
Transformer-Based Learned Optimization

Erik Gärtner1,2* Luke Metz1 Mykhaylo Andriluka1

C. Daniel Freeman1 Cristian Sminchisescu1

1Google Research 2Lund University
erik.gartner@math.lth.se

{lmetz,mykhayloa,cdfreeman,sminchisescu}@google.com

Abstract

We propose a new approach to learned optimization
where we represent the computation of an optimizer’s up-
date step using a neural network. The parameters of the op-
timizer are then learned by training on a set of optimization
tasks with the objective to perform minimization efficiently.
Our innovation is a new neural network architecture, Opti-
mus, for the learned optimizer inspired by the classic BFGS
algorithm. As in BFGS, we estimate a preconditioning ma-
trix as a sum of rank-one updates but use a Transformer-
based neural network to predict these updates jointly with
the step length and direction. In contrast to several recent
learned optimization-based approaches [24, 27], our for-
mulation allows for conditioning across the dimensions of
the parameter space of the target problem while remaining
applicable to optimization tasks of variable dimensionality
without retraining. We demonstrate the advantages of our
approach on a benchmark composed of objective functions
traditionally used for the evaluation of optimization algo-
rithms, as well as on the real world-task of physics-based
visual reconstruction of articulated 3d human motion.

1. Introduction

This work focuses on a new learning-based optimiza-
tion methodology. Our approach belongs to the category
of learned optimization methods, which represent the up-
date step of an optimizer by means of an expressive function
such as a multi-layer perceptron. We then learn the param-
eters of this function on a set of training optimization tasks.
Since the update function of the learned optimizers is esti-
mated from data, it can in principle learn various desirable
behaviors such as learning-rate schedules [22] or strategies
for the exploration of multiple local minima [23]. This is
in contrast to traditional optimizers such as Adam [15], or

*Work done during an internship at Google.

BFGS [11] in which updates are derived in terms of first-
principles. However, as these are general and hard-coded,
they may not be able to take advantage of the regularities in
the loss functions for specific classes of problems.

Learned optimizers are particularly appealing for appli-
cations that require repeatedly solving related optimization
tasks. For example, 3d human pose estimation is often for-
mulated as the minimization of a particular loss function
[12, 19, 30, 46]. Such approaches estimate the 3d state (e.g.
pose and shape) given image observations by repeatedly op-
timizing the same objective function for many closely re-
lated problems, including losses and state contexts. Tra-
ditional optimization treats each problem as independent,
which is potentially suboptimal as it does not aggregate ex-
perience across multiple related optimization runs.

The main contribution of this paper is a novel neural net-
work architecture for learned optimization. Our architecture
is inspired by classical BFGS approaches that iteratively es-
timate the Hessian matrix to precondition the gradient. Sim-
ilarly to BFGS, our approach iteratively updates the pre-
conditioner using rank-one updates. In contrast to BFGS,
we use a transformer-based [40] neural network to generate
such updates from features encoding an optimization tra-
jectory. We train the architecture using Persistent Evolu-
tion Strategies (PES) introduced in [41]. In contrast to prior
work [4, 24, 27], which rely on updates over each target pa-
rameter independently (or coupled only via normalization),
our approach allows for more complex inter-dimensional
dependencies via self-attention while still showing good
generalization to different target problem sizes than those
used in training. We refer to our learned optimization ap-
proach as Optimus in the sequel.

We evaluate Optimus on classical optimization objec-
tives used to benchmark optimization methods in the liter-
ature [17, 31, 37] (cf. fig. 1) as well as on a real-world task
of physics-based human pose reconstruction. In our exper-
iments, we typically observe that Optimus is able to reach
a lower objective value compared to popular off-the-shelf

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11970

Figure 1. Top row: Evaluation results showing average objective value reached by the optimizer for the corresponding objective function in
the top row (y-axis) vs. dimensionality of the objective function (x-axis). Bottom row: examples of objective functions used for evaluation
of our approach. From left to right: Rastrigin [28], Levy [17], Ackley [1] and Rosenbrock [31] functions. For each function, we visualize
the surface of the 2d version.

optimizers while taking fewer iterations to converge. For
example, we observe at least a 10x reduction in the number
of update steps for half of the classical optimization prob-
lems (see fig. 4). To evaluate Optimus in the context of
physics-based human motion reconstruction, we apply it in
conjunction with DiffPhy, which is a differentiable physics-
based human model introduced in [12]. We experimentally
demonstrate that Optimus generalizes well across diverse
human motions (e.g. from training on walking to testing on
dancing), is notably (5x) faster to meta-train compared to
prior work [24], leads to reconstructions of better quality
compared to BFGS, and is faster in minimizing the loss.

2. Related Work
Learned optimization is an active area of research, and

we refer the reader to an excellent tutorial [3] and survey [9]
for a comprehensive review of the literature. Our approach
is generally inspired by [4, 18, 27, 44] and is most closely
related to Adafactor MLP [24]. One of the distinguishing
properties of Optimus compared to Adafactor MLP is the
ability to couple optimization updates along different di-
mensions. Arguably coupling of dimensions can be added
to Adafactor MLP through additional features such as ra-
dial features from [23] that capture pairwise interactions
between dimensions. In contrast, the advantage of Optimus
over such extensions is that dimension coupling is learned
from data and is not limited to be pairwise. Other work
incorporates conditioning in some aggregated space. For
example, both [44] and [26] introduce hierarchical condi-
tioning mechanisms that operate on individual layers and
in a global setting. The Optimus approach can be seen as
constructing a learned preconditioner to account for the un-

derlying cost function curvature. The use of meta-learned
curvature has been explored in [29], though only in the con-
text of few-shot learning strategies.

There exist prior work on using learned optimiza-
tion in the human pose estimation literature [35] as well
as approaches that iteratively refine the solution in an
optimization-like fashion based on recurrent neural net-
works e.g. [8,50]. The work of [35] is perhaps the most sim-
ilar to ours in that it genuinely employs a learned optimiza-
tion in the framing described in sec. 3. However, [35] ap-
plies it to the simpler problem of monocular 3d pose estima-
tion. On that task their method converges in as few as four
iterations, thus making meta-training based on stochastic
gradient descent feasible. By design, the approach of [35]
does not generalize to optimization instances with variable
(thus different) dimensionality with respect to training, as
they employ a single MLP that predicts the entire update
vector. Moreover, their work has yet to be evaluated for
more complex tasks such as those considered in this paper.

3. Overview and Background
In this paper, we leverage a general approach to learned

optimization as introduced in [4, 6, 7, 27], which we review
in sec. 3.1. Equipped with this background, we then intro-
duce the details of our new Optimus architecture for learned
optimization in sec. 4. Then in sec. 5 we present experimen-
tal results comparing Optimus to prior work in learned opti-
mization [27] and against standard off-the-shelf optimizers.

3.1. Learning an Optimizer

Learned optimizers are a particular type of meta-learned
system which commonly uses a neural network to param-

11971

Linear

FC
(ReLU)

FC
(ReLU) Linear

Encoder Encoder

Linear

{x, dL
dx

, …} z N × 128

Bk−1

Encoder

Linear Linear

Bk

N × 128 N × 128 N × 128

N × 1 N × 1 N × 1

128 128 N × 2 {αk, dk}

B [λa exp(λbα) ⊙ d] Δx
Adafactor
Features

Layer Norm Multi-Head (3)
Attention Layer Norm FC

(128, GeLU)

Transformer Encoder

FC
(256, GeLU)

Block
N ×

:=
Apply Block

independently
to each row of

the input

N ×
N ×

N × N × N ×

Figure 2. Schematic overview of applying our Transformer-based learned optimizer, Optimus. The architecture of Optimus consisting
of L = 3 stacked Transformer encoders that predict rank one updates to a learned pre-conditioning matrix B and a separate branch that
predicts step size a and step direction d. The network uses the Adafactor MLP features introduced in [24] as input. Note: to allow our
architecture to generalize to function of different dimensions all linear and FC layers are applied per-parameter.

eterize a gradient-based step calculation that can then be
used to optimize some objective function [4]. To demon-
strate this class of models, let us consider an optimization
problem argminxL(x). Gradient-based optimization algo-
rithms such as gradient descent (GD) aim to solve the prob-
lem by iteratively modifying the parameters x using an up-
date function U which takes gradients of L along the opti-
mization trajectory as input xt+1 = xt − U(∇≤tL(x1:t)),
where xt are the parameters at step t and ∇≤tL(x1:t) =
{∇L(x1), . . . ,∇L(xt)}. For example, in the case of
GD, the update function is simply Ugd(∇≤tL(x1:t)) =
−α∇L(xt), where α is a learning rate hyperparameter. A
learned optimizer is a particular type of update function,
which itself is parameterized by a set of meta-parameters θ,
and with possibly more features (e.g., the current parameter
values). Then, as with GD, it can be iteratively applied to
improve the loss.

In this paper, we build on learned optimization as pro-
posed in [24, 27, 41]. In that approach, the update function
U = U(z|θ) is parameterized based on a small multilayer
perceptron (MLP) with weights θ, which is applied inde-
pendently to each dimension of a feature vector z. For each
parameter, the update function takes a vector of features z
as input, including gradient information, as well as addi-
tional features such as exponential averages of squared past
gradients as done in Adam [15] or RMSProp [38], momen-
tum at multiple timescales [20], as well as factored features
inspired by Adafactor [32]. We refer to this approach as
Adafactor MLP in the sequel. Training an Adafactor MLP
optimizer amounts to minimizing a meta-loss with respect
to parameters θ on a meta training-set of optimization prob-
lem instances. The meta-loss is given by

∑
t L(xt) where

the sum runs over the parameter states of the optimization
trajectory. Minimizing the meta-loss is often implemented
via truncated backpropagation through unrolled optimiza-
tion trajectories [4, 21, 43, 44]. As discussed in [25, 27, 41]
typical meta-loss surfaces are noisy and direct gradient-
based optimization is difficult due to exploding gradients.
To address this, we minimize the smoothed version of a
meta-loss as in [27] using Adam [15] and adopt Persistent
Evolution Strategies (PES) [41] to compensate for bias due
to truncated back-propagation [45].

4. Our Approach
Our transformer-based learned optimizer, Optimus, is in-

spired by the BFGS [11] rank-one approximation approach
to estimating the inverse Hessian, which is applied as a pre-
conditioning matrix in order to obtain the descent direction.
The parameter update is the product of a descent direction
(sk) produced by a learned optimizer that operates on each
parameter independently, and a learned preconditioner (Bk)
where Bk is an N ×N matrix which supports conditioning
over the entire parameter space. We update Bk with L rank-
one updates on each iteration. The full update is thus given
by

∆xk = Bksk, (1)

where ∆xk is the parameter update at iteration k. See fig. 2
for an overview.
Per-Parameter Learned Descent Direction (sk). Let us
denote a feature vector describing the optimization state of
the n-th parameter at iteration k as zkn. As in [24] we predict
per-parameter updates using a simple MLP that takes the
feature vector zkn as input and outputs a log learning rate

11972

αk
n and update direction dkn that are combined into a per-

parameter update as

skn = λa exp(λbα
k
n)d

k
n, (2)

where λa = 0.1, and λb = 0.1 are hyperparameters which
are constant throughout meta-training. Note that at that
stage we independently predict the update direction and
magnitude for each dimension of the vector x. In partic-
ular, the MLP weights are shared across all the dimensions
of x. We use a small 4-layer MLP with 128 units per layer
at that stage and did not observe improvement when with
larger models (see tab. 4). We use the same features zkn
as [24] and similarly to [24] normalize the features to have
a second moment of 1. We include the feature list in the
supplementary material for completeness.
Learned Preconditioning (Bk). Next, we introduce a
mechanism to couple the optimization process of each di-
mension of x and enable the optimization algorithm to store
information across iterations. Intuitively such coupling
should lead to improved optimization trajectories by cap-
turing curvature information, similar to how second-order
and quasi-Newton methods improve over first-order meth-
ods such as gradient descent. We define these updates as a
low-rank update followed by normalization:

B̃
k+1

= Bk +

L∑
l=1

uk
l (u

k
l)

⊤, Bk+1 = B̃
k+1

/ ∥B̃k+1∥,

where we initialize with B0 = IN×N . To predict the
N -dimensional vectors uk

l we apply a stack of L Trans-
former encoders [40] to a set of per-parameter features lin-
early mapped to d = 128 dimensions. Note that tradition-
ally Transformer architecture has been applied to sequen-
tial data, whereas here we use it to aggregate information
along the parameter dimensions. We visualize the architec-
ture in fig. 2 for the case L = 3. The i-th element of uk

l

is computed by applying a layer-dependent linear mapping
Ml to the i-th row of the output Ekl of the Transformer
encoder at the layer l: uk

li = Ml(E
kl
i:).

Note that our formulation of the update equations for Bk

supports several desirable properties. First, it enables cou-
pling between updates of individual parameters through the
self-attention of the encoders. Secondly, our formulation
does so without making the network specific to the objective
function dimensions used during training. This allows us to
readily generalize to problems of different dimensionality
(see sec. 5.1). Finally, it allows the optimizer to accumulate
information across iterations, similarly to how BFGS [11]
incrementally approximates the inverse Hessian matrix as
optimization goes on. Effectively our methodology works
by learning a preconditioning for the first-order updates es-
timated in other learned optimizers, such as the Adafactor
MLP [24]. While this preconditioner considerably increases

the step quality, its computational cost grows quadratically
in the number of parameters.
Stopping Criterion. During meta-training, we unroll the
optimizer for 50 steps, but at test time, we run Optimus us-
ing a stopping criterion based on relative function value de-
crease, as in classical optimization. We terminate the search
if f(xk) > 1

N

∑N
i=1 βf(x

k−i)+ ϵ, i.e. if the function value
at step k is greater than the average function value in the
previous N steps. We do not apply this criterion for the first
N steps. We set N = 5 in our experiments.

5. Experiments

We evaluate our learned optimization methodology on
two tasks. We first present results of a benchmark com-
posed of objective functions typically used for evaluation
of optimization methods, and then present results for artic-
ulated 3d human motion reconstruction in sec. 5.2.
Baselines. We compare the performance of our Op-
timus optimizer to standard optimization algorithms
BFGS [11], Adam [15], and gradient descent with momen-
tum (GD-M). We independently tune the learning rate of
Adam and GD-M for each optimization task given by ob-
jective function and input dimensionality using grid-search.
To that end we test 100 candidate learning rates between
10−6 and 1 and choose the learning rate that results in low-
est average objective value after running optimization for
64 random initializations. Finally, we also compare our ap-
proach to the state-of-the-art learned optimizer Adafactor
MLP [24,27] using the publicly available implementation1.

5.1. Standard evaluation functions

Evaluation benchmark. We define a benchmark com-
posed of 15 objective functions frequently used for evalu-
ation of optimization algorithms. We show a few examples
of such functions in fig. 1 and provide a full list in the sup-
plementary material. To define the benchmark we use the
catalog of objective functions available at [37], focusing on
the functions that can be instantiated for any dimensionality
of the input. We include both seemingly easy to optimize
functions (e.g. “Sphere” function2) as well as more chal-
lenging functions with multiple local minima (e.g. Ackley
function [1]) or difficult to find global minima located at
the bottom of an elongated valley (e.g. Rosenbrock func-
tion [31]). We use versions of these functions with input
dimensionality of 2− 100 for training, and then evaluate on
the dimensions 250, 500 and 1000 to show that optimizer
can generalize to different dimensionality of the input. This
gives us a test set of 45 objective functions to evaluate on.
To prevent the learned optimizer from memorizing the po-

1https://github.com/google/learned_optimization
2fsphere(x) =

∑d
i=1 x

2
i , where x ∈ Rd

11973

Figure 3. Comparison of optimizers using the performance profile
metric from [5] that incorporates relative distance from the global
minimum and relative performance of each algorithm with respect
to the best algorithm (higher values on the y-axis mean better per-
formance).

sition specific information we add random offsets to the ob-
jective functions used for training.
Evaluation metrics. We use two types of aggregate met-
rics in our evaluation to assess both the quality of the min-
ima that were found, as well as the number of iterations an
optimizer needed in order to reach the minimum.

We rely on performance profiles [2,5,10,36] to compare
Optimus to the baseline methods. Let P be the set of test
problems and S is the set of optimizers tested. To define a
performance profile one first introduces a performance mea-

sure mp,s =
f̂p,s−f∗

p

fw
p −f∗

p
, where f̂p,s is best solution of method

s for problem p, fw
p is the worst solution out of all methods,

and f∗
p is the global minimum. The measure mp,s is useful

because if allows to compare performance of the optimizer
across a set of different optimization tasks. The following
ratio then compares each optimizer with the best perform-
ing one on the problem p: rp,s =

mp,s

min{mp,s:s∈S} , where the
best solver for each problem has ratio rp,s = 1. Given a
threshold t for each optimizer s we can now compute the
percentage of problems ρs(t) for which the ratio rp,s ≤ t:

ρs(t) =
1

|P|
size{p ∈ P : rp,s ≤ t}. (3)

Thus, the performance profile ρs(t) is the proportion of
problems a method’s performance ratio rp,s is within a fac-
tor of t of the best performance ratio. Hence, ρs(1) repre-
sents the percentage of tasks for which optimizer s has best
performance (lowest function value) out of the tested meth-
ods. We compare the performance profiles of Optimus with
our baselines in fig. 3.

Finally, we also measure the relative number of iterations
Optimus needed to reach the value of the minima found
by another baseline optimizer. We use Adam, BFGS and
Adafactor MLP as baselines for such comparison.
Results. We observe that Optimus typically converges to
a lower objective value compared to other optimizers (see

Figure 4. Comparison of Optimus with Adam, BFGS and Adafac-
tor MLP in terms of relative number of iterations required to reach
a pre-defined minimum of the objective function. Black dotted line
corresponds to break-even point, all the dots above this line cor-
respond to optimization problems where Optimus required fewer
iterations than corresponding baseline. The units of the x-axis are
percentiles of the total number of tasks. For illustration, we mark
the points on the x-axis with the name and dimensionality of the
objective function using the ordering of the Optimus vs. BFGS
comparison (as indicated by the green color).

0 5 10 15 20 25 30 35 40 45

0.2

0.4

0.6

0.8

1

Optimus vs Grad.
Optimus vs Newton
Adafactor MLP vs Grad.
Adafactor MLP vs Newton
BFGS vs Grad.
BFGS vs Newton

Step

C
os

in
e

S
im

ila
ri
ty

Figure 5. Left: results on evaluating Optimus trained on 2-100
dimensional Rosenbrock functions and then evaluating on 10d to
1000d Rosenbrocks. Mid: comparing the generalizing capability
of Optimus and Adafactor MLP for training on different dimen-
sions of the Rosenbrock function. Right: mean similarity between
Optimus update step and gradient and Newton direction on the 2d
Rosenbrock function, averaged over 64 trajectories.

fig. 1 and supplementary material). We use the perfor-
mance profile metric [5] to aggregate these results across
functions. Note that it is not meaningful to directly average
the per-function minima since each function is scaled differ-
ently and so values of minima are not directly comparable.
The performance profile metric tackles this issue by relat-
ing minima for each function to its global minima, which

11974

is known for all objective functions in our benchmark. The
results are shown fig. 3. We observe that performance of
Optimus is higher than other optimizers across all values of
performance threshold indicating that on average Optimus
gets closer to global minimum of each function compared
to other optimizers.

In fig. 4 we show relative number of iterations Opti-
mus needs to reach the same objective value as Adam,
BFGS and Adafactor MLP optimizers. The target objective
value in this evaluation is defined as average objective value
achieved by the corresponding baseline after 100 iterations.
The y-axis in fig. 4 corresponds to ratio between number of
iterations required by a baseline and number of iterations
required by Optimus. Values on y-axis larger than 1 indi-
cate that Optimus required fewer iterations. The x-axis in
fig. 4 is a percentile of the tasks in the benchmark. A par-
ticular point on the plot then tells us what percentage of the
benchmark has a ratio between number of iterations greater
or equal than a value on y axis at that point.

For example, we observe that for about 50% of the tasks
Optimus requires about 10× fewer iterations than Adam
and BFGS and about 5× fewer iterations than Adafactor
MLP. In fig. 4 we label the x-axis with names of the ob-
jective functions corresponding to each point on the curve
comparing Optimus to BFGS. We observe that BFGS ex-
cels on simple convex objective functions such as “Sphere”
or their noisy versions such as “Griewank”, where it can
quickly converge to global minimum. However BFGS fails
on more complex functions with multiple local minima such
as “Ackley” or functions where minima is located in a flat
elongated valley such as “Rosenbrock” or “Dixon-Price”3.
Analysis of update step direction. To further highlight dif-
ferences between Optimus and Adafactor MLP we plot the
absolute cosine similarity of their step along the steepest
descent direction given by −∇x, and the Newton direction
given by −H−1

x ∇x, where H−1
x is the inverse Hessian at

point x. The results are shown in fig. 5 for optimization of
the 2d Rosenbrock function. For clarity we also include the
same similarity plot for BFGS. As expected, the direction of
BFGS step becomes similar to Newton after a few iterations
since the preconditioner in BFGS approximates the inverse
Hessian. Note that overall the direction of the Optimus step
is much closer to Newton compared to Adafactor MLP and
much less similar to steepest descent. This supports the in-
tuition that Optimus’s design extends the learned optimizer
with a preconditioner similar to BFGS.

5.2. Physics-Based Motion Reconstruction

In principle, learned optimization can be applied to any
problem that is solvable by means of local descent, and thus
to any physics-based reconstruction that formulates human

3Please see supplementary material for the description of the objective
functions.

motion reconstruction as loss minimization [12, 19, 46, 49].
In this paper, we build on the DiffPhy approach of [12],
who define a differentiable loss function for physics-based
reconstruction. DiffPhy relies on the differentiable imple-
mentation of rigid body dynamics in [13] and shape-specific
body model based on [47] to define a loss function that
measures similarity between simulated motion and obser-
vations. The observations are either a set of 3d keyframe
poses, when the goal is to reproduce articulated 3d motion
in physical simulation, or a sequence of image measure-
ments such as 2d image keypoints or estimated 3d poses
in each frame. The physical motion in DiffPhy is parame-
terized via a control trajectory, which is given by a sequence
of quaternions defining a target rotation of each body joint
over time. The control trajectory implicitly defines the
torques applied to each body joint via PD-control. Please
refer to [12] for a more extensive explanation of the loss
function. Hence, optimization, in this case, aims to infer
the control trajectory that re-creates an articulated motion
in physical simulation in a way that is close to the given ob-
servations and consistent with constraints (e.g. lack of foot-
skate and non-intersection with respect to a ground plane).
Datasets. In our human motion experiments, we use the
popular Human3.6M articulated pose estimation bench-
mark [14]. We follow the protocol introduced in [34] to
compare to related work for video-based experiments4. For
experiments with motion capture inputs, we rely the same
subset of 20 validation sequences from Human3.6M as used
in [12]. We then additionally evaluate on the dancing se-
quences from the AIST dataset [39] used in [12] to further
evaluate the generalization of our approach across qualita-
tively different motion types.
Evaluation metrics. We report the standard 2d and 3d
human pose metrics as well as physics-based metrics.
The mean per-joint 3d position error (MPJPE-G), the per-
frame translation-aligned error (MPJPE), and the per-frame
Procrustes-aligned error (MPJPE-PA) are reported in mil-
limeters. In addition, we measure the 2d keypoint error of
the reconstruction (MPJPE-2d) in pixels. Finally, we mea-
sure the amount of motion jitter as the total variation in 3d
joint acceleration (TV) defined as 1

T

∑
t∈T

∑
k∈K |ẍk

t+1 −
ẍk
t |, where ẍk

t is the 3d acceleration of joint k at time t,
as well as the percentage of frames exhibiting foot skate as
defined by prior work [12].
Model training. We train Optimus and Adafactor MLP on
the task of minimizing the DiffPhy loss, which measures
similarity between the simulated motion and 3d poses esti-
mated based on [50]. Following an initial grid-search to de-
termine the best learning rate for each model, we train these
for 10 days using 500 CPUs to generate training batches of
optimization rollouts (128 roll-outs of length 50 per batch).

4The protocol excludes motions such as “sitting” and “eating” which
require modeling human-object interactions.

11975

Figure 6. Left: comparison of validation loss during training of Optimus and Adafactor MLP. Note how Optimus converges to lower
validation loss much faster than the Adafactor MLP model. Mid: comparison of loss curves during optimizing on “in domain” examples
in tab. 1. Right: loss curves during optimizing of “out of domain” examples in tab. 1. Note how Optimus generalizes better than Adafactor
MLP on out of domain data and minimizes the loss faster than BFGS. Shaded area denotes 95% confidence interval.

Method MPJPE-G (in domain) MPJPE-G (out of domain) # Func. Evals
DiffPhy + BFGS [12] 38.3 24.7 71

+ AdaFactor MLP [24] 33.0 29.3 50
+ Optimus (Ours) 24.0 25.0 50

Table 1. Comparison of different approaches to trajectory optimization on motion capture data from our Human3.6M validation set.

Human3.6M AIST Internet Videos

Figure 7. Qualitative examples of video reconstructions by Op-
timus. We train Optimus on the Human3.6M [14] dataset (left).
We then evaluate its performance on the dancing sequence from
AIST [39] (see tab. 3) and qualitatively verify that Optimus is ap-
plicable to in-the-wild internet videos (rightmost images).

We show loss vs. training time curves on the validation set
in fig. 6 (left). Note that Optimus generally converges much
faster and to a lower loss value compared to competitors.
For example, after 48 hours of training, Optimus has essen-
tially converged to a loss of 6.49 whereas Adafactor MLP
requires nearly 240 hours to reach a loss value of 6.55.

Results. As our first experiment in tab. 1 we compare the
performance of Optimus to Adafactor MLP and BFGS us-
ing motion capture (mocap) data as input. In fig. 6 (middle
and right) we additionally visualize how quickly the loss is
reduced by the optimizer at each iteration. Note that itera-
tions of BFGS and of the learned optimizers are not com-
parable in terms of computational resources because BFGS
might evaluate the objective function more than once during
line search. To compensate for different iteration costs, in
fig. 6 we plot the number of objective function evaluations
instead of the optimization iteration along the x-axis. In this
experiment we train all models on walking sequences from

Human3.6M dataset 5. We refer to walking sequences as “in
domain” in fig. 6 and tab. 1. We then assess performance
on a validation set of “in domain” and “out of domain” se-
quences corresponding to motions other than walking. Note
that Optimus improves over other approaches in the “in do-
main” setting and reaches the loss comparable to BFGS at
roughly half of loss function evaluations (cf . fig. 6 (mid-
dle)). In the “out of domain” setting Optimus reaches nearly
the same accuracy compared to BFGS (24.7 vs 25mm.) but
again converges much faster. In contrast Adafactor MLP
does not improve over BFGS on the “out of domain” mo-
tions and converges to a higher loss (cf . fig. 6 (right)).

In the second experiment, we evaluate performance of
our best model DiffPhy+Optimus for video-based human
motion reconstruction. Note that Optimus performs well on
the dancing sequences from AIST even though it has been
trained only on walking data from Human3.6M (150.2 for
DiffPhy vs. 149.8 mm MPJPE-G for Optimus) and that Op-
timus is able to handle mocap and video inputs without re-
training. We observe similar results on Human3.6M, where
Optimus performs on par with BFGS (138.6 vs. 139.1
MPJPE-G) while requiring roughly half as many function
evaluations (88 for DiffPhy vs. 40 for Optimus). We show
a few qualitative examples for Optimus results on Hu-
man3.6M, AIST and internet videos in fig. 7.
Ablation experiments. We now evaluate how different de-
sign choices affect the model performance. Due to high
computational load, we train each model for up to 48 hours.
The results are shown in tab. 4. We refer to a version of Op-
timus that does not incrementally update the matrix Bk in
sec. 4 and instead predicts it from scratch at each iteration

5We use “Walking” and “WalkTogether” activities.

11976

Model MPJPE-G MPJPE MPJPE-PA MPJPE-2d TV Foot skate
VIBE [16] 207.7 68.6 43.6 16.4 0.32 27.4
PhysCap [34] - 97.4 65.1 - - -
SimPoE [48] - 56.7 41.6 - - -
Shimada et al. [33] - 76.5 58.2 - - -
Xie et al. [46] - 68.1 - - - -
DiffPhy [12] 139.1 82.1 55.9 13.2 0.21 7.2
Optimus (Ours) 138.6 82.8 57.0 13.2 0.20 6.5

Table 2. Quantitative results on Human3.6M [14] comparing our model to prior methods.

Model MPJPE-G MPJPE MPJPE-PA MPJPE-2d TV Foot skate
DiffPhy [12] 150.2 105.5 66.0 12.1 0.44 19.6
Optimus 149.8 104.4 66.4 12.1 0.45 21.5

Table 3. Quantitative results on generalizing to a new dataset. Optimus was trained Human3.6M [14] and is here evaluated on a subset of
the dance motion dataset AIST [39].

Variant MPJPE-G Loss # Params Runtime (ms)
Optimus 33.1 0.534 832,526 78.9
Optimus, no state 36.5 0.675 832,526 115.1
Optimus, no structure 37.3 0.721 832,139 10.7
Adafactor MLP [24] 512x4 40.0 0.723 811,531 3.7
Adafactor MLP [24] 128x4 40.6 0.811 22,411 2.6
Optimus 33.1 0.534 832,526 78.9
Optimus, 50 iterations 28.5 0.383 832,526 78.9
Optimus + BasinHopping [42] 25.6 0.352 832,526 78.9

Table 4. Top: ablation of model components on motion capture from our Human3.6M [14] validation set. Bottom: comparison of different
test time operating modes.

as “Optimus, no state”, and a version that uses a transformer
to directly predict ∆xk from sk in Eq. (1) as “Optimus,
no structure”. Our full Optimus improves over Adafactor
MLP by 17.2% and over simpler “Optimus, no structure” by
11.3% while having nearly the same number of parameters.
Note that simply adding more parameters to Adafactor MLP
barely improves results (40.6 vs. 40.0mm MPJPE-G). Opti-
mus makes 30.3 function evaluations before optimization is
terminated by the stopping criterion. In tab. 4 (bottom three
lines) we evaluate the effect of running Optimus for a fixed
number of 50 function evaluation without stopping criterion
and the effect of using even more costly BasinHopping [42]
optimization that adds random perturbations after a fixed
number of iterations (to improve global exploration) requir-
ing 82.3 function evaluations on average. We observe that
running Optimus for longer leads to considerably improved
results, at higher computational load (33.1 for Optimus vs.
25.6 mm MPJPE-G for Optimus+BasinHopping).

6. Conclusion
We have introduced a learned optimizer, Optimus, based

on an expressive architecture that can capture complex de-
pendency updates in parameter space. Furthermore, we

have demonstrated the effectiveness of Optimus for the real-
world task of physics-based articulated 3D motion recon-
struction as well as on a benchmark of classical optimiza-
tion problems. While Optimus’s expressive architecture
outperforms simpler methods such as Adafactor MLP, the
expressiveness comes at an increased computational cost.
As a result, Optimus is best suited for tasks where the loss
function dominates the computational complexity of opti-
mization (e.g., physics-based reconstruction) but might be
less suited for applications where the computation of the
loss function is fast (e.g. training neural networks). In fu-
ture work, we hope to address this limitation by learning
factorizations of the estimated prediction matrix.
Ethical Considerations. We aim to improve the real-
ism and quality of human pose reconstruction by includ-
ing physical constraints. By amortizing the computation
through learning from past instances, we hope to reduce the
long-term computational demand of these methods. We be-
lieve that our physical model’s level of detail (e.g. lack of
photorealistic appearance) limits its applications in adverse
tasks such as person identification or deepfakes. Further-
more, the model is inclusive in supporting a variety of body
shapes and sizes, and their underlying physics.

11977

References
[1] D.H Ackley. A Connectionist Machine for Genetic Hill-

climbing, volume SECS28. Kluwer Academic Publishers,
Boston, 1987. 2, 4

[2] M Montaz Ali, Charoenchai Khompatraporn, and Zelda B
Zabinsky. A numerical evaluation of several stochastic algo-
rithms on selected continuous global optimization test prob-
lems. Journal of global optimization, 31(4):635–672, 2005.
5

[3] Brandon Amos. Tutorial on amortized optimization for
learning to optimize over continuous domains. arXiv
preprint arXiv:2202.00665, 2022. 2

[4] Marcin Andrychowicz, Misha Denil, Sergio Gomez,
Matthew W Hoffman, David Pfau, Tom Schaul, and Nando
de Freitas. Learning to learn by gradient descent by gradi-
ent descent. In Advances in Neural Information Processing
Systems, pages 3981–3989, 2016. 1, 2, 3

[5] Vahid Beiranvand, Warren Hare, and Yves Lucet. Best prac-
tices for comparing optimization algorithms. Optimization
and Engineering, 18(4):815–848, 2017. 5

[6] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan
Gecsei. On the optimization of a synaptic learning rule. In
Preprints Conf. Optimality in Artificial and Biological Neu-
ral Networks, pages 6–8. Univ. of Texas, 1992. 2

[7] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learn-
ing a synaptic learning rule. Université de Montréal,
Département d’informatique et de recherche opérationnelle,
1990. 2

[8] Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and
Jitendra Malik. Human pose estimation with iterative er-
ror feedback. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4733–4742,
2016. 2

[9] Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard
Heaton, Jialin Liu, Zhangyang Wang, and Wotao Yin. Learn-
ing to optimize: A primer and a benchmark. arXiv preprint
arXiv:2103.12828, 2021. 2

[10] Elizabeth D Dolan and Jorge J Moré. Benchmarking opti-
mization software with performance profiles. Mathematical
programming, 91(2):201–213, 2002. 5

[11] Roger Fletcher. Practical Methods of Optimization. John
Wiley & Sons, New York, NY, USA, 1987. 1, 3, 4

[12] Erik Gärtner, Mykhaylo Andriluka, Erwin Coumans, and
Cristian Sminchisescu. Differentiable dynamics for articu-
lated 3d human motion reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 1, 2, 6, 7, 8

[13] Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng,
and Gaurav S Sukhatme. NeuralSim: Augmenting differen-
tiable simulators with neural networks. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 2021. 6

[14] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6m: Large scale datasets and predic-
tive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 36(7):1325–1339, jul 2014. 6, 7, 8

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1, 3, 4

[16] Muhammed Kocabas, Nikos Athanasiou, and Michael J.
Black. Vibe: Video inference for human body pose and
shape estimation. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Jun 2020. 8

[17] Manuel Laguna and Rafael Martı́. Experimental testing
of advanced scatter search designs for global optimization
of multimodal functions. Journal of Global Optimization,
33:235–255, 2005. 1, 2

[18] Ke Li and Jitendra Malik. Learning to optimize. In ICLR,
2017. 2

[19] Zongmian Li, Jiri Sedlar, Justin Carpentier, Ivan Laptev,
Nicolas Mansard, and Josef Sivic. Estimating 3d motion and
forces of person-object interactions from monocular video.
In Computer Vision and Pattern Recognition (CVPR), 2019.
1, 6

[20] James Lucas, Shengyang Sun, Richard Zemel, and Roger
Grosse. Aggregated momentum: Stability through passive
damping. arXiv preprint arXiv:1804.00325, 2018. 3

[21] Dougal Maclaurin, David Duvenaud, and Ryan Adams.
Gradient-based hyperparameter optimization through re-
versible learning. In International conference on machine
learning, pages 2113–2122. PMLR, 2015. 3

[22] Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi
Sun, and Jascha Sohl-Dickstein. Reverse engineering
learned optimizers reveals known and novel mechanisms. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems, volume 34, pages 19910–19922.
Curran Associates, Inc., 2021. 1

[23] Amil Merchant, Luke Metz, Samuel Schoenholz, and
Ekin Dogus Cubuk. Learn2hop: Learned optimization on
rough landscapes. In International Conference on Machine
Learning, pages 8661–8671. PMLR, 2021. 1, 2

[24] Luke Metz, C Daniel Freeman, James Harrison, Niru Mah-
eswaranathan, and Jascha Sohl-Dickstein. Practical tradeoffs
between memory, compute, and performance in learned op-
timizers. arXiv preprint arXiv:2203.11860, 2022. 1, 2, 3, 4,
7, 8

[25] Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and
Tal Kachman. Gradients are not all you need, 2021. 3

[26] Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben
Poole, and Jascha Sohl-Dickstein. Tasks, stability, archi-
tecture, and compute: Training more effective learned op-
timizers, and using them to train themselves. arXiv preprint
arXiv:2009.11243, 2020. 2

[27] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel
Freeman, and Jascha Sohl-Dickstein. Understanding and
correcting pathologies in the training of learned optimizers.
In International Conference on Machine Learning, pages
4556–4565, 2019. 1, 2, 3, 4

[28] H. Mühlenbein, M. Schomisch, and J. Born. The parallel
genetic algorithm as function optimizer. 17(6–7):619–632,
Sept. 1991. 2

11978

[29] Eunbyung Park and Junier B Oliva. Meta-curvature. Ad-
vances in Neural Information Processing Systems, 32, 2019.
2

[30] Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan
Russell, Ruben Villegas, and Jimei Yang. Contact and hu-
man dynamics from monocular video. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020. 1

[31] H. H. Rosenbrock. An Automatic Method for Finding the
Greatest or Least Value of a Function. The Computer Jour-
nal, 3(3):175–184, 01 1960. 1, 2, 4

[32] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive
learning rates with sublinear memory cost. In International
Conference on Machine Learning, pages 4596–4604. PMLR,
2018. 3

[33] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, Patrick
P’erez, and Christian Theobalt. Neural monocular 3d human
motion capture with physical awareness. ACM Transactions
on Graphics (TOG), 40:1 – 15, 2021. 8

[34] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and Chris-
tian Theobalt. Physcap: Physically plausible monocular 3d
motion capture in real time. ACM Transactions on Graphics,
39(6), dec 2020. 6, 8

[35] Jie Song, Xu Chen, and Otmar Hilliges. Human body model
fitting by learned gradient descent. In European Conference
on Computer Vision, pages 744–760. Springer, 2020. 2

[36] Roman Strongin and Yaroslav Sergeyev. Global Optimiza-
tion with Non-Convex Constraints: Sequential and Parallel
Algorithms. Springer US, New York, NY, USA, 2000. 5

[37] S. Surjanovic and D. Bingham. Virtual library of simulation
experiments: Test functions and datasets. Retrieved Novem-
ber 9, 2022, from http://www.sfu.ca/˜ssurjano.
1, 4

[38] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012. 3

[39] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki,
and Masataka Goto. Aist dance video database: Multi-genre,
multi-dancer, and multi-camera database for dance informa-
tion processing. In Proceedings of the 20th International
Society for Music Information Retrieval Conference, ISMIR
2019, pages 501–510, Delft, Netherlands, Nov. 2019. 6, 7, 8

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 4

[41] Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbi-
ased gradient estimation in unrolled computation graphs with
persistent evolution strategies. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 10553–10563. PMLR,
18–24 Jul 2021. 1, 3

[42] David J. Wales and Jonathan P. K. Doye. Global optimiza-
tion by basin-hopping and the lowest energy structures of
lennard-jones clusters containing up to 110 atoms. The Jour-
nal of Physical Chemistry A, 101(28):5111–5116, 1997. 8

[43] Paul J Werbos. Backpropagation through time: what it does
and how to do it. Proceedings of the IEEE, 78(10):1550–
1560, 1990. 3

[44] Olga Wichrowska, Niru Maheswaranathan, Matthew W
Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Nando
de Freitas, and Jascha Sohl-Dickstein. Learned optimizers
that scale and generalize. International Conference on Ma-
chine Learning, 2017. 2, 3

[45] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger
Grosse. Understanding short-horizon bias in stochastic meta-
optimization. arXiv preprint arXiv:1803.02021, 2018. 3

[46] Kevin Xie, Tingwu Wang, Umar Iqbal, Yunrong Guo, Sanja
Fidler, and Florian Shkurti. Physics-based human motion
estimation and synthesis from videos. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 11532–11541, October 2021. 1, 6, 8

[47] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir,
William T Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. GHUM & GHUML: Generative 3d human shape
and articulated pose models. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 6184–6193, 2020. 6

[48] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason
Saragih. Simpoe: Simulated character control for 3d human
pose estimation. In The IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 8

[49] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, Bill
Freeman, Rahul Sukthankar, and Cristian Sminchisescu.
Weakly supervised 3d human pose and shape reconstruction
with normalizing flows. arXiv preprint arXiv:2003.10350,
2020. 6

[50] Andrei Zanfir, Eduard Gabriel Bazavan, Mihai Zanfir,
William T Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Neural descent for visual 3d human pose and
shape. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021. 2, 6

11979

