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Figure 1. The 3D reconstruction by NeuralRecon [26] and the proposed method. Our method reconstructs the scene with more fine details.

Abstract

We propose VisFusion, a visibility-aware online 3D
scene reconstruction approach from posed monocular
videos. In particular, we aim to reconstruct the scene from
volumetric features. Unlike previous reconstruction meth-
ods which aggregate features for each voxel from input
views without considering its visibility, we aim to improve
the feature fusion by explicitly inferring its visibility from
a similarity matrix, computed from its projected features in
each image pair. Following previous works, our model is
a coarse-to-fine pipeline including a volume sparsification
process. Different from their works which sparsify voxels
globally with a fixed occupancy threshold, we perform the
sparsification on a local feature volume along each visual
ray to preserve at least one voxel per ray for more fine de-
tails. The sparse local volume is then fused with a global
one for online reconstruction. We further propose to pre-
dict TSDF in a coarse-to-fine manner by learning its resid-
uals across scales leading to better TSDF predictions. Ex-
perimental results on benchmarks show that our method
can achieve superior performance with more scene details.
Code is available at: https://github.com/huiyu-
gao/VisFusion

1. Introduction
3D scene reconstruction from RGB videos is a critical

task in 3D computer vision, which finds its broad appli-

cations in augmented reality (AR), robot navigation and
human-robot interaction. These applications require accu-
rate, complete and real-time 3D reconstruction of scenes.
While state-of-the-art SLAM systems [3, 31] can track the
camera motion accurately by leveraging both visual and in-
ertial measurements in an unknown environment, the recon-
structed map from a SLAM system only contains sparse
point clouds such that dense reconstruction from monocular
videos remains as a challenging problem.

Many previous methods [1, 18] assume the observation
of the whole video sequence for the reconstruction, which is
not practical for online applications like VR games. In this
paper, we follow [26] to propose an online 3D reconstruc-
tion method. Given input images, most earlier 3D recon-
struction methods [23,35] adopt a two-stage pipeline, which
first estimates the depth map for each keyframe based on
multi-view stereo (MVS) algorithms [11,14,29,32] and then
fuses the estimated depth maps into a Truncated Signed Dis-
tance Function (TSDF) volume [19]. The Marching Cubes
algorithm [16] is then used to extract the 3D mesh. How-
ever, those two-stage pipelines struggle to produce glob-
ally coherent reconstruction since each depth map is esti-
mated separately [26], especially for low texture regions
like walls whose depth values are extremely hard to esti-
mate with only several local views. To address this, more
recent works [2,26,33] propose to fuse image features into a
global 3D volume and directly regress TSDF [26,33] or oc-
cupancy [2] given the feature volume. Such strategy allows
for an end-to-end global surface reconstruction.
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The problem of occlusion naturally arises for global fea-
ture fusion. Previous methods [2, 26] either completely ig-
nore it by simply averaging the multi-view features [26] for
each voxel or implicitly model the visibility via the atten-
tion mechanism [2]. However, without explicit supervision,
such attention cannot guarantee to encode the correct visi-
bility. In this paper, we thus propose to explicitly predict the
visibility weights of all views for each voxel with ground
truth supervision. In addition, voxels will be considered vis-
ible in at least one view in [2] due to the normalization of
the attention mechanism, while in our method, empty vox-
els and fully occluded voxels are invisible in any view to
avoid introducing noises. Specifically, given a fragment of
a video sequence observing the same 3D region, we first
project each 3D voxel onto different view images to obtain
2D features. We then compute the pair-wise similarities of
these features. Since features of the same occupied voxel
are often similar across views, such similarity map naturally
encodes the information of whether a 3D voxel is visible at
a particular camera view or not (see Fig. 4). We thus use
this similarity map to predict visibility weights.

For volumetric-based methods, it is common practice to
adopt a coarse-to-fine pipeline [2,18,25,26]. One of its key
steps is voxel sparsification which eliminates empty voxels
at coarse level for better performance and smaller memory
consumption. To the best of our knowledge, previous meth-
ods [2,18,25,26] propose to globally sparsify the volume by
removing voxels whose occupancy probabilities are lower
than a predefined threshold. However, such fixed threshold
tends to sparsify more voxels than necessary, especially to
remove voxels covering thin structures such as chair legs.
At coarse level where the thin structure only occupies a
small portion of the voxel, the features of such thin struc-
ture are likely ignored leading to low occupancy probability
prediction and resulting in the removal of such voxel. How-
ever, such voxel should rank highly, based on the occupancy
probability, among voxels along the visual ray defined by
the pixel observing this thin structure. Inspired by this, we
introduce a novel ray-based sparsification process. In par-
ticular, for any image, we first cast a ray from every pixel
to get the voxels this ray passes. For each ray, we then keep
voxels with top occupancy scores to next level. Unlike pre-
vious works [2, 18, 25, 26] that sparsify the global volume,
our ray-based sparsification is performed on local 3D vol-
ume. Our ray-based sparsifying strategy allows us to retain
more surface voxels to the next level leading to a more com-
plete reconstruction.

Furthermore, previous coarse-to-fine methods [2, 18, 25,
26] directly regress the TSDF at each level discarding the
relationships between the TSDF predicted at coarse and that
at fine level. In our method, at each fine level, we aim to pre-
dict a residual between the TSDF volume upsampled from
the coarser level and that of the fine level, which is shown

to be more accurate in TSDF estimation.
In summary, our contributions are (i) a visibility-aware

feature fusion module which explicitly predicts visibility
weights used for feature aggregation for voxels; (ii) a ray-
based voxel sparsifying algorithm which leads to the recon-
struction of more scene structure details. (iii) an easier way
of TSDF regression by learning the residual to the upsam-
pled coarse TSDF volume for improved TSDF estimation.
Our model outperforms the existing online feature fusion
based methods.

2. Related Work
Multi-view depth estimation. COLMAP [22] is one of
the most popular methods for Multi-View Stereo which
jointly estimate the depth and normal with photometric and
geometric consistency. Although it is robust and accu-
rate, COLMAP has difficulty in densely reconstructing ar-
eas without distinctive features. Deep learning-based meth-
ods [11, 12, 32] try to relax the dependency of the photo-
consistency assumption with data-driven priors. Although
some recent studies [9,11,12,14,36] show that constructing
3D cost volumes followed by 3D CNNs for the cost vol-
ume processing could achieve promising results, they have
large gpu memory cost and struggle to achieve real-time
inference speed. Recently, SimpleRecon [21] utilizes im-
age priors and integrates the geometric metadata into the
cost volume without using 3D convolutions. The scene ge-
ometry is then obtained by a depth fusion approach, such
as volumetric TSDF fusion [7], which fuses the estimated
depth maps into geometric 3D representation. While the
incremental volumetric TSDF fusion method proposed by
KinectFusion [19] is widely applied due to its simplicity and
effectiveness, such two-stage approach suffers from com-
putational redundancy and causes artifacts in the 3D recon-
struction as the depth maps are estimated separately.
End-to-end 3D scene reconstruction. To achieve coherent
reconstruction, several volumetric approaches are proposed
to directly infer the 3D geometry from volumetric features
in an end-to-end manner. SurfaceNet [13] is the first vol-
umetric method to predict volumetric surface occupancy
from two input images with a 3D convolutional network.
Atlas [18] extends this work to multi-view setup by aver-
aging the features back projected from all input images in
the sequence and directly regressing the global TSDF vol-
ume of the scene. VolumeFusion [5] and 3DVNet [20] fur-
ther improve Atlas by using the estimated depth maps of in-
put views as intermediate representations whose training is
supervised by ground truth depth supervision. VoRTX [25]
adopts the transformer architecture [30] for multi-view fea-
ture fusion. While improving the reconstruction quality,
these methods [5,18,20,25] can only work in an offline fash-
ion, requiring entire image sequences as input, thus cannot
achieve online reconstruction.
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Figure 2. Overview of our coarse-to-fine pipeline. Given a fragment of a video, we first construct 3D feature volumes of different
resolutions. The feature of each voxel is obtained by projecting it back to every camera view. The features from different camera views are
then fused via the predicted visibility (local feature fusion). We then extract the local occupancy and TSDF from the fused feature followed
by a ray-based sparsification process to remove empty voxels. The sparse local feature volume is finally fused to global via GRU and used
to produce the final TSDF. The global feature and final TSDF of coarse level are further upsampled and fed to the next level for refinement.

For online end-to-end 3D reconstruction methods, Neu-
ralRecon [26] proposes the first real-time framework for
dense reconstruction from posed monocular videos. It con-
verts Atlas [18] to an incremental reconstruction system by
averaging features only within local video fragments and
fusing across fragments using a 3D convolutional variant of
Gated Recurrent Unit (GRU) [6] module. However, simply
fusing image features by averaging in local fragments does
not effectively model the visibility and solve occlusion is-
sues. In addition, although NeuralRecon employs a coarse-
to-fine approach to reduce memory consumption, it uses a
global threshold to sparsify voxels between layers, result-
ing in losing fine structures. Similar to [25], Transformer-
Fusion [2] also leverages the transformer architecture [30]
to fuse features in the global voxel space. It performs in an
online manner by saving features from multiple views and
dropping saved features with the lowest attention weight.
However, this design makes TransformerFusion suffer from
high computing costs and storage consumption. Recently,
PlanarRecon [33] proposes an incremental framework for
3D plane detection and fusion, which mainly focuses on
planar region reconstruction. In contrast, we aim for the
reconstruction of the scene structure in general.
Residual learning and refinement. In MVS task, many
depth estimation works [4, 10, 34] predict a residual to an
initial depth prediction and refine it gradually across multi-
scales. Inspired by such strategy, we propose a cascaded
TSDF learning framework that gradually learns the TSDF
residual to the one learned from a coarser level and recon-

structed from previous fragments. By doing so, our model
is able to achieve better reconstruction performance.

3. Method

Let us now introduce our approach to online 3D scene
reconstruction from posed monocular videos. Given a se-
quence of monocular images {Ii} of a scene, where Ii ∈
RH×W×3 represents the ith RGB image in the video se-
quence, with their corresponding camera intrinsics, rota-
tion matrices, and translation vectors {Ki ∈ R3×3,Ri ∈
R3×3, ti ∈ R3} estimated by a SLAM system, our method
incrementally reconstructs the dense 3D geometry of the
scene. To achieve online reconstruction, following [11, 26],
we sequentially select suitable keyframes. A new incom-
ing frame is selected as a keyframe if the camera motion
is greater than a predefined threshold [26]. We then split
the keyframe stream into M non-overlapping fragments
Ft = {Ii}Nt

i=N(t−1)+1, t = {1, 2, . . . ,M}, each of which
consists of N consecutive keyframes. The view-frustum of
each keyframe image is computed with a fixed max depth
range dmax. Same as [26], we only reconstruct the cubic-
shaped region that encloses the view-frustums of all images
within this fragment. Such region is called fragment bound-
ing volume (FBV) [26].

An overview of our framework is shown in Fig. 2. Our
method predicts the TSDF representation of the scene, in a
coarse-to-fine manner. It consists of three modules, namely,
the local feature fusion module, the local sparsification
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Figure 3. Local feature fusion. For each voxel, given the N features extracted from different camera views, we first compute their pairwise
cosine similarities. Such similarity map is then flattened as a vector. The 3D volume of such vectors is processed by a 3D CNN to produce
visibility weights W, which is used to aggregate the back projected features. With another 3D CNN followed by one MLP layer, we obtain
the local occupancy and TSDF for our ray-based sparsification.

module, and the global feature fusion module. Below, we
introduce these modules in detail.

3.1. Local Feature Fusion

Here we discuss our proposed local feature fusion mod-
ule at level l of our coarse-to-fine framework. Given N im-
ages in current fragment Ft, our local feature fusion module
aims to aggregate image features according to the visibility
of voxels in the corresponding FBV. In particular, the lo-
cal FBV is represented as a 3D voxel grid of D(l) voxels
V(l) ∈ RD(l)×3. Note that, the FBVs at different levels
have different resolutions thus different numbers of vox-
els 1. We follow [26] to use a variant of MnasNet [27] to
extract 2D features from input images. Each volume is then
projected to different camera views to obtain an initial local
feature volume F(l) ∈ RD(l)×N×C(l)

as,

F
(l)
dn = H(l)

n (Π(K(l)
n ,RnV

(l)
d + tn)) , (1)

where F
(l)
dn ∈ RC(l)

is the feature vector of voxel V(l)
d ob-

tained from nth image feature map H
(l)
n ∈ RH(l)×W (l)×C(l)

.
With a little abuse of notation, we also use H

(l)
n (·) to repre-

sent 2D feature interpolation. Π(·, ·) is the camera perspec-
tive projection. Note that, we use different resolutions of 2D
image features for different levels and the camera intrinsics
are also changed accordingly. For each voxel, given the fea-
tures from N different views {F(l)

dn}Nn=1, our goal now is to
fuse these local features into one. Unlike previous scene
reconstruction methods [18, 26] that fuse those features by
simply averaging them, we propose to directly predict the
visibility weights for feature fusion.

Let us first define the visibility of a voxel. A voxel is
considered to be occupied when its distance to the nearest
surface is less than the truncation distance λ of the TSDF. A
voxel is visible to a view if it is occupied and not occluded
by other occupied voxels. This differs from the visibility

1At the first (coarsest) level, the local volume will be a full grid while
for the rest, the volumes will be a small subset of the full grid upsampled
from the sparsified ones of the previous level.

defined in [15, 25] where empty voxels are also treated as
visible as long as they are not occluded 2. As illustrated
in Fig. 3, we proposed to predict the visibility from the pair-
wise feature similarities. In particular, given the features of
a voxel F(l)

dn, we compute the cosine similarity between fea-
tures from every two views as,

S
(l)
dmn =

F
(l)T

dm F
(l)
dn

∥F(l)
dm∥2∥F(l)

dn∥2
, (2)

where S
(l)
d ∈ RN×N is the similarity map of this voxel and

m,n ∈ {1, 2, · · · , N}. As illustrated in Fig. 4, such simi-
larity maps provide important geometry heuristics for pre-
dicting the visibility of each voxel in the local fragment. We
then eliminate the diagonal entries which are always ones
and flatten the map to obtain a long similarity feature de-
noted as Ŝ(l)

d ∈ RN(N−1). For the whole FBV, we then have
a similarity volume Ŝ(l) ∈ RD(l)×N(N−1). It is fed into a
3D CNN to obtain visibility weights Ŵ(l) ∈ RD(l)×N . For
each voxel, there are N weights that will be used to fuse the
local feature volume F(l) as,

F̂
(l)
d =

N∑
n=1

Ŵ
(l)
dnF

(l)
dn , (3)

where F̂(l) ∈ RD(l)×C(l)

is the fused local feature volume.
Another 3D CNN followed by a linear layer is then used
to generate local occupancy Ô(l) ∈ RD(l)

and local TSDF
T̂(l) ∈ RD(l)

.
Training loss. The training losses for the visibility, local
occupancy and local TSDF are defined as follows.

L(l)
w =

1

ND(l)

D(l)∑
d=1

N∑
n=1

(Ŵ
(l)
dn −

W
(l)
dn∑N

m=1 W
(l)
dm

)2 , (4)

2Based on the definition of visibility in VoRTX [25] and NeuRay [15],
besides surface voxels (points), all empty voxels (points) along the ray
before it hits the surface are also defined as visible. By contrast, we define
those empty and occluded voxels as invisible to avoid introducing noises
to our feature volume.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Different kinds of voxels and their similarity maps.√
denotes relatively similar and × denotes relatively dissimilar.

T represents True and F represents False. (a) Surface voxel (b)
Empty voxel (c) Surface voxel with occlusion (d), (e), (f) Similar-
ity map and visibility definition corresponding to (a), (b), (c).

where W
(l)
dn ∈ {0, 1} is the ground truth visibility which

indicates whether the dth voxel is visible in nth view and
Ŵ

(l)
dn ∈ [0, 1]. Note that, here we directly train our model

to output the normalized visibility.

L(l)
o =

1

D(l)

D(l)∑
d=1

BCE(Ô(l)
d ,O

(l)
d ) , (5)

where BCE(·, ·) is the binary cross entropy; O(l)
d ∈ {0, 1}

is the ground truth occupancy and Ô
(l)
d ∈ [0, 1].

L(l)
t =

1

D(l)

D(l)∑
d=1

|ℓ(T̂(l)
d )− ℓ(T

(l)
d )| , (6)

where ℓ(x) = sgn(x) log(|x|+1) is the log scale function as
used in [26] and sgn(·) is the sign function; T(l)

d ∈ [−1, 1]

is the ground truth TSDF and T̂
(l)
d ∈ [−1, 1].

With the local occupancy at level l, we would like to
discard the empty voxels and only upsample the remaining
ones to the next level l + 1. Existing methods [18, 26] that
rely on a fixed threshold tend to sparsify more voxels than
necessary leading to incomplete reconstruction especially
for thin structures. In the next section, we introduce our
ray-based local sparsification approach to address this.
3.2. Ray-based Local Sparsification

Given the camera parameters {K(l)
i ,Ri, ti}Nt

i=N(t−1)+1

of images in current fragment Ft, we first cast a ray from
each pixel in these images. Given a ray, let us denote the
voxels that are passed by this ray as {vi}Ri=1 where vi ∈ R3

is the 3D coordinates of the voxel centre. These voxels are

Figure 5. Ray-based local sparsification. Given the voxels
passed by a visual ray and their local occupancies, we obtain a
set of sliding windows, each of which covers several consecutive
voxels. The sliding window with the highest sum of occupancies
computed from covered voxels is reserved for the next level.

organized in ascending order by their depth to the corre-
sponding camera view as shown in Fig. 5. Their occupan-
cies are represented as {ôi}Ri=1 where ôi ∈ [0, 1] is obtained
from the predicted local occupancy volume using the voxel
coordinate vi.

For each ray, one can then simply choose voxels with
top-k occupancies. However, such strategy is not robust
enough and as will be shown in our experiments, is not
optimal. Alternatively, we propose to use a sliding win-
dow along the ray and rank each sliding window according
to the sum of all the voxel occupancies in it. Specifically,
let us assume the size of such sliding window are K and
K < R, the set of sliding windows can then be represented
as {Wi}R−K

i=1 where Wi = {vj}i+K−1
j=i . The sum of oc-

cupancies for ith sliding window is, ûi =
∑i+K−1

j=i ôi. The
sliding window with the highest sum of occupancy scores is
then selected as i∗ = argmaxi ûi. By doing so, our sparsi-
fication strategy adaptively selects the most likely occupied
voxels for every ray which is better than only relying on
a fixed threshold. We use the same criteria to select slid-
ing windows for each ray in every input image. A voxel
is sparsified only if it is not in any of these selected slid-
ing windows. Note that, our ray-based sparsification is per-
formed at the local volume instead of the global one. This
is to avoid the situation when a ray not only passes the cur-
rent surface but also existing surfaces in the global volume.
In this case, there are potentially multiple sliding windows
with high sum of occupancies.

3.3. Global Feature Fusion

Our model maintains a global feature volume which
stores the information from all historically reconstructed
fragments [26]. The stored global feature volume may over-
lap with the FBV of the current fragment. We follow [26]
to use a 3D convolutional variant of Gated Recurrent Unit
(GRU) [6] to fuse the local feature volume to global. Specif-
ically, after local sparsification, we have a set of local fea-
tures denoted as L(l) and the corresponding global features
as G(l). Note that, for the overlapping local volume, its
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corresponding global feature is directly obtained from the
stored volume. For the non-overlapping ones, the global
feature will be initialized as zeros. The fused global feature
is then updated as

G̃(l) = GRU(L(l),G(l)) , (7)

where G(l) and L(l) are used as the hidden state and input
to the GRU, respectively. The fused G̃(l) are then used for
global TSDF prediction via a single layer MLP.

Unlike existing coarse-to-fine works [25,26] that directly
regress the TSDF, we propose an easier way by taking ad-
vantage of the predicted TSDF at previous coarse level. In
particular, given the global TSDF volume estimated from
the above fused global feature T̃(l−1) at level l − 1, we
first upsample it to match the resolution of current level as
T̃(l−1)↑. The output of current level is treated as a residual
∆T̃(l) and the final global TSDF at level l is,

T̃(l) = T̃(l−1)↑ +∆T̃(l) . (8)

As shown in our ablation study in next section, such strategy
leads to better performance. Similar to Eq. (5) and Eq. (6),
we can then compute the global occupancy and TSDF loss
as L(l)

O and L(l)
T .

Overall training loss. The overall training loss for the
whole model is then,

L =

3∑
l=1

ω(l)(L(l)
w + L(l)

o + L(l)
t + L(l)

O + L(l)
T ) , (9)

where ω(l) is the loss weight at level l.

3.4. Implementation Details

Our network is trained using Adam optimizer with batch
size of 2 on an Nvidia RTX 3090 GPU for 50 epochs. The
loss weights ω(1), ω(2), ω(3) are set as 1, 0.8, 0.64. We
choose the checkpoint of the last training epoch for evalua-
tion. Following [26], we use torchsparse [28] for 3D sparse
convolution and initialize the feature extraction backbone, a
variant of MnasNet [27], with the pretrained weights from
ImageNet. In each local fragment, the number of key frame
images N is set to 9. We use 3 coarse-to-fine layers and
set the voxel size for each layer as 16 cm, 8 cm, and 4 cm
respectively. The TSDF truncation distance λ is set as three
times the voxel size for each layer. The size of the slid-
ing window K used in our local sparsification module is 9
across all layers with different resolutions.

4. Experiments
4.1. Datasets, Metrics & Baselines

Datasets. We evaluate our method on the ScanNet (V2) [8]
and 7-Scenes dataset [24]. ScanNet consists of 2.5M im-
ages in 1613 scans across 807 distinct scenes with ground-
truth depths, camera poses, surface reconstructions, and

Method Acc ↓ Comp ↓ Chamfer ↓ Prec ↑ Recall ↑ F-score ↑

D
ep

th
Fu

si
on

COLMAP [22] 13.5 6.9 10.2 0.505 0.634 0.558
MVDNet [32] 20.5 8.4 14.5 0.231 0.473 0.307
GPMVS [11] 16.2 7.9 12.1 0.335 0.533 0.408
DPSNet [12] 17.7 8.1 12.9 0.272 0.497 0.349

DeepVMVS [9] 11.7 7.6 9.7 0.451 0.558 0.496
CVD [17] 34.4 9.1 21.8 0.266 0.461 0.331

SimRec [21] 6.5 7.8 7.2 0.641 0.581 0.608

Fe
at

ur
e

Fu
si

on

O
ffl

in
e Atlas [18] 8.4 10.2 9.3 0.565 0.598 0.578

3DVNet [20] 22.1 7.7 14.9 0.506 0.545 0.520
VoRTX [25] 6.2 8.2 7.2 0.688 0.607 0.644

O
nl

in
e NeuRec [26] 5.4 12.8 9.1 0.684 0.479 0.562

TF [2] 7.8 9.9 8.9 0.648 0.547 0.591
Ours 5.5 10.5 8.0 0.695 0.527 0.598

Table 1. Quantitative results of 3D metrics on ScanNet. We
show the results of two-stage depth fusion methods (top) and those
for end-to-end feature fusion works (bottom) following the evalu-
ation protocol in [26]. We highlight the best results for Depth Fu-
sion, Feature Fusion Offline and Feature Fusion Online methods
in blue, teal, and violet, respectively. Offline methods assume to
observe the whole video sequence. Our method performs the best
among all online feature fusion methods in the Chamfer metric.

Method Acc ↓ Comp ↓ Chamfer ↓ Prec ↑ Recall ↑ F-score ↑
SimRec [21] 8.0 8.6 8.3 0.511 0.482 0.495

NeuRec [26] 6.1 19.4 12.8 0.588 0.347 0.431
Ours 5.9 13.1 9.5 0.620 0.441 0.512

Table 2. Quantitative results of 3D metrics on 7-scenes. We
evaluate our method on the official test split of 7-scenes. All meth-
ods are trained on ScanNet and for baseline methods, we use their
released pre-trained models.

Acc↓ Comp ↓ Chamfer ↓ Prec ↑ Recall ↑ F-score ↑
i w/o any 5.6 14.1 9.9 0.661 0.441 0.527
ii w resi 5.8 12.0 8.9 0.649 0.457 0.535
iii w loc, resi 6.7 11.0 8.9 0.629 0.477 0.541
iv w vis, resi 5.4 11.8 8.6 0.693 0.502 0.580
v ours (top k) 5.6 11.6 8.6 0.673 0.495 0.569
vi ours (sliding window) 5.5 10.5 8.0 0.695 0.527 0.598

Table 3. Ablation study. We ablate our visibility-based feature fu-
sion (“vis”), ray-based local sparsification (“loc”) and TSDF resid-
ual learning (“resi”) on ScanNet.

instance-level semantic segmentations. We use the official
train/val/test split to train and evaluate our method. For 7-
Scenes, it contains 7 different scenes recorded from a hand-
held Kinect RGB-D camera. Each distinct scene is scanned
several times by different users to generate multiple image
sequences. We further evaluate our trained model on the of-
ficial test split of 7-Scenes directly to demonstrate the gen-
eralization ability of our method. Details about datasets are
included in the supplementary material.
Metrics. We follow the 3D geometry metrics used in [2,
18, 26] to evaluate the performance of our approach. The
detailed definitions of these metrics are included in the sup-
plementary material. Among these metrics, we regard the
Chamfer distance as the most important metric because it is
the average of accuracy, measuring the distance from pre-
dicted point clouds to the ground truth ones, and complete-
ness, measuring the distance from ground truth point clouds
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Figure 6. Relations between the similarity map and the visibility weights. Here, we illustrate this relationship using two kinds of
voxels. The surface voxel (red dot) occupied by the paper bag on the floor is visible in the last 5 views. Thus the features extracted from
those images have higher similarity with each other than those for the other views. So do the visibility weights. For the empty voxel (green
cross), the features from different images are different leading to lower visibility weights.

to the predicted ones, for all 3D points. Although F-score
also represents the balance between accuracy and complete-
ness, it is also affected by a user-defined threshold (5cm).
Baselines. We compare our method with state-of-the-art
depth-based methods and end-to-end reconstruction meth-
ods. For a fair comparison, these methods are trained and
evaluated by following the official data split provided by
the ScanNet dataset [8]. We use the pre-trained model
for [9] and fine-tuned models for [11, 12, 32] provided
by [9]. Following [21], the maximum fused depth is lim-
ited to 3m. The results of [2, 18, 20, 21, 25] are taken
from [21] and [17, 22, 26] are taken from [26]. Among
depth-based methods, MVDepthNet [32], GPMVS [11] and
DeepVideoMVS [9] achieve real-time performance while
GPMVS, DeepVideoMVS and CVD [17] are depth-fusion
baselines with consistent video depth estimation. Neural-
Recon [26] and TransformerFusion [2] are two end-to-end
incremental volumetric reconstruction frameworks that di-
rectly predict the surface geometry and are the most relevant
ones to our approach.

4.2. Results

ScanNet. The experimental results on the ScanNet dataset
are reported in Tab. 1. Our method outperforms all existing
online feature fusion methods [2, 26] in both Chamfer dis-
tance and F-score metrics. We achieve a 12.1% reduction in
chamfer distance compared to NeuralRecon [26]. Although
the concurrent work SimpleRecon [21] achieves slightly
better numerical results, due to their two-stage pipeline,
their results often include noises especially for low texture
regions like walls as shown in Fig. 7. In contrast, our recon-
struction results are more clean and coherent. We also com-
pare our qualitative results to those of NeuralRecon [26]
in Fig. 7. As highlighted in red boxes, our visibility-
aware feature fusion and ray-based sparsification enable us
to reconstruct more complete and detailed scene structures,

demonstrating the effectiveness of our approach.
7-Scenes. We also report the results on 7-Scenes in Tab. 2.
The conclusion still holds. As the data split used by [26] is
not available, we thus report the results of evaluating their
pretrained model on the official test split of 7-Scenes. It
may explain why the results of [26] are different from those
reported in the original paper. More results on 7-Scenes are
provided in the supplementary material.
Visibilities. In Fig. 6, we visualise the similarity map and
learned visibility weights for surface voxels and empty vox-
els in the current local fragment, respectively. The simi-
larity map shows that the photometric consistency between
features from different views provides strong heuristics for
voxel occupancy probability and view selection. From the
visibility weights, we can find our local feature fusion mod-
ule is able to select the most relevant views for each voxel to
local occupancy prediction. More visualisations are shown
in the supplementary material.
Ablation study. To demonstrate the effectiveness of each
module of our method, we conduct several experiments on
the ScanNet dataset and show the results in Tab. 3. Compar-
ing row i and row ii, by adding the residual learning strat-
egy, the chamfer distance is reduced by 10.1%. As shown
in row iii and row iv, with our visibility predicting module
and ray-based local sparsification strategy, our performance
is further improved. Finally, we compare the effectiveness
of using a sliding window to select consecutive K voxels,
to simply choosing the top K voxels, along each ray in row
v and row vi. It shows that utilising the sliding window for
sparsification improves the performance.
Running time. Although due to the extra computation
of our visibility-aware feature fusion and ray-based local
sparsification, our method tends to be slower than neuralre-
con [26], our model still achieves a real-time reconstruction
of 25 key frames per second (FPS) on an NVIDIA RTX
2080Ti GPU and 45 FPS on an NVIDIA RTX 4090 GPU.
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SimpleRecon [21] NeuralRecon [26] Ours Ground truth

Figure 7. Qualitative comparison on ScanNet. Compared to NeuralRecon [26], our reconstruction results are more complete and contain
more details (highlighted in the red boxes). Since SimpleRecon [21] is a two-stage depth-based method, it generates many artifacts and is
not coherent (highlighted in the yellow boxes).

5. Conclusion

In this paper, we demonstrate that explicitly learning the
visibility weights for feature fusion and adopting a ray-
based local sparsification strategy will benefit the online
incremental 3D scene reconstruction task. In the future,
we will try to combine the advantages of depth estima-

tion and end-to-end feature-based reconstruction to gener-
ate both sharper and coherent surface geometry.
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