” model
needs to retrieve the corresponding image of the mug from
a pool of images of hundreds of objects. In this benchmark,
each sensory modality (vision, audio, touch) can be used as
either input or output, leading to 9 sub-tasks.

Evaluation Metrics and Baselines. We measure the
mean Average Precision (mAP) score, a standard metric
for evaluating retrieval. We adopt several state-of-the-art
methods as the baselines: 1) Canonical Correlation Anal-
ysis (CCA) [31], 2) Partial Least Squares (PLSCA) [16],
3) Deep Aligned Representations (DAR) [2], and 4) Deep
Supervised Cross-Modal Retrieval (DSCMR) [75].

Teaser Results. Fig. 3 shows examples of the top re-
trieved instances for DAR [2], the best-performing baseline.
We can see that vision and audio tend to be more reliable for
retrieval, while a single touch reading usually does not con-
tain sufficient discriminative cues to identify an object.
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Query Input Vision Retrieval Audio Retrieval Touch Retrieval

Figure 3. Examples of the top-2 retrieved instances for each
modality using DAR [2], the best-performing baseline. For au-
dio and touch retrieval, we also show an image of the object.

ND = 86.89%ND = 3.85% ND = 7.53% ND = 2.49%

Vision Touch Audio Fusion

Ground-truth contact location Predicted contact location

Figure 4. Contact localization results for a ceramic mug object
with our multisensory contact regression model.

4.2. Contact Localization

Motivation. Localizing the contact point when interact-
ing with an object is of great interest, especially for robot
manipulation tasks. Each modality offers complementary
cues: vision displays the global visual appearance of the
contacting object; touch offers precise local geometry of
the contact location; impact sounds at different surface lo-
cations are excited from different vibration patterns. In
this benchmark task, we use or combine the object’s visual,
acoustic, and tactile observations for contact localization.

Task Definition. Given the object’s mesh and different
sensory observations of the contact position (visual images,
impact sounds, or tactile readings), this task aims to predict
the vertex coordinate of the surface location on the mesh
where the contact happens.

Evaluation Metrics and Baselines. We use the average
Normalized Distance (ND) as our metric, which measures
the distance between the predicted contact position and the
ground-truth position normalized by the largest distance of
two points on the object’s surface. We evaluate an existing
baseline Point Filtering [26, 41], where the contact position
is recursively filtered out based on both the multisensory
observations and the relative pose between consecutive con-
tacts. This method performs very well but heavily relies on
knowing the relative pose of the series of contacts, which
might be a strong assumption in practice. Therefore, we
also propose a new differentiable end-to-end learning base-
line for contact localization—Multisensory Contact Regres-
sion (MCR), which takes the object mesh and multisensory
observations as input to regress the contact position directly.

Teaser Results. Fig. 4 shows an example result for a ce-
ramic mug object with our MCR baseline. While vision and

Vision TouchAudio Fusion

CD = 1.30 cm CD = 2.10 cm CD = 3.45 cm CD = 1.06 cm

Figure 5. 3D reconstruction results of a wooden chair object. The
top/bottom row shows the point cloud reconstructions and the er-
ror over ground-truth points, respectively. Red indicates poorly-
reconstructed areas; CD denotes Chamfer Distance.

audio perform similarly, a single touch cannot easily locate
where the contact is. Combining the three sensory modali-
ties leads to the best result.

4.3. Material Classification
Motivation. Material is an intrinsic property of an object,
which can be perceived from different sensory modalities.
For example, a ceramic object usually looks glossy, sounds
crisp, and feels smooth. In this task, we predict an object’s
material category based on its multisensory observations.

Task Definition. All objects are labeled by seven material
types: ceramic, glass, wood, plastic, iron, polycarbonate,
and steel. The task is formulated as a single-label classifi-
cation problem. Given an RGB image, an impact sound, a
tactile image, or their combination, the model must predict
the correct material label for the target object.

Evaluation Metrics and Baselines. We report the classi-
fication accuracy and use two baselines: 1) ResNet [30] and
2) FENet [69], which uses a different base architecture.

Teaser Results. We conduct material classification on
both neural and real objects. Fusing different modalities
largely improves the material classification accuracy. We
also finetune the model trained on neural objects with only
a few real-world measurements and achieve 6% accuracy
gain in classifying real objects.

4.4. 3D Shape Reconstruction

Motivation. While single-image shape reconstruction has
been widely studied [12,44,49,73], humans don’t use vision
alone to perceive the shape of objects. For example, we
can touch an object’s surface to sense its local details, or
even knock and listen to the sound it makes to estimate its
scale. The effective fusion of complementary multisensory
information plays a vital role in 3D shape reconstruction,
which we study in this benchmark task.

Task Definition. Given an RGB image of an object, a se-
quence of tactile readings from the object’s surface, or a
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Figure 6. Example results of sound generation for a falling steel
bowl object with the RegNet [10] baseline.

sequence of impact sounds of striking its surface locations,
the task is to reconstruct the point cloud of the target ob-
ject given combinations of these multisensory observations.
This task is related to prior efforts on visuo-tactile 3D recon-
struction [55, 58, 59, 62], but here we use all three sensory
modalities and study their respective roles.

Evaluation Metrics and Baselines. We report Chamfer
Distance [4] between the reconstructed and the ground-truth
point cloud, a widely used metric to evaluate the quality
of shape reconstruction. We use two state-of-the-art meth-
ods as our baseline models: 1) Mesh Deformation Network
(MDN) [59], which is based on deforming the vertices of an
initial mesh through a graph convolutional neural network,
and 2) Point Completion Network (PCN) [26, 72], which
predicts the whole point cloud from latent features or in-
complete point cloud constructed from local observations.

Teaser Results. For 3D reconstruction, our observation is
that vision usually provides global yet coarse information,
audio indicates the object’s scale, and touch provides pre-
cise local geometry of the object’s surface. Fig. 5 shows
an example of a wooden chair object. Both qualitative and
quantitative results show that the three modalities make up
for each other’s deficiencies, and achieve the best recon-
struction results when fused together.

4.5. Sound Generation of Dynamic Objects

Motivation Objects make unique sounds during interac-
tions. When an object falls, we can anticipate how it sounds
by inferring from its visual appearance and movement. In
this task, we aim to generate the sound of dynamic objects
based on videos displaying their moving trajectories.

Task Definition. Given a video clip of a falling object,
the goal of this task is to generate the corresponding sound
based on the visual appearance and motion of the object.
The generated sound must match the object’s intrinsic prop-
erties (e.g., material type) and temporally align with the
object’s movement in the given video. This task is re-
lated to prior work on sound generation from in-the-wild
videos [10, 32, 76], but here we focus more on predicting
soundtracks that closely match the object dynamics.

PSNR: 24.43

PSNR: 20.11

PSNR: 35.71

PSNR: 29.00

Vision InputTouch Input Ground-truth Prediction PredictionGround-truth

Figure 7. Examples of Touch2Vision (left) and Vision2Touch
(right) cross-generation results with the VisGel [39] baseline.

Evaluation Metrics and Baselines. We use the follow-
ing metrics for evaluating the sound generation quality: 1)
STFT-Distance, which measures the Euclidean distance be-
tween the ground truth and predicted spectrograms, 2) En-
velope Distance, which measures the Euclidean distance be-
tween the envelopes of the ground truth and the predicted
signals, and 3) CDPAM [43], which measures the percep-
tual audio similarity. We use two state-of-the-art methods
as our baselines: RegNet [10] and SpecVQGAN [32].

Teaser Results. Fig. 6 shows an example of the predicted
sound for a falling plate. We observe that the generated
sound matches well with the ground-truth sound of the ob-
ject perceptually, but it is challenging to predict the exact
alignment that matches the object’s motion.

4.6. Visuo-Tactile Cross-Generation

Motivation. When we touch an object that is visually oc-
cluded (e.g., searching for a wallet from a backpack), we
can often anticipate its visual textures and geometry merely
based on the feeling on our fingertips. Similarly, we may
imagine the feeling of touching an object purely from a
glimpse of its visual appearance and vice-versa. To real-
ize this intuition, we study the visuo-tactile cross-generation
task initially proposed in [39].

Task Definition. We can either predict touch from vi-
sion or vision from touch, leading to two subtasks: 1) Vi-
sion2Touch: Given an image of a local region on the ob-
ject’s surface, predict the corresponding tactile RGB image
that aligns with the visual image patch in both position and
orientation; and 2) Touch2Vision: Given a tactile reading on
the object’s surface, predict the corresponding local image
patch where the contact happens.

Evaluation Metrics and Baselines. Both the visual and
tactile sensory data are represented by RGB images. There-
fore, we evaluate the prediction performance for both sub-
tasks using Peak Signal to Noise Ratio (PSNR) and Struc-
tural Similarity (SSIM) — widely used metrics for assess-
ing image prediction quality. We use two image-to-image
translation methods as our baselines: 1) Pix2Pix [33], which
is a general-purpose conditional GAN framework, and 2)
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Figure 8. Grasp stability prediction results with a wine glass. We
show an example of a successful grasp (left) and one of a failed
grasp (right). The table shows the prediction accuracy with V and
T denoting using vision and/or touch, respectively.

VisGel [39], which is a variant of Pix2Pix that is specifi-
cally designed for cross-sensory prediction.

Teaser Results. Fig. 7 shows some examples of visuo-
tactile cross-generation. Very accurate touch signals can be
reconstructed from local views of the objects, while visual
image patches generated from tactile input tend to lose sur-
face details. We suspect this is because different objects
often share similar local patterns, making it ambiguous to
invert visual appearance from a single tactile reading.

4.7. Grasp-Stability Prediction

Motivation. Grasping an object is inherently a multisen-
sory experience. When we grasp an object, vision helps
us quickly localize the object, and touch provides an accu-
rate perception of the local contact geometry. Both visual
and tactile senses are useful for predicting the stability of
robotic grasping, which has been studied in prior work with
various task setups [7, 56, 66].

Task Definition. The goal is to predict whether a robotic
gripper can successfully grasp and stably hold an object be-
tween its left and right fingers based on either an image of
the grasping moment from an externally mounted camera, a
tactile RGB image obtained from the GelSight robot finger,
or their combination. The grasp is considered failed if the
grasped object slips by more than 3 cm.

Evaluation Metrics and Baselines. We report the ac-
curacy of grasp stability prediction. We implement
TACTO [66] as the baseline method, which uses a ResNet-
18 [30] network for feature extraction from the visual and
tactile RGB images to predict the grasp stability.

Teaser Results. We show a successful and a failed grasp
for a wine glass in Fig. 8. Vision and touch are both helpful
in predicting grasp stability, and combining the two sensory
modalities leads to the best result.

4.8. Contact Refinement

Motivation. When seeing a cup, we can instantly analyze
its shape and structure, and decide to put our fingers around
its handle to lift it. We often slightly adjust the orientations

Start Goal Trajectory Executions

V
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n

To
uc
h

Time

V T V + T

SR ↑ 0.86 0.83 0.88
AE ↓ (◦) 0.38 0.56 0.34

Figure 9. Contact refinement results of a wooden cup object. From
left to right, we show the start and goal observations for both vision
(top) and touch (bottom), and the actual trajectory executions. The
table shows the success rate (SR) and the angle error (AE) for
using vision (V), touch (T), or its combination.

of our fingers to achieve the most stable pose for grasping.
For robots, locally refining how it contacts an object is of
great practical importance. We define this new task as con-
tact refinement, which can potentially be a building block
for many dexterous manipulation tasks.

Task Definition. Given an initial pose of the robot finger,
the task is to change the finger’s orientation to contact the
point with a different target orientation. Each episode is
defined by the following: the contact point, the start orien-
tation of the robot finger along the vertex normal direction
of the contact point, and observations from the target finger
orientation in the form of either a third view camera image,
a tactile RGB image, or both. We use a continuous action
space over the finger rotation dimension. The task is suc-
cessful if the finger reaches the target orientation within 15
action steps with a tolerance of 1◦.

Evaluation Metrics and Baselines. We evaluate using
the following metrics: 1) success rate (SR), which is the
fraction of successful trials, and 2) average Angle Er-
ror (AE) across all test trials. Model Predictive Control
(MPC) [20, 22, 64] has been shown to be a powerful frame-
work for planning robot actions. Therefore, we implement
Multisensory-MPC as our baseline, which uses SVG [65]
for future frame prediction, and Model Predictive Path Inte-
gral Control (MPPI) [67] for training the control policy.

Teaser Results. Fig. 9 shows a trajectory execution exam-
ple for using both vision and touch. We can obtain an 88%
success rate and average angle error of 0.17◦ by combining
both modalities using our Multisensory-MPC baseline.

4.9. Surface Traversal

Motivation. When a robot’s finger first contacts a posi-
tion on an object, it may not be the desired surface loca-
tion. Therefore, efficiently traversing from the first contact
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V T V + T

SR ↑ 0.26 0.54 0.80
PE ↓ (mm) 1.77 3.32 0.84

Figure 10. Trajectory executions examples for surface traversal
with an iron pan. The table shows the success rate (SR) and aver-
age position error (PE) for using vision (V) and/or touch (T).

point to the target location is a prerequisite for performing
follow-up actions or tasks. We name this new task surface
traversal, where we combine visual and tactile sensing to
efficiently traverse to the specified target location given a
visual and/or tactile observation of the starting location.

Task Definition. Given an initial contacting point, the
goal of this task is to plan a sequence of actions to move the
robot finger horizontally or vertically in the contact plane to
reach another target location on the object’s surface. Each
episode is defined by the following: the initial contact point,
and observations of the target point in the form of either a
third-view camera image, a tactile RGB image, or both. The
task is successful if the robot finger reaches the target point
within 15 action steps with a tolerance of 1 mm.

Evaluation Metrics and Baselines. We report the fol-
lowing two metrics: 1) success rate (SR), and 2) average
position error (PE), which is the average distance between
the final location of the robot finger on the object’s surface
and the target location. We use the same Multisensory-MPC
baseline as in the contact refinement task.

Teaser Results. Fig. 10 shows the surface traversal results
with an iron pan, where the back of the pan has a sequence
of letters. The Multisensory-MPC model can successfully
traverse from the start location to the goal location. We ob-
serve significant gains when combining vision and touch,
achieving a success rate of 80%.

4.10. Dynamic Pushing

Motivation. To push an object to a target location, we use
vision to gauge the distance and tactile feedback to con-
trol the force and orientation. For example, in curling, the
player sees and decides on the stone’s target, holds its han-
dle to push, and lightly turns the stone in one direction or
the other upon release. Both visual and tactile signals play a
crucial role in a successful delivery. We name this task dy-
namic pushing, which is related to prior work on dynamic
adaptation for pushing [21] with only vision.

V T V + T

PE ↓ (cm) 23.81 21.76 17.63

Figure 11. Examples of dynamic pushing. The table shows the
average position error (PE) for using vision (V) and/or touch (T)
with a rinsing cup.

Task Definition. Given example trajectories of pushing
different objects together with their corresponding visual
and tactile observations, the goal of this task is to learn a
forward dynamics model that can quickly adapt to novel
objects with a few contextual examples. With the learned
dynamics model, the robot is then tasked to push the ob-
jects to new goal locations.

Evaluation Metrics and Baselines. We report the aver-
age position error (PE) across all test trials. For the base-
line, we use a ResNet-18 network for feature extraction and
a self-attention mechanism for modality fusion to learn the
forward dynamics model. We use a sampling-based opti-
mization algorithm (i.e., cross-entropy method [15]) to ob-
tain the control signal.

Teaser Results. Fig. 11 shows an example of pushing a
novel test object to a new goal location. Vision and touch
are both useful for learning object dynamics, and combining
the two sensory modalities leads to the best results.

5. Conclusion
We presented the OBJECTFOLDER BENCHMARK, a

suite of 10 benchmark tasks centered around object recogni-
tion, reconstruction, and manipulation to advance research
on multisensory object-centric learning. We also introduced
OBJECTFOLDER REAL, the first dataset that contains all vi-
sual, acoustic, and tactile real-world measurements of 100
real household objects. We hope our new dataset and bench-
mark suite can serve as a solid building block to enable fur-
ther research and innovations in multisensory object mod-
eling and understanding.
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