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Abstract

Multi-modal image-text models such as CLIP and LiT
have demonstrated impressive performance on image clas-
sification benchmarks and their zero-shot generalization
ability is particularly exciting. While the top-5 zero-shot
accuracies of these models are very high, the top-1 accu-
racies are much lower (over 25% gap in some cases). We
investigate the reasons for this performance gap and find
that many of the failure cases are caused by ambiguity in
the text prompts. First, we develop a simple and efficient
zero-shot post-hoc method to identify images whose top-1
prediction is likely to be incorrect, by measuring consis-
tency of the predictions w.r.t. multiple prompts and image
transformations. We show that our procedure better pre-
dicts mistakes, outperforming the popular max logit base-
line on selective prediction tasks. Next, we propose a simple
and efficient way to improve accuracy on such uncertain im-
ages by making use of the WordNet hierarchy; specifically
we augment the original class by incorporating its parent
and children from the semantic label hierarchy, and plug the
augmentation into text prompts. We conduct experiments
on both CLIP and LiT models with five different ImageNet-
based datasets. For CLIP, our method improves the top-
1 accuracy by 17.13% on the uncertain subset and 3.6%
on the entire ImageNet validation set. We also show that
our method improves across ImageNet shifted datasets, four
other datasets, and other model architectures such as LiT.
The proposed method1 is hyperparameter-free, requires
no additional model training and can be easily scaled to
other large multi-modal architectures. Code is available
at https://github.com/gyhandy/Hierarchy-CLIP.

1. Introduction
Vision-language multi-modal models trained on large-

scale data have achieved significant success in numerous
domains and have demonstrated excellent zero-shot gener-
alization ability [7, 12, 18, 19, 20, 28]. Given a test image
and a set of candidate class labels, one can compute the
similarity between the embedding of the image and the em-
bedding of each candidate class labels, and predict the class

1Work carried out mainly at Google

as the one with the highest similarity. The zero-shot top-1
accuracy for ImageNet [4] using CLIP variants (CLIP ViT-
L) matches the performance of the original ResNet model
trained from scratch. Recently, CLIP has been found to
be more robust to distribution shift than ResNet, achieving
good performance on ImageNet-V2 [21], ImageNet-R [9],
ImageNet-A [11], and ImageNet-Sketch [25].

We noticed a large gap between the top-1 accuracy and
top-5 accuracy, 64.2% vs. 89.4% respectively, revealing
potential headroom for improvement. We investigated the
cases where the top-1 prediction was incorrect but the top-5
prediction was correct, and identified several typical failure
modes. Despite the well-known multi-label issues in Ima-
geNet [1], we found many of the remaining failure cases are
caused by noise and ambiguous text prompts related to the
WordNet hierarchical structure of ImageNet. Some class
names are quite general so that the model cannot correctly
match images from their specific subclasses. For example,
the hot-air balloon images belonging to the “balloon” class
were misclassified as “airship”, see Figure 1 middle. On
the other hand, some class names are too specific such that
the model fails to correlate them with their more generic
super-classes. For example, 96% of images with ground
truth label “tusker” are wrongly classified as other elephant
classes such as “Asian elephant”, see Figure 1 left. The fail-
ure modes analysis suggests that the text encoder is very
sensitive to inputs and as a result, the overall classification
lacks robustness.

Inspired by these observations, we propose to first iden-
tify the subset of images whose top-1 prediction is likely
to be incorrect, and then improve the accuracy for those
images by a principled framework to augment their class
labels by WordNet hierarchy. To estimate whether an im-
age has an incorrect prediction, i.e., to estimate the predic-
tion confidence, we use the consistency of predictions under
different text prompt templates and image augmentations
as a signal for prediction confidence estimation. Although
prediction confidence estimation has been well studied in
single-modal classification models, we found those com-
monly used confidence scores, maximum softmax proba-
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bility [10] and maximum logit score [8], are not always re-
liable for the multi-modal CLIP and LiT models due to the
poor calibration of the logits scores. For example, among
the 1K classes in ImageNet, the class with the greatest mean
logit value (computed as the cosine similarity between im-
age and text embeddings) is “fig” (the fruit). Though we
don’t have access to CLIP private training data, we hypoth-
esize that this might be due to “fig” being a common abbre-
viation for “figure”, which frequently occurs in the training
data and thus includes many non-fruit illustrations.

In this work, we first propose a simple yet efficient zero-
shot confidence estimation method better suited for CLIP,
based on predictions’ self-consistency over different text
prompts and image perturbations. [26] proposed using self-
consistency among multiple model outputs to improve the
reasoning accuracy of large language models. Here we
extend the idea for confidence estimation in multi-modal
models by measuring consistency of predictions under mul-
tiple input text prompts and image transformations. Our
method is effective at predicting mistakes; the identified
low confidence subset has significantly lower top-1 accu-
racy (21.58%) than the average accuracy (64.18%). Next,
to improve the accuracy for the low confidence subset,
we develop a label augmentation technique using Word-
Net label hierarchy. Our method leverages semantic in-
formation from ancestors (top-down) as well as children
(bottom-up) and improves the top-1 accuracy of the subset
to 38.71% (17.13% improvement). Our method not only
improves model accuracy, but also model robustness, im-
proving on ImageNet variants with distribution shift such
as ImageNet-v2, ImageNet-R, ImageNet-Adversarial and
Imagenet-Sketch.

The main contributions of this work are:
• We identified several failure modes for zero-shot Im-

ageNet classification using multi-modal models, and
our findings suggest that the text encoder is very sen-
sitive to prompts. To improve the prediction accuracy,
prompts need to be better designed.

• We propose a simple yet efficient zero-shot confidence
score that is better suited for multi-modal models,
based on predictions’ self-consistency under different
text prompts and image perturbations.

• We develop a label augmentation technique that uses
both ancestor and children labels from WordNet. By
applying the label augmentation to the previously iden-
tified low confidence subset of images, we signifi-
cantly improve their prediction accuracy.

2. Related work
Confidence estimation. Reliably estimating the confi-
dence of a prediction is helpful for downstream decision
making and can ensure the safe deployment of machine
learning models. A well-calibrated confidence estimation

should assign low scores for incorrect predictions and high
score for correct predictions. Maximum softmax probabil-
ity [10] and maximum logit [8] are the most commonly
used confidence scores for classification problems, because
of their simplicity and computational efficiency. Recent
works propose more sophisticated confidence estimation
methods which either involve modifications to the classi-
fication models or significantly increase the inference time.
For example, Bayesian approaches such as Gaussian Pro-
cess layer [16] and dropout-based variational inference [6]
assume the weights in the neural networks are random vari-
ables such that the final prediction follows a distribution. A
large variance of a prediction indicates the low confidence
of the prediction. Non-Bayesian methods such as ensemble-
based methods which aggregate the predictions from mul-
tiple models to improve the robustness of the confidence
estimation [14, 27]. Those sophisticated methods were de-
veloped and studied in the single-modal models, and the ap-
plication to multi-modal models is not straightforward. In
addition, those methods mostly require modification to the
model and additional training, which becomes challenging
to multi-modal models since the training data are generally
not publicly available. In our work, we focus on a zero-
shot confidence estimation that is exclusively designed for
multi-modal models. Our method does not require addi-
tional training, and is simple, efficient, and effective.

Prompt engineering. Prompt engineering and learning
has attracted much attention in vision and learning since
the introduction of image-text models [12, 19, 28]. The
image-text models align images and their text descriptions
into a common space, which facilitates model generaliza-
tion to unseen categories at inference time. However, it has
been observed that downstream image classification accu-
racy highly depends on the specific input prompts. This mo-
tivates researchers to either fine-tune or auto-learn prompts
when adapting multi-modal models to downstream vision
tasks. [29, 30] propose CoOp and CoCoOp to automatically
learn the prompt word embeddings in the few-shot settings,
and show significant improvements over the vanilla zero-
shot image classification based-on prompting. These are
learning based approaches, requiring supervised data from
downstream tasks, while our proposed method is zero-shot
and post-hoc without using any supervised data. In concur-
rent work, [24] proposes learning prompt embeddings in an
unsupervised manner by minimizing the entropy of the av-
eraged prediction probability distribution, where each pre-
diction is based on a random augmentation applied to the
input image. Our work differs from [24] in the sense that
we do not learn an input-dependent prompt embedding. In-
stead we only selectively modify the prompts using knowl-
edge hierarchy for images that have unreliable predictions,
and our modified new prompt is natural language rather than
a numerical embedding.
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Figure 1. Typical failure modes in the cases where top-5 prediction was correct but top-1 was wrong.

Label hierarchy. Label hierarchy or label ontology are re-
lational graphs among semantic labels. WordNet is one of
the most widely used concept ontologies, and it has been
used for visual recognition problems. Fergus et al. [5] lever-
age the WordNet hierarchy to define a semantic distance
between any two categories and use this semantic distance
to share labels. Deng et al. [3] propose a hierarchy and
exclusion graph to explicitly model the semantic relations
among labels, and significantly improve object classifica-
tion by exploiting the rich label hierarchy. The idea of se-
mantic distance defined on the WordNet ontology graph is
also used in [22, 23] for transferring knowledge in zero-shot
learning problems. We are similar to the above work in that
we utilize the label semantics encoded by the label hierar-
chy as well, but label hierarchy in our case is used in the
multi-modality scenarios: textual labels and visual images
are represented in the same latent space, therefore, the hi-
erarchy structure is directly exploited in the representation
space to steer the recognition process.

3. Zero-shot inference failure case analysis
Given that the top-1 accuracy (64.2%) is much lower

than top-5 accuracy (89.4%) for zero-shot ImageNet clas-
sification using CLIP, we investigated the failure cases that
are “top-5 correct but top-1 wrong” (12605 images, 25.2%
of all test images). Table. 1 in Suppl. shows some represen-
tative classes. The failure modes are summarized as:
(1) Class name does not specify super-class name: Some
classes, whose class names do not have their WordNet an-
cestor (e.g., “tusker”, one of 1k ImageNet classes, does not
have its parent “elephant” in the class name), may have a
relatively lower score than other classes, which explicitly
have the ancestor present in the class name (e.g., “Asian
elephant”). See examples in Fig. 1 (Left).
(2) Class name does not specify sub-class name: If the
class name is too abstract, then its CLIP embedding is
not necessarily close to the image embedding: e.g, CLIP
wrongly classifies most images from “balloon” class as air-

ship, see Fig. 1 (Middle). That is because there are dis-
tinct kinds of balloons, each belonging to a different se-
mantic subgroup. Relying on the text embedding of the
fine-grained children’s class names (e.g., using “hot-air bal-
loon”) often fixes these errors. [1] reported the similar issue
of label ambiguity in ImageNet.
(3) Inconsistent naming between class names: Some
ImageNet class names are nouns, but others are adjective-
prefixed nouns. This may make CLIP text embedding bi-
ased, see one example in Fig. 1 (Right) where images from
“screw” class are misclassified as “metal nail”.

4. Proposed Method
As shown in Section 3, CLIP models can be sensitive to

different text prompts for images in certain classes. In this
section, we first propose a confidence estimation method
to identify low confidence predictions. We show that the
identified subset has much lower accuracy than the average
(Sec.4.1). We next develop a principled method that uti-
lizes knowledge hierarchy to improve the accuracy of the
low confidence subset, and consequently improve the over-
all accuracy on the whole datasets (Sec. 4.2).

4.1. Self-consistent zero-shot confidence estimation

Given an image x and a candidate class name c, where
c ∈ C, |C| = 1000, the CLIP model encodes x and c respec-
tively by its image encoder fimage and text encoder ftext,
denoted as zm = fimage(x) and zc = ftext(c). The pre-
diction logit score is defined as logit(x, c) = cos(zm, zc),
where cos(·, ·) is the cosine similarity between two vectors,
and the predicted class is argmaxc∈C logit(x, c). We esti-
mate the confidence by the self-consistency rate when ap-
plying different context prompts and image augmentations.

Confidence estimation via text prompts. To improve
the zero-shot classifier’s performance, the CLIP paper
[19] hand crafted various context prompts, e.g. “A
photo of a big {label}” and “A photo of a
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Figure 2. Our zero-shot classification pipeline consists of 2 steps: confidence estimation via self-consistency (left block) and top-down and
bottom-up label augmentation using the WordNet hierarchy (right block). See Algorithms 1 and 2 for pseudocode.

small {label}”), for different datasets for the pur-
pose of prompt ensembling: For an image x, given a
set of context prompts T , the ensembled logit score is
logit(x, T (c)) = 1

|T |
∑

t∈T logit(x, t(c)), where t(c) de-
notes the new prompt after applying context prompt t(·) to
c. Here instead of using the prompts for ensembling, we
make use of the prompts to define our confidence score.
Given a set of prompts T , we apply each of the prompt t(·)
for the classifier, and see if the top-1 prediction is the same
as that when applying no prompt. We use the percentage
of prompts that have consistent top-1 prediction with that
without prompt as the confidence score ST (x), i.e.

ST (x) =

∑
t∈T 1{ĉ(x, t) = ĉ(x, ∅)}

|T |
(1)

where ĉ(x, ∅) = argmaxc∈C logit(x, c) is the top-1
prediction using the pure class name, and ĉ(x, t) =
argmaxc∈C logit(x, t(c)) is the top-1 prediction when ap-
plying prompt t(·). Intuitively, a reliable prediction should
have highly consistent top-1 predictions when context
prompts are applied or not, and therefore should have a high
confidence score ST (x) with respect to the prompt set T ,
and vice versa.

Confidence estimation via image perturbation. We can
also estimate the confidence of a prediction based on the
self-consistency when applying different perturbations to
the input image. Intuitively, if the top-1 predictions are
inconsistent when applying different image perturbations,
the prediction is unreliable. Specifically, we consider the
common image transformations, left-right flip, rotation,
crop, etc., and apply the perturbation method b(·) to the
input image, and infer the predicted class as ĉ(x, b) =
argmaxc∈C logit(b(x), c). We define the confidence score

with respect to a set of image perturbations B as,

SB(x) =

∑
b∈B 1{ĉ(x, b) = ĉ(x, ∅)}

|B|
(2)

We expect a high confidence prediction to have highly con-
sistent prediction when applying different image perturba-
tions, and therefore to have a high confidence score SB(x)
with respect to the image perturbation set B.

Determining the low confidence subset by combining
the two confidence estimations. The confidence score
we proposed in Eq. (1) and Eq. (2) are continuous values. A
threshold needs to be determined if we want to select a sub-
set of examples with low confidence using the continuous
confidence score. In practice, the threshold can be chosen
based on the requirement of recall and precision trade-off in
the real application. In our study, to bypass the threshold se-
lection, we propose to use a binary criterion for determining
the low confidence set.

For IamgeNet dataset, the CLIP paper [19] designed to-
tal 80 context prompts. We define four sets based on the
80 prompts: the first 40 prompts T1, the last 40 prompts
T2, all 80 prompts T3, and no prompts T4 = ∅. We ap-
ply the four different sets of prompts to the classifier and
see if their top-1 predictions are all consistent or not, i.e.
ĉ(x, T1) = ĉ(x, T2) = ĉ(x, T3) = ĉ(x, T4). Then we
determine the low confidence subset OT as those exam-
ples who have inconsistent predictions among the 4 prompts
sets. We studied other choices such as using a random set
of 40 prompts as T1, or splitting the 80 prompts into more
subgroups, and found the results were very similar.

Similarly we also determine a low confidence subset OB
based on image perturbations. In practice we found left-
right flip works the best among the above mentioned pertur-
bations. Thus for simplicity, we compare the top-1 predic-
tion when applying the left-right flip to the input image and
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Algorithm 1: Zero-shot confidence estimation
Input: Input images X = {xi}Ni=1, Candidate class set C,

image encoder fimage and text encoder ftext, text
threshold τt, image threshold τi

Output: Low confidence set O
1 Low confidence set OT ← ∅ ▷Confidence

estimation via text prompts
2 Sample L different context prompt t1, t2 . . . tL
3 for xi ∈ X do
4 Compute ST (xi) based on Eq. (1)
5 if ST (xi) > τt then

xi has high confidence prediction
else
OT ← OT ∪ xi

6 Low confidence set OB ← ∅ ▷Confidence
estimation via image perturbation

7 Sample M perturbation methods b1, . . . , bM
8 for xi ∈ X do

Compute SB(xi) based on Eq. (2)
9 if SB(xi) > τi then

xi has high confidence prediction
else
OB ← OB ∪ xi

10 O ← OT ∪ OB

the top-1 prediction when using raw image. If their predic-
tions are not consistent, that example will be included into
the low confidence set OB.

Finally, we use the union of the two low confidence sets
OT identified using the text prompts and and OB identified
using the image perturbations as the final low confidence
subset O in the following experiments. Algorithm 1 shows
the low confidence set generation process.

4.2. Top-down and bottom-up label augmentation
using WordNet hierarchy

Through extensive analysis of the incorrect predictions
among the identified unreliable predictions, we found that
many of them are caused by CLIP’s lack of robustness
to prompts. Instead of tuning the prompt templates, we
focus on how to augment {label} in “A photo of a

{label}”. A proper prompt that specifies both the generic
type and the more specific sub-types of this class are very
important for correctly classifying the image. However, the
ImageNet [4] class names are not all defined with similar
specificity and some classes are more abstract than others,
e.g. 350 classes have children, while the rest of the classes
have no children. See Suppl. Fig. 1 for more details. To
make the ImageNet classification problem better suited to
CLIP, we leverage the underlying WordNet hierarchy and
develop a top-down and bottom-up class name augmenta-
tion method to improve zero-shot prediction accuracy for
unreliable predictions.

The WordNet hierarchy is a semantic concept ontology,

with nodes being cognitive synonyms indicating different
concepts, and edges indicating the super-subordinate rela-
tion between concepts. Traveling upward from leaf nodes
to the root, the concepts start from the very specific to the
generic. For example, starting from the edge node “straw-
berry” to the root are “berry”, “edible fruit”, “produce”,
“food”, “solid”, “matter”, and “physical entity” (the root).
As we have seen in the failure mode analysis, many of the
imageNet class names suffer from either being too abstract
or being too specific, so that their concepts do not align well
with the visual concepts the CLIP model learned in training.
We propose using the WordNet knowledge hierarchy to aug-
ment the class labels in prompts so that the CLIP model has
a better match between the image and prompts.

Top-down: augmenting class names with parent. As
shown in failure case analysis, adding the super-class name
to reduce ambiguity and to encourage the model’s atten-
tion on the generic concept is helpful for improving the ac-
curacy. Therefore we propose using WordNet to find the
parent node of the raw class name, and concatenate it to
the class name, i.e. logit(x, c) = logit(x, [c; p(c)]) where
p(c) is the parent node’s name of the class name c, and
[c; p(c)] means the string concatenation of the class name
and the parent name. We apply the method to top-5 pre-
dicted classes. Using the newly defined class names, we
are able to re-rank the top-5 predictions for the identified
unreliable subset of images. Note that WordNet contains a
few very abstract class names for nodes, such as “physical
entity”, “artifact”, “matter”, etc. We found that such parent
nodes are not informative, hence we remove them. There
are also many academic words in WordNet, for example the
parent node of sea anemone is “anthozoan”, which can be
rare in CLIP training data. Adding those academic words
to class name makes the prediction even less robust. So we
simplify the WordNet by pruning based on an estimation of
the word frequency in CLIP training data by using embed-
ding norm.

Bottom-up: augmenting class names with children.
Some ImageNet class names are generally abstract, but the
ImageNet images may belong to a specific subtype of the
class. For example, “balloon” is a class name in ImageNet,
but most balloon images in ImageNet are actually “hot-air
balloon”, which is a child of “balloon” in WordNet hier-
archy. The logit score for a parent class is not necessarily
higher than the score for its child classes, mismatching with
hierarchy prior. To accurately classify the images using
CLIP, we need to augment the class name with fine-grained
child subclasses. For each class c having children in the
WordNet hierarchy, we redefine the logit score as the max
score over itself and all its children, i.e., logit(x, c) =
max{logit(x, c), logit(x, c1), . . . , logit(x, cr)}, where
c1 . . . cr are the r children of the node c in the WordNet

11097



Algorithm 2: Top-down and bottom-up class label
augmentation using WordNet hierarchy

Input: Input image x ∈ O, top-5 candidate class set
Ctop5, sparse WordNet hierarchy H , image
encoder fimage and text encoder ftext

Output: Predicted class of x
1 Candidate class set C ← ∅
2 for c ∈ Ctop5 do

C ← C ∪ [c; parent(c)], where parent(c) is the parent
of c in H ▷Top-down

3 if c has r ≥ 1 children c1 . . . cr in H then
C ← C ∪ {[cj ; parent(c)]}rj=1 ▷Bottom-up

4 ĉ← argmaxc∈C logit(x, c)
if ĉ ∈ Ctop5 then

final prediction← ĉ
else

final prediction← parent(ĉ)

hierarchy. We apply this bottom-up method to top-5
predicted class names, and re-rank the top predictions.

Combining Top-down and bottom-up. In practice, we
use both children and the ancestor(parent) to augment each
class c, to transfer semantic information bidirectionally in
both top-down and bottom-up way: the ancestor(parent)
class is more generic than c, and has better chance to dis-
ambiguate instance from a more abstract level; on the other
hand, children categories have more specific attribute de-
scription, and the attribute descriptions are semantically
meaningful representations bridging the gap between the
image embedding and its abstract class concept c. Then the
final logit score between x and c is:

logit(x, c) = max{logit(x, [c; p(c)]),
logit(x, [c1; p(c)]), . . . , logit(x, [cr; p(c)])} (3)

where p(c) is parent of c, and c1 . . . cr are c’s children. The
ĉ, where ĉ ∈ Ctop5, with the maximal logit score is the pre-
dicted class of x. See Algorithm 2 for details.

5. Experiments and Results
Our proposed method is composed of two steps and we

conduct experiments to verify the effectiveness of each step:
(1) Use zero-shot confidence estimation to identify the low
confidence subset of samples (see Fig. 3 for the results), and
(2) Augment the class label using top-down and bottom-
up strategies based on the sparsified WordNet on the low
confidence subset to improve the accuracy (See Table 1 and
Table 2 for the results).

5.1. Our proposed confidence score is better suited
for selective prediction than baselines

A well-calibrated confidence estimator should score high
for those correct predictions, and low for incorrect predic-

tions. As a result, a good confidence estimator should be
a good predictor for prediction correctness. We plot the
receiver operating characteristic (ROC) curve and compute
the area under the ROC curve (AUC) as a quantitative mea-
sure to compare our proposed confidence estimation with
the baselines. An AUROC of 1.0 indicates perfect sepa-
ration between correct and incorrect predictions, and 0.5
means the two groups are not distinguishable. Maximum
logit score, maxc∈C logit(x, c) is one of the most commonly
used confidence score for classification problems in single
modal models [8], so we consider it as our baseline. Fig.
3a and 3c clearly show that our confidence score is signifi-
cantly better than the baseline method at distinguishing be-
tween correct and incorrect predictions, for both CLIP and
LiT models. The AUC score for our proposed method is
above 0.8 while that for the baseline method is around 0.7.

We also compare our method with the baseline in the
scenario of selective prediction. Given a budget of absten-
tion rate α%, the best strategy is to abstain the α% samples
with the lowest confidence scores. If the confidence score
is well calibrated, the accuracy for the abstained set will be
low and as an evidence the accuracy of the remaining set
would be high. We plot the selective prediction curves [14],
which reports the accuracy on the remaining set as a func-
tion of the abstention rate. Fig. 3b and 3d show that our
proposed confidence score results in higher accuracy than
the baseline maximum logit score at all abstention rates for
both CLIP and LiT.

Prompt ensemble has been shown to improve accuracy
and robustness of the prediction, so here we also compare
ours with the maximum logit score after applying prompt
ensemble. As shown in the selective prediction curves, al-
though the prompt ensemble indeed helps to achieve higher
accuracy (dashed line) than that using the pure class name
(solid line), it is still inferior to our proposed method.

5.2. Using hierarchy to help improve zero-shot ac-
curacy on low confidence subset

Using top-down and bottom-up label augmentation sig-
nificantly improves the accuracy on the low confidence sub-
set. We apply the top-down and bottom-up label augmenta-
tion on the low confidence subset: to better combine child
and parent name, we create a prompt template to trans-
form the child and parent name pairs into a new class name
c̃ in natural language: “{child} which is a kind of

{parent}” (different prompt templates may have different
results). Table 1 shows improvement of 17.13% on the top-
1 accuracy (from 21.58% to 38.71%) for the identified low
confidence subset of samples, and overall 3.6% on the top-1
accuracy (64.18% to 67.78%) for all samples in ImageNet.
We show similar improvement on the zero-shot accuracy
for ImageNet shifted datasets. To investigate if our method
works for other multi-modal models, we apply it to the LiT
[28] model and observe that our method improves accuracy
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(a) CLIP: Calibration ROC and AUC

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Ours | AUC:0.84
Max logits (baseline)| AUC:0.67
Max logits with prompt (baseline)| AUC:0.68

(b) CLIP: Selective prediction

0.0 0.2 0.4 0.6 0.8 1.0
Abstention Rate

0.65

0.70

0.75

0.80

0.85

0.90

To
p-

1 
Ac

cu
ra

cy

Max logits (baseline)
Max logits with prompt (baseline)
Ours

(c) LiT: Calibration ROC and AUC
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(d) LiT: Selective Prediction
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Figure 3. ROC plots (left column) show that our proposed confidence score is better at distinguishing correct and incorrect predictions
and results in higher AUC scores than baselines for both CLIP (ViT-B/16) (a) and LiT (ViT-B/32)(c). Selective prediction curves (right
column) show that our proposed confidence score is better at abstaining incorrect predictions and as a result the accuracy of the remaining
set is higher than the baselines for both CLIP (ViT-B/16) (b) and LiT (ViT-B/32) (d).

Table 1. CLIP (ViT-B/16) and LiT (ViT-B/32) zero-shot top-1 accuracy comparison between baseline and ours (w/ hierarchy).

CLIP (Ours) Hierarchy-CLIP LiT (Ours) Hierarchy-LiT

ImageNet [4] Low conf. set 21.58% 38.71% 31.18% 37.25%
Full set 64.18% 67.78% 68.26% 69.41%

ImageNet-v2 [21] Low conf. set 17.77% 32.50% 27.08% 31.45%
Full set 58.06% 61.07% 60.11% 61.11%

ImageNet-R [9] Low conf. set 16.79% 27.91% 21.82% 22.93%
Full set 56.88% 59.46% 66.54% 66.75%

ImageNet-Adversarial [11] Low conf. set 10.13% 18.44% 7.19% 8.95%
Full set 26.12% 29.23% 13.93% 14.56%

ImageNet-Sketch [25] Low conf set 13.74% 23.18% 21.51% 24.42%
Full set 44.71% 47.28% 52.47% 53.17%

for LiT models as well. See Supp. Fig. 2 for qualitative
visualization.

Generalizability to non-ImageNet datasets To show the
generalizability of our methods on non-ImageNet datasets,
We conducted experiments on 4 additional datasets:
Caltech-101 [15] (101 categories), Flower-102 [17] (102
flower categories), Food-101 [2] (101 food categories) and
Cifar-100 [13] (100 categories). For each dataset, a subset
of their categories are exist/aligned with WordNet hierar-
chy, we only apply our method on those WordNet aligned
class names, where we could find their ancestor and chil-
dren. We keep the other class names unmodified. We use
CLIP (ViT-B/16) as multi-modal model. Table 2 shows
that our method consistently improved accuracy on the low-
confidence set (low) and the entire set (full):

Table 2. Generalizability to non-ImageNet datasets (CLIP (ViT-
B/16) zero-shot top-1 accuracy).

Dataset orig (low) ours (low) orig (full) ours (full)
Caltech-101 [15] 10.6 % 27.2% (+16.6%) 74.1% 77.1% (+3.0%)
Flower102 [17] 20.0% 29.4% (+9.4%) 63.7% 65.3% (+1.6%)
Food-101 [2] 28.2% 49.0% (+20.8%) 84.7% 86.8% (+2.1%)
Cifar-100 [13] 9.4% 17.5% (+8.1%) 31.8% 35.2% (+3.4%)

5.3. Ablation study

Generalizability to other backbones To study the gen-
eralization of our method to different model architectures
and sizes, we used 4 additional backbones of CLIP, includ-
ing convolutional neural network (CNN) based backbones
(ResNet-50, ResNet-101) and vision transformer (ViT)
based backbones (ViT-B/32, ViT-B/16 and ViT-l/14). Ta-
ble 3 shows the improved accuracy after using our method
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Table 3. Generalizability to different backbones with CLIP.

backbone ResNet-50 ResNet-101 ViT-B/32 ViT-B/16 ViT-l/14
ACC (low) +14.25% +12.97% +15.12% + 17.13% +18.89%
ACC (full) +3.73% +3.71% +3.65% + 3.60% +3.23%

Table 4. CLIP (ViT-B-16) zero-shot top-1 accuracy comparison
with prompt ensemble.

Ensemble only Hierarchy and Ensemble

ImageNet [21] Low conf. set 41.05% 42.09%
Full set 68.48% 68.86%

ImageNet-v2 [21] Low conf. set 36.39% 36.34%
Full set 62.02% 62.00%

ImageNet-R [9] Low conf. set 35.13% 36.12%
Full set 60.21% 60.62%

ImageNet-Adversarial [11] Low conf. set 21.13% 22.00%
Full set 30.59% 31.07%

ImageNet-Sketch [25] Low conf. set 27.13% 26.56%
Full set 48.52% 48.26%

on ImageNet with CLIP models of different backbones. Our
method achieves consistently improved accuracies.

Our hierarchy-based label augmentation is complimen-
tary to prompt ensembling. Prompt ensembling (PE)
[19] requires a set of manually crafted prompt templates,
and the zero-shot performance is sensitive to the set of
prompts the model uses. Alternatively, our proposed
method does not require a dedicated tuning of the prompt
templates. We directly augment the class name with knowl-
edge of the hierarchy from WordNet. In addition, PE is
computationally intensive because it needs to infer the em-
beddings of 80 prompt templates where each is applied with
1000 ImageNet classes, while our method only need to infer
once for each of the predicted top-5 labels. Our method is
more straightforward and interpretable given that it clearly
shows the contribution of parent/child in the decision. In-
tuitively, PE is typically focused on fixing {class} and aug-
menting contextual templates, while our method augments
the {class} with a fixed contextual template. To verify if our
hierarchy-based method is complimentary with prompt en-
sembling, we apply prompt ensembling after applying our
top-down and bottom-up label augmentation. For the low
confidence set, we first create a prompt template to trans-
form the child and parent name pairs into a new class name
c̃ in natural language: “{child} which is a kind of

{parent}”. Then we apply the 80 prompts designed by the
CLIP paper [19] individually to the new class name c̃, and
then ensemble them. For the high confidence set, since we
do not modify the class name using hierarchy information,
we only apply the prompt ensemble. The performance is
shown in Table 4. We compare the zero-shot accuracy using
the vanilla prompt ensembling method proposed in CLIP,
and the zero-shot accuracy using our combined version of
hierarchy-based class name augmentation and prompt en-
sembling. As shown in the table, using both hierarchy
and prompt ensembling achieves better or on par accuracy
with the prompt ensemble alone, suggesting that the two

Table 5. Effect of threshold of confidence score on zero-shot ac-
curacy.

Threshold Low conf. set size Acc on low conf. set Acc on full set

0.47 10000 19.40% 68.72%
0.52 11000 20.82% 68.78%
0.57 12000 22.06% 68.82%
0.62 13000 23.58% 68.85%
0.66 14000 25.01% 68.88%
0.70 15000 26.51% 68.86%

methods can be combined. Considering the prompt ensem-
ble requires manually designed prompt templates and much
greater inference time, our hierarchy-based class name aug-
mentation is simple, efficient and effective. We also com-
puted IoU of corrected low-confidence instances (low set)
between PE and our method: the IoU is 0.55, which implies
the two methods are complementary for fixing errors.

Effect of threshold of confidence score on zero-shot ac-
curacy. In Table 1 we use a binary criterion to determine
the low confidence set. We can alternatively use the contin-
uous confidence score by choosing a threshold based on the
trade-off between precision and recall. Changing the thresh-
old of the confidence score can lead to different numbers of
samples in the low confidence set. We study the effect of
threshold on zero-shot accuracy. Table 5 shows the overall
accuracy with different thresholds. We find that the overall
accuracy is relatively robust to the threshold selection, in
the wide range from 0.47 to 0.70.

6. Conclusion

Multi-modal models’ generalization and robustness is
critical for deployment. Motivated by the big gap between
top-1 and top-5 accuracy in ImageNet zero-shot classifica-
tion, we investigated the failure modes and found that the
model’s prediction is very sensitive to text prompts. We de-
scribe a simple but efficient zero-shot post-hoc method to
identify a subset of samples that are most likely to be pre-
dicted wrongly by a measure of self-consistency. For those
in the low confidence subset, we use the WordNet hierarchy
to augment class labels to enhance the robustness, result-
ing in up to 17.13% accuracy improvement on ImageNet.
We show our method provides consistent improvement over
other distribution shifted datasets (ImageNet variants), four
other datasets, and is generalizable to other image-text mod-
els and different backbones.
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