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Abstract

We address the problem of detecting tree rings in mi-

croscopy images of shrub cross sections. This can be re-

garded as a special case of the instance segmentation task

with several unique challenges such as the concentric cir-

cular ring shape of the objects and high precision require-

ments that result in inadequate performance of existing

methods.

We propose a new iterative method which we term Itera-

tive Next Boundary Detection (INBD). It intuitively models

the natural growth direction, starting from the center of the

shrub cross section and detecting the next ring boundary in

each iteration step. In our experiments, INBD shows supe-

rior performance to generic instance segmentation methods

and is the only one with a built-in notion of chronological

order.

Our dataset and source code are available at

http://github.com/alexander-g/INBD .

1. Introduction

Dendrochronology is the science that provides method-

ologies to date tree rings [4], i.e. measuring and assigning

calendar years to the growth rings present in a wood stem.

By analyzing anatomical properties like ring widths or the

cell sizes within the rings, dendrochronology can be ap-

plied to dating archaeological manufactures, tracking tim-

ber sources or reconstructing past climate conditions [11].

For climate reconstruction in the Arctic, shrubs consti-

tute the most important source of dendrochronological in-

formation, since they are the only woody plants able to

thrive there [23]. As temperature is a limiting factor for

shrub growth in the Arctic, it shows a strong relationship

Figure 1. Example microscopy images (left) of shrub cross sec-

tions from our new dataset and the outputs (right) of our proposed

method INBD for instance segmentation of tree rings

with climate, making these plants a reliable proxy to recon-

struct past climate events [24]. Dendrochronological analy-

ses on shrubs are usually performed on thin cross sections of

branches or roots and observed under the microscope with

a magnification that allows ring identification at a cellular

level. As of now, ecological studies are limited in size by

the amount of manual analysis work due to the lack of au-

tomatic tree ring detection methods.

With this paper we want to introduce this problem to the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Some of the challenges encountered in this task:

(a) Boundaries inbetween tree rings are often hard to recognize. For example, this cross section contains 14 rings.

(b) Crop of the previous image (indicated by the square) with overlayed annotation. A tree ring is only 65 pixels wide or ca 1.4% of the full

cross section diameter. The cell wall that divides late summer cells and the next year’s early summer cells is only 5 pixels wide or 0.1%.

(c) Wedging rings can complicate finding the chronologically correct next year ring.

(d) Rings can grow in multiple disconnected parts from different sides.

computer vision community and enhance the capabilities

for ecological sciences. We release a new dataset containing

high resolution microscopy images of shrub cross sections

and propose a specialized method for growth ring identifica-

tion. Example images from our dataset and corresponding

outputs of our method are shown in Figure 1. From a com-

puter vision point of view, this can be regarded as a special

case of the instance segmentation task, however it differs

from previous generic datasets in several ways which makes

existing methods underperform.

Figure 2 illustrates these differences. For one, the con-

centric ring shape of the instances can pose a significant

obstacle, particularly for top-down methods because the ob-

jects have almost identical bounding boxes. This gets com-

plicated by the fact that year rings can also form incom-

plete circles (wedging rings) and grow from only one side,

or even in multiple disconnected parts from different sides

(2d). Depending on the species, plant part and climatic con-

ditions the amount of wedging rings can range from zero to

being the majority. Assigning the correct order to wedging

rings can be an issue where rings of more than 2 years touch

each other (2c). Bottom-up methods on the other hand

struggle with faint ring boundaries (2a) as the presence of

the boundary pattern is not always constant throughout the

whole stem circumference. They are prone to merging rings

where no boundary can be detected or splitting them where

the ring width is narrow. Next, the images are acquired at

a high resolution (2a) to capture cellular information, yet a

high degree of precision is required for the downstream task

of assigning individual cells to the correct year. The thick-

ness of a cell wall that is dividing the cells from one ring

to another can be as low as 0.01% of the whole object (2b).

Finally, as the preparation of samples and annotation of the

images is very costly, training has to be performed in a low

data regime.

We argue that a specialized approach can help to over-

come those challenges and propose a new iterative method

which we term Iterative Next Boundary Detection (INBD).

In the first step, it performs semantic segmentation to detect

basic features such as the background, center and the ring

boundary pixels. From this starting point, it iteratively de-

tects the next year ring’s boundaries, following the natural

growth of the plant. This process is augmented with a re-

current wedging ring detection module to counteract issues

with incomplete rings. We compare our method with both

top-down and bottom-up generic instance segmentation in

our experiments in which it shows better results. Moreover,

it is the first method that automatically assigns a chronolog-

ical order to the detected objects.

The contributions of this paper can summarized as fol-

lows:

• Publication of a new challenging dataset for a special

case of instance segmentation.

• Development of the specialized method INBD for tree

ring instance segmentation.

• Evaluation of previous generic instance segmentation

methods and comparison with INBD

2. Related Work

Instance segmentation is a widely studied problem in

computer vision, commonly benchmarked on a variety of

standard generic datasets such as COCO [12] which con-

tains photographs of everyday objects or the the more spe-

cialized CREMI 2016 [6] challenge for cell segmentation in
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Figure 3. Overview of the INBD pipeline. An input image is first passed through a generic semantic segmentation network that detects 3

classes: background, ring boundaries and the center ring. A polar grid is sampled starting from the the detected center ring and passed to

the main INBD network that detects the next ring. This process is repeated until the background is encountered.

electron microscopy images. No publicly available dataset

is known to us that contains concentric ring shaped and or-

dered objects.

Methods can be categorized into top-down and bottom-

up procedures. Mask-R-CNN [8] is the most widely used

architecture and belongs to the top-down group. It relies on

an object detector to first detect bounding boxes of objects

which are then segmented. This fails on overlapping or as in

our case concentric objects due to non-maximum suppres-

sion. Moreover, it can only generate low resolution masks.

Contour methods such as Deep Snake [17] or DANCE [13]

can generate masks with higher precision but still require an

upstream object detector.

Bottom-up methods for instance segmentation methods

work by first computing object boundaries or affinities and

then clustering the resulting superpixel graph into whole ob-

jects via the multicut objective. Finding the optimal solu-

tion for this is known to be NP-hard [10], therefore sev-

eral approximate solvers such as GASP [2] have been de-

veloped. These methods perform significantly better on our

dataset but still show deficits in cases where object bound-

aries are hard to recognize and they cannot handle discon-

nected rings (such as in Fig. 2d).

None of the above methods has a built-in notion of se-

quence order of the detected objects that would be needed

to assign a tree ring to a year.

Application of deep learning methods to ecological pur-

poses is nowadays an established procedure [3] due to the

complexity related to ecological investigations and the use

of increasingly larger datasets. Specifically for quantitative

wood anatomy (QWA), deep learning research has so far fo-

cused mostly on detection and measurement of cells such as

in [7,19]. Tree ring detection was subject in [5,18], however

only on scans or photographs of mature wood core samples

rather than full cross sections as in our case.

ROXAS [21,22] is the most commonly used analysis tool

in QWA, however it is based on traditional image process-

ing methods and not on deep learning which makes it sen-

sitive to sample processing and image quality. It also con-

tains tree ring detection functionality which works by line-

following early summer cells but requires domain knowl-

edge for manual tuning of many species-specific parameters

like cell shape and size.

3. Method

On a high level, INBD simply modifies and extends the

various contour based methods like Deep Snake [17] or

PolarMask [26] with an iterative inference procedure. In

reality, this requires several important design choices to

make this perform well. The influence of the individual de-

sign choices is analyzed in an ablation study in subsection

5.2. An architectural overview of the INBD pipeline can be

found in Figure 3.

3.1. Network Architecture

The INBD pipeline is composed of two neural networks.

The first network is a simple semantic segmentation net-

work that is trained to detect three classes: background, ring

boundaries and the center ring (or pith). We denote this

network and its output with f(I) = (ybg, ybd, yct) when

applied on image I . We select an architecture based on

U-Net [20] with a pretrained backbone. The three classes

are trained with a combination of cross-entropy loss and the

Dice loss [16]:

Lf = λ1L
background
CE + λ2L

boundaries
Dice + λ3L

center
CE (1)
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(b) Wedging Ring Detection

Figure 4. Visual explanation of the concepts. (a) We sample on a polar grid starting from the previous detected ring boundary. The number

of points is reduced for better visualization. (b) shows the resulting input to the network g (top), the corresponding annotation (center) and

the output signal ω of the wedging ring detection module (bottom). ω accumulates along the angular axis, rising on start and falling on end

of wedging rings.

with λ = (0.01, 1.0, 0.1) balancing coefficients to account

for class imbalances. Due to the large size of the images

and for a larger field of view, f operates on ×0.25 of the

original resolution.

Our main network, which we denote with g, is another

2D convolutional segmentation network that classifies each

pixel as belonging to the next ring or not. By choosing a

2D network as opposed to a 1D one, as in many contour

methods such as Deep Snake [17], we can leverage trans-

fer learning since we are working in a low data regime and

in addition to that we can reject and interpolate ambiguous

predictions (see below, Eq. 4). This second network has

mostly the same architecture as the first one, except that we

replace the normal 2D convolutions with circular convolu-

tions to wrap around the full circle, as also used in Deep

Snake [17]. The circularity is only applied to the angular

axis (see below).

3.2. Polar Grid

The network g operates on “unrolled” rings Ii ∈
R

[C×N×M ] sampled on a polar grid P i ∈ R
[N×M ] with

N = 256 a fixed resolution in the radial dimension and M

an adaptive resolution in the angular dimension. The polar

grid origin is computed from the center of mass of the cen-

ter ring yct as detected by f . Polar coordinates impose a

prior, ensuring a coherent (quasi-)convex shape, contrary to

Cartesian coordinates.

We express the sampling points for ring i as polar coor-

dinates (ρixy , ϕi
xy), with x ∈ [0, N ], y ∈ [0,M ] indices

within the grid. The boundary point radii for the second

ring ρ10,y are inferred directly from the detected center ring

yct.

Estimating the extent of the grid in the radial dimension

(i.e. ρN,y) is crucial: if too short, the next ring will be cut

off, if too long, the next ring might get skipped and not de-

tected at all. For this, we compute the distances to the clos-

est positive value in ybd for each angle ϕ and set the extent

to 1.5× 95%-th percentile of these distances, to make sure

that most points are included but also to filter outliers. This

was empirically verified to cover all rings in our dataset.

The remaining radial values ρ are then uniformly distributed

along this range: ρx,y = 1
N
(ρN,y − ρ0,y)x+ ρ0,y

The angular resolution M is computed so that the an-

gles ϕ have an approximately uniform euclidean distance to

each other across rings: since the outer rings have a larger

circumference than the inner ones they should be sampled

at a higher angular resolution M . The value M i for ring i

is computed from the previous ring’s average radii:

M i = α
1

M i−1

Mi−1

∑

y

ρi−1
0,y (2)

with α a hyperparameter that controls the general density of

M i which we set to 2π where not otherwise mentioned. The

angles ϕ are spaced uniformly along the full circle: ϕx,y =
1
M
2πy
The channel dimension C = 7 is composed of the RGB

channels of the input image, the detected “background” and

the “boundaries” outputs ybg and ybd from f , normalized

radii ρ and the output of the wedging ring detection module

(see below) concatenated together.

The main loss Lcls
CE for network g is the standard cross-

entropy loss to classify each pixel in the polar grid as be-

longing to the next ring or not, according to the annotation

Ai, sampled on the same polar grid.
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3.3. Inference

To perform inference of the next ring’s boundary points

ρi+1
0,y , we select last positive point in the output g(Ii)

column-wise, where it is unambiguous:

X̃y = {x, where g(Ii)x,y = 1} (3)

ρi+1
0,y =

{

ρi
max X̃y,y

, ifmax X̃y = min X̃y − 1

undefined , otherwise
(4)

Ambiguous values linearly interpolated. Importantly, the

interpolation should be performed on polar coordinates and

not on Cartesian ones and wrap around the circle. This de-

tection process is repeated iteratively with the new predicted

ring boundary points i+1 as the starting point to detect the

ring i+2 until the background ybg that was detected by the

segmentation network f is reached.

3.4. Wedging Ring Detection

The method as described so far is able to detect full

tree rings sufficiently well but struggles with wedging rings.

More specifically, it is prone to skipping a ring boundary in

locations where the wedging ring is far away and outside

the field of view, e.g. as in Figure 2c when trying to detect

the next boundary after ring 6. To counteract this issue we

insert a wedging ring detection (WRD) module before the

final classification layer.

This module consists of 3 additional convolutional layers

with two output channels. The two channels are averaged

along the radial axis into 1-dimensional signals ω+ and ω−

∈ R
M and combined via a recurrent mechanism:

ω′

0 = β (5)

ω′

ϕ = σ(ω+
ϕ−1)− σ(ω−

ϕ−1) (6)

ωϕ = ω′

ϕ −maxω′ (7)

where σ is the sigmoid function and β is a starting point

constant. Intuitively, ω+ is responsible for detecting the

start of a wedging ring and increases the output signal ω,

whereas ω− detects the end and decreases it. ω is then for-

warded to the final classification layer by concatenating it

to the features along the channel dimension.

During inference, the choice of β does not matter be-

cause of the normalization by subtracting the maximum

(Eq. 7). This ensures a standardized representation of the

signal to the following downstream classification layer, ir-

respective of the starting point β. High values close to zero

indicate valid locations (next ring or i + 1), whereas low

values are invalid locations (next but one or i + 2). This

functionality is illustrated graphically in Figure 4b.

Although in theory the network could derive useful in-

formation from this module by itself, we have found that

in practice it is highly beneficial to add an explicit training

signal. Again, we use the cross entropy loss, but modified

for the single dimension and applied on the unnormalized

signal ω′:

Lwrd = Awrd
ϕ log σ(ω′

ϕ) + (1−Awrd
ϕ ) log 1− σ(ω′

ϕ)

(8)

Awrd
ϕ =

{

1, where Ai
0,ϕ = i+ 1

0, otherwise
(9)

During training β is set so that σ(ω′) = 0 if the ground

truth at angle ϕ = 0 is low, or so that σ(ω′) = 1 if it is high,

to avoid incorrect training signals (we choose β = ±15).

An example where this module helps to catch an error is

shown in Figure 5.

Figure 5. INBD can be prone to skipping boundaries. In this ex-

ample, the wedging ring detection module helps to catch mistakes

like this. (Left: without WRD, right: with WRD)

The final loss for network g is defined as Lg = Lcls
CE +

λ4L
wrd with λ4 = 0.01. We have found higher values to

have a negative impact on the main classification loss.

3.5. Training Procedure

Since INBD is an iterative procedure, errors caused by

an earlier ring get easily propagated onto the later rings. It

can however also recover from previous mistakes if trained

with an iterative training procedure: rather than using only

the (near-perfect) boundary points from the annotation, the

training loop should incorporate previous (possibly faulty)

predictions as the starting point for polar grids. Listing 1

shows the high-level pseudo code for one training epoch.

Listing 1. Pseudo-code for one training epoch

for (image I, annotation A, ring i) in dataset:

Lg = 0

ρi
0,y = boundary_from_annotation(A, i)

loop i = i..i+n:

ρ̂i
0,y = augment(ρi

0,y)

Ii = sample_polar_grid(I, (ρ̂i, ϕi))

yi = g(Ii)

Lg += compute_loss(yi, Ai)

ρi+1

0,y = compute_boundary(yi)

backpropagate( Lg / n )
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Subset Species
Training

Images

Test

Images

Number

of rings

Average

diameter
Example Images

DO Dryas octopetala 22 42 544 3700px Figs. 1 (bottom), 7 (bottom)

EH Empetrum hermaphroditum 24 58 949 3260px Figs. 1 (top), 2c, 2d

VM Vaccinium myrtillus 22 45 494 3979px Figs. 2a, 2b, 7 (top)

Table 1. Overview of our dataset

Where not otherwise mentioned we use n = 3 iterations per

epoch.

Besides the conventional data augmentations such as

the pixel-wise color jitter operations we employ additional

augmentations specific to polar grids such as varying the

boundary points:

ρ̂0,y = ρ0,y + cos(ϕ0,y +X0)γ0 +X1γ1 (10)

with X ∼ U(−1, 1) random variables and γ hyperparame-

ters.

Both networks are trained separately with the AdamW

[15] optimizer for 100 epochs, 1e-3 base learning rate and

cosine annealing [14] learning rate schedule.

4. Experimental Setup

4.1. Dataset

Our dataset consists of overall 213 high-resolution im-

ages. It is split into 3 subsets according to the plant species.

An overview is provided in Table 1. The amount of im-

ages is rather low due to the high cost of sample prepa-

ration as well as annotation: a single image containing a

large amount of rings can take up to 6 hours to annotate by

hand. The dataset and annotations are publicly available at

http://github.com/alexander-g/INBD .

The shrub samples were collected at subalpine, alpine

and subarctic sites across the Pyrenees, Southern Norway

and Northern Sweden. Aboveground shoots (ramets) were

clipped at the stem base, above the soil surface. In the lab,

the samples were cut into 15-20 µm cross-sections with a

rotary microtome, stained with a mixture of 1:1 safranin and

astrablue, rinsed with ethanol solutions, embedded in Eu-

paral, dried and finally scanned in a slide scanner to obtain

high resolution images.

4.2. Compared Methods

As there are no specialized methods for tree ring detec-

tion in shrub cross sections yet, we compare our method

with generic instance segmentation methods. From the

top-down category we compare with Mask-R-CNN [8] and

Deep Snake [17]. Mask-R-CNN is trained in two modes:

in the hollow (h) mode, objects are defined as single calen-

dar years and are donut-shaped (with a hole), whereas in the

filled (f) mode, objects consist of multiple years (and have

no holes). We use the implementation from the torchvision

(v0.11) framework. The non-maximum suppression is in-

creased to 0.7 to reduce the filtering of overlapping detec-

tions and the images are downscaled to accommodate for

GPU memory limits. For Deep Snake only the filled mode

is used because it cannot model hollow objects.

In the bottom-up group we select Multicut [10] and

GASP [2] for comparison. We use the implementation from

the PlantSeg [25] source code which was developed in part

by the original GASP algorithm authors. For a fair compar-

ison, the detected boundaries from the same segmentation

network f as for INBD are used. We have found bottom-

up methods require species-specific tuning of hyperparam-

eters. We have tested several combinations and report only

the best ones here. More information can be found in the

supplement.

4.3. Metrics

Our main evaluation metric is the mean Average Recall

(mAR) as defined in [9] averaged at IoU=.50:.05:.95 inter-

vals. We do not use the mean Average Precision (mAP) that

is often used in generic instance segmentation literature, as

we regard instance recall as more important than precision:

it is easier for the end user to delete false positive objects on

manual inspection than adding new ones.

We additionally report the Adapted Rand errors

(ARAND) as defined in [1] because this metric is more

commonly used in the bottom-up literature. It can be in-

terpreted as the harmonic mean of the pixelwise precision

and recall values.

5. Results

5.1. Method Comparison

The main results of the compared methods are presented

in Table 2. For all metrics we observe consistently better

performance of INBD over the compared methods.

Top-down methods show very unsatisfactory perfor-

mance. The filled mode gives a small performance boost

but the results are still too inaccurate to be useful, partic-

ularly missing many thin rings. Deep Snake struggles re-

markably, often detecting only one or two rings at most.
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mAR↑ ARAND↓
Method DO EH VM DO EH VM

Mask-R-CNN (h) .106 (.008) .144 (.003) .185 (.008) .644 (.007) .694 (.002) .532 (.004)

Mask-R-CNN (f) .210 (.006) .176 (.004) .218 (.002) .441 (.002) .499 (.001) .425 (.007)

Deep Snake (f) .061 (.011) .015 (.001) .019 (.008) .524 (.024) .620 (.003) .584 (.027)

GASP .374 (.002) .667 (.004) .576 (.014) .313 (.003) .144 (.003) .168 (.010)

Multicut .387 (.008) .688 (.005) .596 (.006) .301 (.001) .132 (.004) .154 (.005)

INBD (ours) .553 (.011) .738 (.018) .704 (.014) .196 (.009) .113 (.010) .112 (.007)

Table 2. Method comparison. Values are averaged over 3 full training runs with the standard deviation provided in parentheses. (h) refers

to the hollow mode, (f) to the filled mode. ↑ denotes higher is better, ↓ lower is better.

We attribute this to its base detector CenterNet [27] which

inherently fails with concentric objects.

The bottom-up methods can compete with INBD on EH

thanks to relatively well recognizable ring boundaries in this

subset. The VM and especially DO subsets on the other

hand have much less pronounced and sometimes ambigu-

ous boundaries which often cannot be detected at all. This

is particularly a problem for the bottom-up methods which

are then prone to incorrectly merging two rings. INBD on

the other hand can interpolate ambiguous locations (Eq. 3).

The results of GASP and Multicut are very similar to each

other, as also noted in [25].

In general, we observe that INBD is better at detecting

difficult rings. This observation is confirmed in the more

fine-grained analysis in Figure 6 which shows the recall val-

ues for the individual IoU thresholds. INBD scores only

slightly better on the high threshold recalls such as AR90 or

AR95 which are usually the easily recognizable rings. The

real benefits come from detecting harder examples.
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Figure 6. Recall over IoU for the compared methods

5.2. Ablation Study

In Table 3 we show how the individual design choices

as proposed in section 3 affect the detection performance

of INBD. Two baselines of INBD without the adaptations

are evaluated, one with Cartesian and another with polar

coordinates. We note that those two implementations are

not fully comparable, more details in the supplement.

Our experiments show that increasing the angular res-

olution (Eq. 2) in order to keep the Cartesian resolu-

tion roughly constant across rings yields almost a 3 mAR

percentage points improvement. Interpolating ambiguous

boundary points (Eq. 4) is highly important and improves

the mAR by more than 6 points. Iterative training (sub-

section 3.5), i.e. training with previously predicted bound-

ary points (as apposed to only using the annotation) gives

an additional performance boost of more than 3 mAR. Fi-

nally, the WRD module (subsection 3.4) helps with wedg-

ing rings. As wedging rings are comparatively few in num-

bers, the performance gain is relatively moderate but con-

sistent among training runs.

Configuration mAR↑ ARAND↓
Cartesian coordinates baseline .498 .237

Polar coordinates baseline .601 .218

+ adaptive angular resolution M .629 .190

+ ambiguous boundary interpolation .691 .146

+ iterative training .722 .126

+ wedging ring detection .738 .113

Table 3. Influence of design choices on the performance. All

values refer to the EH subset.

Additional evaluations on the effect of hyperparameters

on the detection performance can be found in the supple-

mentary materials.

5.3. Cross-species Performance

Dendro-ecological studies are rarely limited to the three

plant species from our dataset, end users might want to ana-

lyze new species, for which trained models are not yet avail-

able. Therefore we test how well the compared methods

generalize to unseen species. The results are presented in

Table 4.

EH and VM show some level of similarity to each other

and methods trained on one set can be used to a limited de-

gree on the other one. These results might be insufficient

for downstream tasks but could be used to generate new an-

notations for retraining, faster than creating them manually

from scratch. DO on the other hand is visually dissimilar

and requires networks specially trained on it.

Among the methods we observe no clear winner, though
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(a) Input (b) Annotation (c) Mask-R-CNN (h)/(f) (d) Multicut (e) INBD (ours)

Figure 7. Qualitative comparison and examples of typical mistakes made by the compared methods

Method Training set Test set mAR↑ ARAND↓
INBD EH VM .588 .194

Multicut EH VM .580 .166

INBD VM EH .472 .262

Multicut VM EH .393 .287

INBD EH DO .106 .561

Multicut EH DO .116 .552

INBD DO EH .219 .435

Multicut DO EH .169 .478

Table 4. Cross species ring detection performance

INBD is scoring on average slightly better. The results show

that more research needs to be done into this direction.

5.4. Qualitative Results

Figure 7 shows typical mistakes caused by our method as

well as the compared top-down and bottom-up procedures.

INBD tends to skip boundaries and this mistake often

gets propagated onto the following rings since it is an it-

erative procedure. However, thanks to its iterative training

procedure and boundary augmentations it can still recover

from this.

As expected, the detector-based Mask-R-CNN struggles

with the large overlap and fails to detect many rings, and

the ones that get detected are very inaccurate. Bottom-up

methods such as Multicut are prone to merging rings where

boundaries are difficult to recognize and to splitting them

on false positive boundary detections.

More qualitative results can be found in the supplement.

6. Concluding Remarks

Our dataset contains only images for which annotators

were confident that they are annotated correctly. In real-

world ecological studies, shrub samples, especially those

from harsh climatic conditions, often contain many irregu-

larities in their anatomical structures and may be extremely

difficult to fully annotate, even for experts. In addition, fully

annotating images with a large number of rings is very time

consuming and costly. Therefore, future work could focus

on weakly supervised training from partially annotated im-

ages and on developing methods that provide a confidence

estimate for each detected ring or parts of it.

Moreover, as cross section images can vary widely de-

pending on a variety of factors such as plant species, cli-

matic conditions or sample preparation it is not unlikely that

a single method trained on a single dataset will not suffice

to cover all scenarios. Further research could be performed

on cross-species training for better out-of-distribution gen-

eralization.
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[7] Ángel M. Garcı́a-Pedrero, Ana I. Garcı́a-Cervigón,
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