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Abstract

In this paper, we study the second order properties of
the loss of trained deep neural networks with respect to the
training data points to understand the curvature of the loss
surface in the vicinity of these points. We find that there
is an unexpected concentration of samples with very low
curvature. We note that these low curvature samples are
largely consistent across completely different architectures,
and identifiable in the early epochs of training. We show
that the curvature relates to the ‘cleanliness’ of the data
points, with low curvatures samples corresponding to clean,
higher clarity samples, representative of their category.
Alternatively, high curvature samples are often occluded,
have conflicting features and visually atypical of their cat-
egory. Armed with this insight, we introduce SLo-Curves,
a novel coreset identification and training algorithm. SLo-
curves identifies the samples with low curvatures as being
more data-efficient and trains on them with an additional
regularizer that penalizes high curvature of the loss sur-
face in their vicinity. We demonstrate the efficacy of SLo-
Curves on CIFAR-10 and CIFAR-100 datasets, where it out-
performs state of the art coreset selection methods at small
coreset sizes by up to 9%. The identified coresets general-
ize across architectures, and hence can be pre-computed to
generate condensed versions of datasets for use in down-
stream tasks. Code is available at https://github.com/isha-
garg/SLo-Curves.

1. Introduction
Deep learning applications have exploded due to access

to big data and computational resources. However, data is
expensive to gather, annotate and store, and directly influ-
ences the computational resources required. Storing more
data also runs higher risks of data leakage and privacy vi-
olation. It also influences parallelism and communication
bottlenecks between machines [17]. There is limited un-
derstanding of the mechanism through which deep learning
models process complex datasets, what constitutes ‘good’
or ‘easy’ examples for learning, and how large a number of

Figure 1. Histograms of training dataset’s curvature for various
networks trained on CIFAR-10.

samples are indeed beneficial. Research on data efficiency
often focuses on doing more with less data. Standard train-
ing methods assume all data points from the training set to
be independently and identically distributed from the true
training distribution. Data points are sampled uniformly
during training and treated as having equal significance. An
alternative is to identify representative data points from the
training distribution that are more beneficial to learning than
random uniform sampling [30, 31]. They can be used as
smaller condensed datasets, or upweighted during training
as per their significance. These subsets of important points
are also known as coresets.

Coresets prove useful in many downstream applications.
They are data-efficient and can serve as a good choice of
proxy data for Neural Architecture Search (NAS) [45, 52],
as episodic memory in Continual Learning [2, 6, 60], and
as the choice of augmentation samples during self super-
vised learning [37]. They can be utilized in many regimes
that may have memory or compute resources, such as for
compute-efficient learning [35,43,46], dataset condensation
[8, 58, 61], efficient Hyper-parameter Optimization (HPO)
[33], and speeding up the training of Generative Adversar-
ial Networks (GANs) [54]. The utility of identifying im-
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(a) Top 100 examples with the lowest loss curvature (b) Top 100 examples with the highest loss curvature

Figure 2. We visualize the 10 samples from each class with lowest and highest curvature of loss identified over 10 different randomly
initialized ResNet18 models trained on CIFAR-10. Each row corresponds to a class, consistent across both figures, and 10 ordered samples
for each class are shown. The network was trained with random horizontal flipping as part of the augmentations.

portant samples can extend beyond efficiency, such as in
understanding dataset limitations [5, 55], enabling faster or
better convergence by upsampling certain samples during
training [12, 40], or in the choice of data to label in active
learning [1,50]. However, it is not always clear what makes
a sample informative or good for learning. Methods differ
in their definition of significance of samples. Some rep-
resentative works measure importance via the confidence
or margin of the predicted output of the network [1, 11],
by clustering samples together in the input or feature space
[10, 22], matching the gradient to that of the entire dataset
[35, 43, 46], choosing samples that lie closest to the deci-
sion boundary [14] or samples that are not forgotten once
learnt [57]. Some other representative methods frame it as a
as a submodular function optimization problem [27,27,43].

In this paper, we look at data efficiency from the lens
of the loss landscape around the training samples. While
the loss surface with respect to the parameters of the neu-
ral network has received considerable attention as a means
of analyzing the stability of the solution [19, 47–49], the
loss landscape with respect to the data is far less studied.
Most of the studies have been associated with adversarial
robustness [44]. We are interested in the curvature of the
loss surface, or inversely, the smoothness of the decision
boundary around the data point. This is captured by the lo-
cal linearity of the gradient around the sample, measured as
the trace of the Hessian. We plot the histogram of an ef-
ficiently calculable estimation of this trace for the training

dataset of different pretrained models in Figure 1 for the
CIFAR-10 dataset [38]. We note they resemble a bimodal
distribution, with a spread out Gaussian superimposed upon
a very sharp, tall peak around zero. We are interested in the
samples that make up the sharp peak, the ones around which
the loss surface curvature is very low.

We visualize the sample ordered by curvature accumu-
lated over ten differently initialized ResNet18 [23] models
trained on CIFAR-10 in Figure 2. We find that they reveal
useful information about the kinds of samples present in the
dataset. The low curvature samples, shown in Figure 2a can
be considered clean, prototypical and minimal, in that they
are strongly representative of their category. On the other
hand, Figure 2b shows the samples with the highest curva-
ture of loss. We can see that they do not appear to be charac-
teristic of their category. They have confusing backgrounds
with interfering patterns, uncommon viewing angles and in-
complete shapes. We show that the low curvature samples
appear to be largely consistent not only across networks that
were initialized differently, but also across completely dif-
ferent architectures such as MobileNetV3 [24], ResNet101
[23], AlexNet [39], VGG19 [53] and DenseNet121 [25].
We also show that they can be identified quite early on dur-
ing the training process. As an application of this insight,
we show that they make very good coresets.

Many coreset selection methods perform well at large
coreset sizes, close to the size of the whole dataset. In
this paper, we explore smaller coresets, ranging from sin-
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gle digit images per class, as is often common with few
shot learning [16, 18], up to 100 images per class. Depend-
ing on the dataset and the number of classes, this can range
from 0.1% to 20% of the dataset. We introduce SLo-Curves,
a novel coreset selection method which identifies samples
with low curvatures and train on these coresets with an ad-
ditional regularizer that penalizes large curvatures. Both the
method for measuring the curvature and the form of the reg-
ularizer are inspired directly from CURE [44], which intro-
duced the regularizer as a means to promote adversarial ac-
curacy at the expense of clean accuracy. We show that when
there are small sample sizes, chosen appropriately, this reg-
ularizer also helps improve clean accuracy. We summarize
our contributions below:

1. We study the loss surface with respect to the input data
points and identify an unexpected concentration of sam-
ples with very low curvature.

2. We show that the curvature of the loss function relates
to the notion of visual ‘cleanliness’. Low curvature sam-
ples are free of conflicting features, while high curvature
samples look cluttered, obstructed or unrepresentative of
the other samples in the class. To the best of our knowl-
edge, this is a novel observation.

3. We show that these samples are largely architecture and
initialization independent. This implies that the Hessian
reveals intrinsic properties of the dataset rather than just
an artifact of the training procedure, a particular local
minima, or the choice of network architecture.

4. We introduce SLo-Curves: an algorithm that selects
samples with low curvature as coresets and additionally
penalizes the curvature of the loss function while train-
ing on them. SLo-Curves outperforms all other choices
of coreset selection methods by up to 9% for coresets of
few samples per class. To the best of our knowledge, this
is the first paper to explore second order statistics of the
loss with respect to the data for coreset selection.

5. Due to these samples being consistent across architec-
tures, SLo-Curves does not rely on gradient statistics
during training or need to be averaged out over multi-
ple initializations. Coresets can be pre-computed and are
performant across architectures. We also find that these
points can be identified early on during training, in as
few as 5-10 epochs.

Our method is inherently more productive at small core-
set sizes since the samples that we identify belong to the
limited set that have very low curvature, corresponding to
the tall peak at zero in Figure 1. Further study is required to
understand what causes the decision boundary to smoothen
along the same samples with different networks, and we
hope that this paper accelerates interest in this direction.

2. Literature Review
The importance of samples is a relevant concern in many

areas. Importance sampling methods [30, 31] prioritize the
important samples for fast and efficient training by approxi-
mating the norm of the gradient resulting from each sample.
Curriculum learning [4] seeks to order sample exposure to
the network during training in order to learn easier samples
first and then harder samples for better solutions. Active
learning [51] focuses on only labeling the important sam-
ples to reduce annotation costs. However, the definition of
importance of samples is not fixed. In this section, we focus
on coreset selection as a base method for deciding sample
importance scores, that can be then used to different ends.
We broadly classify techniques for coreset selection in deep
learning and discuss representative approaches in each.

Clustering based methods: Points close to each other
can be clustered together and represented well by the clus-
ter center. The choice of metric for clustering varies. Au-
thors of [10] clusters samples based on distance in the fea-
ture space. Authors of [22] reframe the problem as solving
a minimax facility location problem greedily.

Classification Output based methods: These ap-
proaches work on the assumption that examples that are
classified with lesser confidence or score are more informa-
tive than examples classified with strong confidence. Au-
thors of [11] study the effects of choosing softmax scores,
entropy and the distance of the top-2 classes in the output
space. A different approach is taken by the authors of [57],
who show that a large majority of samples are learned cor-
rectly early on during training and are never consequently
classified incorrectly, or forgotten, during the remaining
course of training. They deem the samples that are never
forgotten once learnt, as easily learned, and create coresets
that consist of examples that need to be re-learnt.

Loss Gradient based methods: This approach catego-
rizes the importance of a sample as its contribution to the
loss or the gradient of the loss. Methods vary in their choice
of the time of training at which the contribution is measured.
Both Grad-Match [35] and CRAIG [43] select weighted
subsets such that the appropriately scaled gradient of the
subset matches the gradient of the entire dataset. Both re-
select the subset and weights every few epochs. They dif-
fer in the choice of algorithm for building the dataset, with
CRAIG converting the gradient-distance optimization prob-
lem into a submodular function and then using a greedy ap-
proach and Grad-Match using a different greedy Orthogo-
nal Matching Pursuit algorithm. Both outline convergence
guarantees, and show scalability via approximating gradi-
ents of the loss with respect to the input with gradients at
the last layer [31]. To overcome the requirement for re-
selecting the coresets during training, authors of [46] intro-
duce GraNd, which approximates the L2 norm of the gradi-
ent early on in training (after a few epochs) and averages it
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over many different training initializations.

Bilevel optimization and submodular function meth-
ods: Glister [36] and Retrieve [37] frame the minimization
of the loss on selected samples and the selection of sam-
ples as a bilevel optimization problem. Authors of [27, 28]
explore different submodular optimization functions.

Decision Boundary based methods: These methods as-
sume that the points closest to the boundary are hardest to
separate, and hence most informative. Authors of [14] uti-
lize DeepFool, a method to generate adversarial examples,
as a way of measuring distance to boundary. If an exam-
ple is easier to fool, it is presumably closer to the boundary
and significant. Authors of [42] select the samples whose
classification likelihood is most dissimilar to its neighbors.

Synthetic coreset creation methods: In contrast to se-
lecting points from the dataset, there has been recent inter-
est in methods that create synthetic data to mimic the over-
all distribution. Dataset distillation [58] was introduced to
create synthetic data by matching the gradient of samples
averaged over many different initializations. Authors of [8]
improve performance by repeating the synthetic set creation
over many iterations. However, the datasets do not resem-
ble the data, and this can be an advantage or disadvantage
based on the application. In this manuscript we only study
the samples present in the training distribution.

Coreset selection libraries: Coreset selection in deep
learning is an area of rapidly increasing focus, as evidenced
by the release of recent libraries that compare different core-
set selection methods, and can be incorporated into other
deep learning applications. Recently released libraries are
CORDS [34], Minicore [3] and DeepCore [21]. We use
DeepCore for our simulations.

Our method falls under both the categories of decision
boundary based methods and loss gradient based methods.
We select real samples from the dataset, choosing coresets
from pre-trained models based on the trace of the Hessian of
the loss. Our coresets consist of the samples with low trace
of Hessian, or low loss curvature around them. The selected
samples are chosen only once, are not re-weighted and no
special optimization is followed besides an additional regu-
larizer that encourages the learned decision boundary to be
flat by penalizing the curvature estimate. They generalize
across architectures and hence, do not need to be calculated
real time for every network.

3. Methodology and Observations
We study the curvature profiles of the loss with respect to

input for different training data points. The curvature profile
can be studied via the Hessian of the loss. Concretely, let’s
consider a data point x ∈ Rd. Let H denote the Hessian
of the loss, L with respect to the data point x, i.e.

H(x) =

[
δ2L(x)

δxiδxj

]
i,j=1...d

The curvature profile is captured by the eigenvalues. A
good measure is the sum of the eigenvalues or the trace
of the Hessian [13, 32]. The higher the trace, the more
the loss surface curves around the data point, or the less
smooth the decision boundary at the data point’s vicinity.
We plot the histogram of an approximation of the Hessian
trace (explained in section 3.1) for the training set of differ-
ent network architectures in Figure 1, at the end of training
on CIFAR-10. We note that they follow a similar trend: a
sharp tall peak at very small values, and another Gaussian-
like peak later. We focus on the set of samples with very low
curvatures that make up the sharp peak at zero. Histograms
for different architectures can be found in Appendix A. We
note that these networks were trained with Cross Entropy
Loss, SGD optimizer with momentum and L2 regulariza-
tion. There is no term explicitly encouraging a low spread
of curvature for some samples.

3.1. Calculating the Curvature

The eigenvalues of the Hessian of the loss with respect
to the data point contain information about the curvature
profile of the loss surface around the data point. Large ab-
solute eigenvalues imply a large curvature of the loss func-
tion around the sample, and small magnitude of eigenvalues
imply that the loss function (or the decision boundary) has
a small curvature, or is locally linear in the vicinity of the
data point. The Hessian of the loss surface with respect to
model weights has been utilized to study the properties of
the minima the optimization selects. [19, 47–49]. However,
in this paper, we instead study the curvature of the loss sur-
face with respect to the training data.

In order to study the curvature profile without having to
explicitly calculate the Hessian and its eigenvalues, we es-
timate instead the trace of the Hessian. The trace is the
sum of the eigenvalues and can be calculated efficiently via
Hutchinson’s trace estimator [26] and finite difference ap-
proximation. This is the same form of curvature measure
used in CURE [44] as the curvature regularizer for enhanc-
ing adversarial robustness during training. We now go into
the details of this formulation.

Let λi, i = 1...d be the eigenvalues of the Hessian
H(x). We are interested in the spectrum of the magni-
tude of the eigenvalues, which can be summarized by the
sum of the square of the eigenvalues. This can be estimated
by the norm of the Hessian-vector product as introduced in
the Hutchinson’s trace estimator [26]. Using Hutchinsons’s
trace estimator, the definitions of the Frobenius norm of a
matrix, properties of the trace, and the fact that H(x) is
symmetric, we get the following estimate:
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(a) Curvatures accumulated over differently seeded ResNet-18 (b) Curvatures accumulated over different architectures

Figure 3. Histograms of curvature of the training set of CIFAR-10, with curvature estimates accumulated over different trained models.

∑
λ2
i = Tr(H2)

= Ez

[
zTH2z

]
= Ez

[
zTHTHz

]
= Ez

[
(Hz)T (Hz)

]
= Ez

[
∥Hz∥2F

]
where z are Rademacher random variables, equal to +1

or -1 with equal probability, i.e. z ∼i.i.d {−1,+1}d. We
now use finite approximation to estimate the Hessian vector
product efficiently.

Hz =
∇L(x+ hz)−∇L(x)

h
for h → 0

The cost of calculating this is just the cost of performing
a backward pass on the network twice. This formulation
is widely used whenever the curvatures of loss surface are
discussed [7, 9, 49, 59]. Similar to CURE [44], we do not
choose random directions for sampling z to take the expec-
tation over. Instead, we choose the adversarial direction,
which is known to lead to high curvature [15, 29], and set
z to be sign∇L(x)

∥sign(∇L(x))∥ . We found the results to not be sig-
nificantly impacted by h and set it equal to 3 to match the
change used in corresponding adversarial settings [20, 41].

Putting this together, the measure of curvature of the de-
cision boundary or the loss function around a data point is
proportional to the following quantity, γ where :

γ(x) = ∥∇xL(x+ hz)−∇xL(x)∥;

where z =
sign∇xL(x)

∥sign(∇xL(x))∥
3.2. Consistency of Low Curvature Samples

We notice that the low curvature samples are largely con-
sistent across architectures and initialization. We show this

overlap in Figure 3, with plots of the histogram of cumula-
tive curvature values of samples (estimated by γ), accumu-
lated over different seeds in Figure 3a and over different ar-
chitectures in Figure 3b. Mathematically, the ith curve cor-
responds to the histogram of

∑i
j=0 γj for all training sam-

ples, where j indexes different trained models. The first his-
togram is shown in blue, with unaccumulated curvature es-
timates (γ0 collected from model ‘seed0’ or ‘ResNet101’).
Next the curvature estimates of the second model (γ1 for
‘seed1’ or ‘ResNet18’) are added to the first model’s cur-
vature estimates for each sample and the resulting plot is
shown in orange. As we accumulate curvature estimates
over many different models, the sharp peak at zero starts to
spread out a bit. Yet, even after accumulating over 5 seeds
or 6 different architectures all converging to different mini-
mas, there are more than 2000 common low curvature sam-
ples (identified as the smallest, purple peak at zero). This
implies that these samples appear to be an intrinsic property
of the dataset rather than the initialization or the local mini-
mas the networks converged to. We corroborate this experi-
mentally in Section 4.3, by showing that a ResNet18 model
trained on coresets identified on any of these architectures
outperforms random sampling by an average of 5.3%.

3.3. Identified Coresets

We now visualize the low and high curvature samples
(taken from the accumulated scores of 10 randomly seeded
ResNet18 models trained on CIFAR10) in Figures 2. Each
row corresponds to a class, and contains the top 10 sam-
ples for that class with the lowest and highest curvatures in
Figures 2a and 2b, respectively. As can be seen from the fig-
ure, the low curvature samples are very ‘good’ samples, in
that they have low to no conflicting backgrounds, structure
typical of the class, are centered and are not zoomed in or
trimmed. The networks are trained with random left to right
flipping, and hence we see samples facing both ways. On
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Figure 4. The histogram of curvature estimates of the training
dataset as training progresses. For ease of visualization, the opac-
ity of the curves decreases with epochs.

the other hand, the high curvature samples are ‘bad’ in that
they are visually harder to identify by humans as well. They
have conflicting backgrounds (a deer in a fiery landscape),
uncommon viewing angles (a truck from behind) and col-
ors uncharacteristic of the class (a blue plane or a yellow
frog). This implies that the curvature, captured by γ could
be useful as a metric for ‘learnability’ of a sample.

3.4. Early Emergence of Low Curvature Samples

We track γ through the training progress to study the
emergence of low curvature samples, and visualize this in
Figure 4. As training progresses (lesser opaque histograms
in the figure), we can see the peak towards zero becoming
more defined. We find that the concentration of samples
around low curvatures emerges in as few as 5-10 epochs
of training. We corroborate this in Section 4.5 by showing
that the coresets identified by our proposed method as early
as epoch 10 outperform random sampling by an average of
4.7% accuracy across all considered coreset sizes.

3.5. SLo-Curves: An Algorithm for Data Efficiency

Based on these insights, we propose SLo-Curves, an al-
gorithm to identify coresets of samples with low curvature
and train on them for increased sample efficiency. We use
curvature estimate, γ as the selection metric, choosing sam-
ples with the lowest values to make up our coreset. Ad-
ditionally, we show that regularizing the learned curvature
around these coresets helps increase the accuracy by a few
percentage points. Hence, we first select the points with the
lowest γ from pretrained networks, and then train a new ran-
domly initialized network on these points using the standard
cross entropy loss LCE(x) and γ serving as the additional
regularizer term, Lreg = γ(x). The new loss is thus:

L(x) = LCE(x) + λγ(x)

The tradeoff parameter λ is the only hyperparameter our
method induces and is searched over {0,0.5,1,5,10,20,50}.
We note that smaller coresets require larger values of λ
and larger coresets require smaller values, ultimately giv-
ing better results when the additional regularizer is turned
off. This ties with CURE [44], wherein the same regular-
izer improves adversarial accuracy at the cost of clean ac-
curacy when used with the whole dataset. In our method, it
serves instead to improve accuracy at low sample complex-
ities. We anticipate that it is an especially effective form of
regularization for small datasets learned with complex mod-
els. We retierate that we study small coreset sizes since our
significance metric is based on the samples that concentrate
near zero curvature, and the number of such samples is a
limited percentage of the dataset.

4. Results and Discussion
In this section, we outline our network architectures, the

training hyperparameters and discuss results.

4.1. Experimental Details
We run experiments on CIFAR-10 and CIFAR-100

datasets [38]. Both datasets have 50,000 training sam-
ples with CIFAR-10 having 5000 samples for each of its
10 classes and CIFAR-100 having 500 samples for each
of its 100 classes. The networks used are ResNet-18
[23], ResNet-101 [23], VGG-19 [53], AlexNet [39], Mo-
bileNetV3Small [24] and DenseNet-121 [25]. We consider
coreset of small sizes, ranging from 1 to 100 samples per
class. For all networks, we use a learning rate of 0.1 scaled
by 0.1 at epochs 81 and 121, SGD optimizer with a mo-
mentum of 0.9, with Nesterov momentum [56] turned on
and a weight decay of 5e-4. We train all networks for 164
epochs and report mean and variance for 5 randomly seeded
runs. All graphs show mean values, with corresponding
variances shown in Appendix B. We compare with repre-
sentative works from the broad categories of coreset se-
lection methods. In particular, we compare with 9 other
methods: Random uniform sampling, Glister [36], Forget-
ting [57], CRAIG [43], GraphCut [27], Cal [42], GraNd
[46], Herding [10] and Margin [11]. For methods that re-
quire training before coreset selection, we train the network
for 40 epochs to ensure a good convergence point before
we select the coresets. We have run the baselines using the
Deepcore [21] library (building upon it for methods and net-
works as needed), and find that it is an excellent repository
of state of the art methods. The only hyperparameter that
we tune for our method is the strength of the regularization,
λ. We tune this over the search space {0,0.5,1,5,10,20,50}
and report the best results.

4.2. Comparison with Coreset Selection Methods
We now discuss the results of our method compared to

random sampling and other state of the art coreset selec-

20295



(a) CIFAR-10 (b) CIFAR-100
Figure 5. ResNet18 trained on coresets identified by various methods. Note that the x-axis is not to scale to clearly show performance at a
few samples per class. The numbers shown are the mean of 5 runs. Variances are reported in Appendix B.1 and B.2

(a) Cross architecture results (b) Ablation Study for selection without regularization

Figure 6. ResNet18 trained on coresets identified by our methods a) from different pretrained architectures and b) with and without
regularization. Note that the x-axis is not to scale to clearly show performance at a few samples per class. The numbers shown are the
mean of 5 runs. Variances are reported in Appendix B.3 and B.4.

tion methods. The results for ResNet18 networks trained on
CIFAR-10 and CIFAR-100 are shown in 5a and 5b respec-
tively. The corresponding tables with mean and variances
are shown in Appendix B.1 and B.2.

CIFAR-10: Figure 5a shows that selection by the pro-
posed SLo-Curves method outperforms all other coreset
methods studied all the way up to 100 samples per class, or
2% of the total dataset (1000 samples). We note that at such
coresets sizes, random sampling forms a surprisingly strong
baseline (also noted in [21]). The strongest competitors
are the submodular function based method GraphCut [27]
and decision boundary based method Cal [42]. SLo-Curves
shows the best performance in 16 out of the 19 coreset sizes
studied and the second best in the remaining 3 cases. It out-
performs random sampling by 1-9%.

CIFAR-100 Figure 5b shows that our method outper-
forms or matches the performance of all other coreset meth-
ods studied up to 25 samples per class, or 5% of the total
dataset (2500 samples). At larger coreset sizes, SLo-Curves
shows a few percentage points of accuracy drop from the
state of the art methods Cal and GraphCut, but outperforms
random sampling, CRAIG [43], Herding [10] and Margin

[11] baselines. We note that even at coreset sizes equal to
10% of the dataset (50 samples per class), we outperform
random sampling by greater than 3%.

4.3. Cross Architecture Results

From Section 3.2, we know that low curvature samples
generalize across architectures. We corroborate this exper-
imentally and show that SLo-Curves consistently chooses
good subsets irrespective of pretrained network accuracy
or architecture. Figure 6a shows the accuracy of ResNet18
trained on coresets identified from different pretrained mod-
els. We show the results of a differently seeded ResNet-18,
a lower accuracy AlexNet, completely different architec-
tures MobileNetV3 and VGG19, a deeper similar architec-
ture ResNet101 and a much bigger network, DenseNet121,
with pretraining accuracies mentioned in brackets. Coresets
chosen by SLo-curves outperform random sampling for all
considered architectures by an average of 5.3%. We can see
that subsets chosen from lower, similar or higher accuracy
and complexity models all consistently perform well. Vari-
ances is shown in Appendix B.3.
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(a) Histograms (b) Accuracy

Figure 7. ResNet18 trained on coresets identified from DenseNet121 at initialization, at epoch 10 and at end of training. Note that the
x-axis is not to scale. The variances are reported in Appendix B.5.

4.4. Decoupling Selection and Regularization

Here, we show that the criterion for selection of points
is beneficial even without the curvature regularization dur-
ing training. In Figure 6b, we show the results of ResNet18
trained on coresets of CIFAR-10 identified by SLo-Curves
selection both with the best regularization strength λ for
each coreset size, and without any regularization (λ = 0).
We show the results of random sampling as the baseline. We
observe that the best performance is consistently shown by
our method with regularization. However, our method with-
out regularization still outperforms random sampling by an
average of 2.3% over all coreset sizes. The variances are
reported in Appendix B.4.

4.5. Early Emergence of Low Curvature Samples

Many coreset selection methods require training the net-
work for a few epochs before coreset selection. However,
we observe from Section 3.4 that low curvature samples
can be identified in the early epochs of training. We now
study their efficacy for coreset selection for real time usage.
We use a DenseNet121 to perform coreset selection, and
train a ResNet18 from scratch on the coreset identified by
our method. We study the randomly initialized, untrained
DenseNet121 (with 10% accuracy), DenseNet121 trained
for 10 epochs (to 84.7% accuracy), and DenseNet121 after
convergence (93.4% accuracy). Figure 7b visualizes the re-
sults, with random sampling shown as a baseline. We show
that the coresets identified at epoch 10 perform on par with
the coreset identified at convergence. The early emergence
of these low curvature samples can also be observed in the
corresponding histograms shown in Figure 7a. However,
during experimentation, we noted that higher regularization
strength (λ) was needed and recommend that where pre-
trained models are present, it is preferable to extract core-
sets from them. Surprisingly, choosing low curvature sam-
ples selected from an untrained random initialization per-

forms worse than random sampling. We think this may be
because the regularizer forces a simplification of the learned
boundary that is useful when the samples lend themselves
to a simple boundary.

5. Conclusion
We studied the curvature of the loss of trained neural

networks with respect to the training data points. We ob-
served that there is a significant concentration of training
samples with very low curvature, and found that these sam-
ples remain consistent between networks of differing initial-
izations and architectures. We also noted that they can be
identified early on during training. We visualize the sam-
ples with low and high curvature and find striking visual
differences between them. The low curvature samples are
clean, devoid of obstructions and prototypical of their cat-
egory. The high curvature samples have visual clutter, oc-
cluding and uncommon backgrounds, and are hard to iden-
tify. The results highlight the Hessian of data points as a
useful tool in the study of deep learning generalization. We
apply these observations to select significant samples and
introduce SLo-Curves, a novel coreset identification and
training algorithm that can generalize across architectures.
SLo-curves constructs coresets from the samples with low
curvatures and trains on them with an additional regularizer
that penalizes large curvature of loss around them. We show
that at small coreset sizes, SLo-Curves beats the state of the
art coreset selection methods by up to 9% on CIFAR-10 and
CIFAR-100 datasets.
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