
Latency Matters: Real-Time Action Forecasting Transformer

Harshayu Girase1, 2* Nakul Agarwal1 Chiho Choi1 Karttikeya Mangalam2∗

∗ denotes equal technical contribution
1Honda Research Institute USA 2UC Berkeley

Abstract

We present RAFTformer, a real-time action forecasting
transformer for latency-aware real-world action forecast-
ing. RAFTformer is a two-stage fully transformer based
architecture comprising of a video transformer backbone
that operates on high resolution, short-range clips, and a
head transformer encoder that temporally aggregates infor-
mation from multiple short-range clips to span a long-term
horizon. Additionally, we propose a novel self-supervised
shuffled causal masking scheme as a model level augmen-
tation to improve forecasting fidelity. Finally, we also pro-
pose a novel real-time evaluation setting for action fore-
casting that directly couples model inference latency to
overall forecasting performance and brings forth a hith-
erto overlooked trade-off between latency and action fore-
casting performance. Our parsimonious network design fa-
cilitates RAFTformer inference latency to be 9× smaller
than prior works at the same forecasting accuracy. Ow-
ing to its two-staged design, RAFTformer uses 94% less
training compute and 90% lesser training parameters to
outperform prior state-of-the-art baselines by 4.9 points
on EGTEA Gaze+ and by 1.4 points on EPIC-Kitchens-
100 validation set, as measured by Top-5 recall (T5R) in
the offline setting. In the real-time setting, RAFTformer
outperforms prior works by an even greater margin of
upto 4.4 T5R points on the EPIC-Kitchens-100 dataset.
Project Webpage: https://karttikeya.github.
io/publication/RAFTformer/.

1. Introduction
Latency matters. It is a crucial system design consid-

eration for countless applications that operate in real-time
from hardware design [65], network engineering [63], and
satellite communications [30] to capital trading [32], human
vision [59] and COVID transmission patterns [54]. How-
ever, it has not been a center stage design consideration in
modern computer vision systems of the past decade [11,45].
Modern vision system design has largely focused on the

* Work done during Harshayu’s internship at HRI with Chiho Choi’s
supervision who is now at Samsung Seminconductor US
Karttikeya Mangalam is the corresponding author

Time Present
Target
Future

Forecasting
Horizon

Inference LatencyObserved Past

LatencyObserved Past

Prior
Methods

RAFTformer

Observed Past

dry	hand fold	cloth take	pizza take	pizzadry	hand

= 0Offline:

Real-time: ≠ 0 Action?

sec

Figure 1. Action Forecasting is the task of predicting actions
that will happen after a pre-determined time span, say tf seconds,
into the future. Prior works consider an offline evaluation setting
that ignores the model inference latency. We propose a latency-
aware real-time evaluation setting where the model is required to
finish forecasting tf seconds before the target time. We present
RAFTformer, a fast action anticipation transformer that outper-
forms prior works both in offline & real-time setting while fore-
casting actions in real-time (≥ 25 FPS).

correctness of systems rather than the latency of the pre-
dictions. While vision-based forecasting systems are often
meant for embodied real-time deployment on autonomous
agents like self-driving cars and robots, they are evaluated
in an offline setting where inference latency is neglected
(Figure 1). Interestingly, recent neural network architec-
tures have adopted FLOPs as a proxy for latency as a sec-
ond axis for model design. While a sufficient fidelity met-
ric for offline after-the-fact applications like automatic con-
tent recognition, latency often comes second to correctness,
even for real-time systems such as forecasting models.

Forecasting empowers reactive planning [17]. An au-
tonomous system present in rich human environments in-
evitably needs to understand human actions around it for
smooth task planning and execution. Autonomous agent
planning critically depends on anticipating the future of the
scene in various forms such as trajectory prediction [22,
23, 57, 58], action forecasting [19, 25, 80] or future scene

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18759

segmentation [8] and anticipating the future is an activity
humans subconsciously do for day-to-day tasks [60]. And
while vision-based forecasting systems are often meant for
embodied real-time deployment on autonomous agents like
autonomous cars and robots, they are evaluated in an offline
setting where inference latency is neglected (Figure 1).

In this work, we propose a real-time evaluation setting
(Figure 1) that closely mimics the real-world deployment
for a forecasting system. Suppose that in a real-time sys-
tem, the design specifications require the forecasting system
outputs tf seconds in advance of the event to be able to plan
and use the forecasts effectively. In current offline settings,
the forecasting system begins the inference tf seconds in
advance of the event (‘Present’ in Figure 1) and the model
latency is ignored (or assumed to be 0) such that the pre-
dictions are available instantly. However, in our proposed
real-time setting, the model is required to start inference in
advance of ‘Present’ so that the outputs are available with a
horizon of tf seconds, meeting the design specification.

We observe that in the real-time setting, the prior works
fare quite poorly because of their slow model inference la-
tency (Table 3). A large latency implies that the model has
to start inference further in the past and has to rely on older
video data to make forecasts with the benefit of more ex-
pressiveness (Figure 2). A smaller latency means the model
can enjoy more recent video data but has limited capacity.
Simply said, models that are only evaluated in the offline
setting may fare poorly in the real-time deployment setting
due to their latency agnostic design (Figure 2).

We present, RAFTformer, a real-time action forecast-
ing transformer that uses a two-stage transformer encoder-
based network for lightning fast forecasts in inference.
RAFTformer uses a shuffled casual masking scheme based
feature prediction loss for learning strong temporal cues that
transfer to feature prediction. Further, RAFTformer uses
specialized anticipation tokens for learning to predict action
at multiple temporal horizons that improve model reasoning
capabilities of short-term action forecasting as well. Finally,
the model is explicitly designed for real-time embodied de-
ployments that allows inference up to an order of magnitude
faster than prior state-of-the-art methods. In summary, our
contributions are three-fold,
First, we propose Real-time Action Forecasting
Transformer (RAFTformer), a real-time action fore-
casting transformer with latency at least 9× smaller than
prior state-of-the-art action forecasting methods. RAFT-
former uses specialized anticipation tokens and a novel
shuffled casual masking-based self-supervision loss that
allows it to outperform prior work while maintaining low
latency with a reduction of 94% in GPU training time and
90% in the number of trainable parameters compares to
prior works. To the best of our knowledge, our work is the
first to achieve action anticipation in real-time (i.e. 25 fps).

21 28 40 110 160 194
Latency (ms)

17.5

18.5

19.3

20.5

To
p-

5
Re

ca
ll

RAFTformer Offline
RAFTformer Real-time

Figure 2. Evaluation Performance vs. Latency. Bigger models
perform better in latency agnostic offline settings. In the real-time
evaluation setting, we observe that, beyond a limit, bigger models
with higher latency cause a drop in forecasting performance. In
practical deployment, there exists a trade-off between latency and
high-fidelity forecasts. See §4.3.1 for details.

Second, we propose a latency-aware real-time evaluation
setting (Figure 1) that better mimics practical deployment
settings for embodied forecasting systems. Real-time eval-
uation demonstrates a clear trade-off between inference la-
tency and model forecasting fidelity, paving the path for the
development of latency-aware forecasting models in the fu-
ture (also see [20]).
Third, Through extensive experiments, we show that
RAFTformer outperforms prior state-of-the-art methods by
4.9 points on the EGTEA Gaze+ dataset, by 1.4 points on
the EPIC-Kitchens-100 dataset according to the Top-5 Re-
call metric and by a relative margin of 5.3% on the top-1
accuracy metric on EPIC-Kitchens-55 dataset.

2. Related Work

Action Anticipation. Over the last few years, action
anticipation has seen significant advances following the
promising results in video recognition [2,4,12,15,24,38,40,
49,55,61,80,87] and video segmentation [27,43,48,76,81].
While earlier works [1, 56, 68] use CNN-based methods
for video action anticipation, many follow-up works tran-
sitioned into using recurrent sequence-based networks [19,
22, 64, 66, 71]. Using multiple spatial and temporal scales
was another key idea explored in several anticipation works
[15, 70, 70, 77, 80, 86]. Masking-based self-supervision has
proven to be a new frontier for both image [5,14,33,35,62]
and video [31, 74] representation learning. This concept
has also been explored in the context of video anticipa-
tion [25] which differs from prior works that explore tempo-
ral consistency [16, 37, 42, 79, 82], inter-frame predictabil-
ity [28,29,36], and cross-modal correspondence [3,44,73].
In our work we propose a novel generalized self-supervision
scheme which is a crucial part of our model’s ability to gen-
eralize and outperform SOTA.

18760

Transformers for Video Anticipation. With the rise of
transformers for sequence tasks, recent works have explored
various image and video-based transformers [25, 26, 26,
78, 80, 85] for anticipating actions. [25] proposes a ViT-
based [11] spatial transformer backbone with a transformer
decoder head to anticipate the next action with a 1s hori-
zon. [25] predicts actions in the same latent space as their
feature decodings causing conflation between feature recon-
struction and future prediction. We propose specialized an-
ticipation tokens to address this problem. Furthermore, [25]
uses a recurrent decoder and frame-level operation, which
is inefficient for both training compute and inference la-
tency. MeMViT [80] proposes another fully transformer
model which extends MViT [12] for better long-range mod-
eling using a novel caching mechanism. However, their
model is trained to only predict the next action and thus
does not explicitly learn to model the future or evolving
scene dynamics. Furthermore, their model is less efficient
than RAFTformer in terms of both training and inference
time due to its larger model and input size and complete
end-to-end training. RAFTformer uses a fixed pre-trained
video network and only trains the RAFTformer network.
Recently [26] propose a transformer-based model for long-
term action anticipation. They focus on a sequential predic-
tion rather than next-action prediction and do not focus on
inference latency.
Real-Time Systems. Latency matters, especially for real-
time applications. Autonomous agents need to reason about
nearby agents and take real-time decisions. This vision has
led to great progress in the development of real-time sys-
tems in the related fields of semantic segmentation [13],
video object segmentation [76], object detection [7, 51, 53,
67], multi-object tracking [41]. While some progress has
also been made in activity understanding [72, 84], it is lim-
ited to recognition and detection. Keeping this in mind,
some recent works in action anticipation have also started
focusing on efficiency and memory footprint and report
training time, inference time, and trainable parameters [80].
Although a step in the right direction, these works have high
inference times in comparison to their desired anticipation
horizon. Our proposed method is significantly faster during
both training and inference, has fewer trainable parameters
and a smaller memory footprint, and still outperforms state-
of-the-art methods.

3. Real-Time Action Forecasting Transformer

In this section, we first present the problem formula-
tion (§3.1), followed by the architectural details of the
video backbone for feature extraction (§3.2) and the RAFT-
former model architecture (§3.3) including anticipation to-
kens (§3.3.1), shuffled causal masking (§3.3.2) and permu-
tation encodings (§3.3.3), finishing with an outline of the
loss functions used for training the model (§3.5).

3.1. Problem Formulation

Given an observed video starting from time T = 0 and
of arbitrary length t, V0,t = [F0, ..., Ft] where Fi denotes
the frame at time i, the task is to predict the future action tf
seconds in the future, i.e., action At+tf at time T = t+ tf .

3.2. Pre-trained Video Backbone

In contrast to state-of-the-art models [25, 80] that train
end-to-end, we demonstrate that a two-stage training pro-
cess is both efficient and produces high-fidelity forecasts.
First, we split the full duration of the past video V0,t into
sub-clips V = [C0, C1, ..., CN] in a sliding window fash-
ion. Each clip, Ci, is independently processed with the
short-term video backbone like MViT [12] to extract clip-
level features. Previous works, such as [25], have employed
image backbones for comparable undertakings, while we
contend that video backbones offer richer spatio-temporal
features, thus benefiting the downstream task. Further, a
video backbone also allows lower latency since the pro-
duced clip embeddings already contain fused features for
several images at once.

Our two-stage design also allows for hierarchical tem-
poral processing of the long-form past video. The short-
term recognition backbone model operates on short, high-
resolution clips. These extracted features are then used as
input to the head network to process longer-range lower res-
olution features that capture key information from each clip.
This is a crucial design consideration to lower the inference
latency in RAFTformer while still capturing longer-range
temporal dependencies compared to [19, 25].

3.3. RAFTformer Model Network

We propose RAFTformer as a transformer encoder
model. The transformer encoder has the advantage of be-
ing able to effectively learn across clip dependencies by
attending over independently extracted clip features with-
out facing memory bottlenecks such as faced in LSTM en-
coders [34] that have been used in some prior works [19,70].
However, to make the encoder effective for action forecast-
ing on pre-trained features, we propose several changes to
the training process to allow two-staged training to work as
well as end-to-end training for action forecasting.

3.3.1 Anticipation Tokens

The extracted clip embeddings [C0 · · ·CN−1] form the first
part of the input to the action anticipation head. For the
second part, we propose to train learnable ‘anticipation to-
kens’ that can aggregate global context and later can be de-
coded into future predictions. This design choice stands in
contrast to prior works like [25] where the output of the
anticipation token is implicitly designed to be in the same
latent space as the output of their image-feature tokens. In

18761

𝐸1

𝐸2

𝐸3

𝐸N

𝜋
*	Shuffle

+

RAFTform
er Encoder

Feature
Prediction

Head

Action
Preds

𝐶1

𝐶2

𝐶3

𝐶N

𝐸2

𝐸3

𝐸1

𝐸N-1

𝐴1

𝐴2

𝜋𝑃𝐸 fut

𝜋𝑃𝐸N-1

𝜋𝑃𝐸N

𝜋𝑃𝐸2

𝐸N

𝐸(fut

𝐸(N-1

𝐸(n

𝐸(2

𝐸N-1𝐶N-1

𝐴1

𝐴2
Long-Term

Head

Short-Term
Head

+
+

+
+

+
+

+
+

APE 2

APE 3

APE 4

+

𝜋*
~ 𝜋

RAFTformer Backbone

M
ViT

O
bserved Video

𝐴𝑃𝐸1

𝐴𝑃𝐸2

𝐴𝑃𝐸3

𝐴𝑃𝐸N-2

𝐴𝑃𝐸N 𝐸* fut

𝐸*N−1

𝐸*n

𝐸*2

𝐸*N-3

RAFTformer
Head

.

. .
.

. .

.

.

.

Figure 3. RAFTformer is a real-time action anticipation transformer architecture comprised of two stages. The first stage is a pre-
trained short-term backbone that produces individual clip embeddings independently of other clips (§3.2). In the second stage (§3.3),
absolute position encodings are added and the resulting sequence is shuffled with a sampled permutation π∗ ∼ π. The permutation
encodings (§3.3.3) are then added to the shuffled sequence and after concatenation with anticipation tokens, the sequence is processed with
the RAFTformer encoder. The output tokens are decoded via short & long-term action anticipation heads (§3.4), as well as the feature
prediction head trained with self-supervised loss (LSCM), future feature prediction loss (Lfuture) and action forecasting loss (Lfocal) (§3.5).

contrast to prior works, we find that temporal aggregation
such as mean pooling for forecasting leads to subpar per-
formance (see Table 5). Hence, we use the output tokens
corresponding to [C0 · · ·CN] solely for self-supervised fea-
ture loss rather than action anticipation.

Instead, for action anticipation, we propose to train
learnable ‘anticipation tokens’ to learn useful global context
from the clip tokens. The output of the anticipation token
is no longer restricted to be in the same latent space as the
output of clip-feature tokens like in [25] and can better cap-
ture the information needed to anticipate the next action.
Further, we propose to use multiple anticipation tokens to
generate additional supervision, with each token attending
to different past video lengths and producing forecasts for
different time horizons in the future.

3.3.2 Self-Supervision via Shuffled Feature Prediction

Prior works explored using the self-supervision task of pre-
dicting frame or clip features and using an MSE loss [25].
We propose using a generalized form of masking-based
self-supervision [33] based on predicting shuffled future
features. Predicting future clip features has a two-fold ben-
efit: (A) It encourages causally learning the observed se-
quence incentivizing the model to grasp underlying scene
dynamics and (B) Prediction in the latent feature space al-
lows reasoning semantically about the future without wast-
ing modeling capacity with low pixel level scene details.

Different from loss functions proposed in prior
works [25], we propose an improved auto-regressive
scheme for self-supervised learning by future feature pre-

Auto-regressive Shuffle Another Shuffle
[1, 2, 3, 4] π1 : [4, 1, 3, 2] π2 : [3, 4, 2, 1]
1 7→ 2 4 7→ 1 3 7→ 4
2 7→ 3 1 7→ 3 4 7→ 2
3 7→ 4 3 7→ 2 2 7→ 1

Table 1. Encoding the input permutation π. Shuffling the input
sequence arbitrarily changes the successor of each token.

diction. Rather than sequentially predicting missing clip
features in order to use a causal attention mask, we propose
to use a model-level augmentation of the attention masking
scheme where some of the attention weights are not used
from the original causal mask.

Random Masking. Construction of a sparse augmented
attention mask is non-trivial. Simply generating a ran-
dom mask such as in MAE [33] fails to isolate information
within the intended partitioning due to multi-hop message
passing caused by repeated application of the same mask.
For example, in Figure 4, the attention mask prohibits to-
ken 1 to access token 2 and 3 (shown by ‘white’). How-
ever, after two layers, token 1 in layer 2 can access informa-
tion in token 2 in layer 0 (shown by red border), indirectly
through token 4 in later 1 because of multi-hop message
passing. This temporal information leakage can cause self-
supervision to fail. For example, self-supervising token 1
with token 2 feature prediction would collapse in setup of
Figure 4. To prevent this, we propose a simple yet effective
solution.

18762

Shuffled Causal Masking. We know that vanilla causal
masks ensure that information available to each token is in-
variant under repeated applications of the attention mask,
i.e., multi-hop message passing. Since multi-hop message
passing is token permutation invariant, any permutation of
the tokens from the causal mask will preserve the invari-
ance of accessible information under multiple hops. Thus,
this allows a general framework for structured randomized
mask construction without temporal leakage. We notice
that a row-wise permutation of the attention mask is equiv-
alent to the same permutation applied to the sequence it-
self. Hence, the same effect as properly constructed ran-
dom masks can simply be achieved by shuffling the input
token sequence itself. This allows generalizing vanilla auto-
regressive prediction order to arbitrary sequence permuta-
tions without any multi-hop information leakage through
the layers. Thus, rather than predicting clip features sequen-
tially from 0 to N−1 like [25], our proposed scheme allows
for exponentially more variations.

Referring to Figure 3, we first add absolute position em-
beddings (APE) to each of the clip features before shuf-
fling them. This allows the transformer to leverage the in-
formation about the actual temporal order of each clip in
the video. Without the absolute position embeddings, the
transformer is input permutation equivariant, which is not
a desirable property for action forecasting. However, while
APE is sufficient for positional information in vanilla auto-
regressive ordering, it is not enough for prediction under our
proposed Shuffled Causal Masking (SCM) scheme. In au-
toregressive ordering, for any specific token, the next token
in the sequence corresponds to a fixed position and hence
the self-supervised training process can subtly learn this
bias via next-token feature supervision. In contrast, under
SCM the temporal position of the next token varies depend-
ing on the shuffling permutation. Hence, self-supervised
training cannot learn to perform effective feature prediction
without information about the shuffling permutation.

3.3.3 Permutation Position Encoding

Naı̈ve Encodings. For an L length sequence, there exist
L! possible permutations. Encoding each permutation (π)
by itself is clearly intractable. First, we observe that en-
coding π∗ as a set of O(L) embeddings which are shared
among different π is more efficient. A follow-up solution
would be to instead encode each predecessor 7→ successor
relationship as an encoding and have L− 1 of such embed-
dings together encode π∗. This reduces to the total num-
ber of required embeddings to L(L − 1) from L!. Each π∗

now shares every one of its L embeddings with other π, but
considered as a set, the L embeddings uniquely encode π∗.
However, even L2 becomes intractable for large L.

Permutation Position Encodings (πPE) provides an ele-
gant solution for encoding π∗ requiring only L total encod-

Layer 2

Attention
Mask

Accessible
Information

Input Feature
Layer Layer 1

2
3
4

2 3 41

2
3
4

2 3 41

Figure 4. Random Masking Self-Supervision Illustration of how
naive random masking (white denotes masked out) fails for self-
supervised feature prediction task. We can see that in Layer 1
the tokens can only access information according to the provided
mask. However, if the same mask is used in Layer 2, there is
information leakage across tokens which is undesirable.

ings to be learned. πPE encodes the predecessor 7→ succes-
sor relationships but further simplifies by noting that adding
the encoding to the token itself makes the predecessor infor-
mation redundant. The token itself is the predecessor and
has the positional information available from APE. Hence,
we simply encode the successor positional information, and
that in combination with APE uniquely encodes π∗. Hence,
we design πPE to be the encoding of the original tempo-
ral position of the successor in the permuted sequence. So
for the π1 permutation in Table 1, we would add πPE[1] to
token 4, πPE[3] to token 1 and πPE[2] to token 3.

3.4. Overall Mechanism

The past video is split into clips, and the clip embeddings
[C0 · · ·CN−1] are extracted using a video backbone (Figure
3). Anticipation tokens are concatenated to the extracted se-
quence (§3.3.1), followed by the addition of absolute posi-
tion encoding to the concatenated sequence. Now, the clip
embedding is shuffled according to a randomly chosen per-
mutation π∗ to obtain [Cπ∗[0] · · ·Cπ∗[N−1]]. The sampled
permutation π∗ is then encoded by adding the successor’s
(§3.3.3) embedding to each token. In Figure 3, π∗[1] = 3
and π∗[2] = N , hence πPE[π∗[1 + 1]] is added to the token
π∗[1] i.e., πPE[N] is added to E3, which is used to self-
supervise the feature at position 1 in the shuffled sequence,
i.e., token 3 (§3.3.2). The shuffled input sequence, in addi-
tion to the anticipation tokens, is now propagated through
the transformer encoder using a causal attention masking
scheme and the output is decoded with the head networks.

Head Networks We propose using three MLP heads on
top of the transformer encoder network (Figure 3). Two
MLP heads decode the anticipation tokens into the pre-
dicted future action distribution. The third MLP head up-
samples the encoded tokens to the original representation
space of the input tokens to allow self-supervision loss.

18763

Split Method Addl. Modality Init Epic Boxes
Top-5 Recall Parameters

(×106)
GPU
Hours

Inference
Latency (ms)Verb Noun Action

V
al

TempAgg [70] None IN1K 24.2 29.8 13.0 - - -
RULSTM [19] None IN1K - - 13.3 - - -
RULSTM [19] Obj+Flow IN1K ✓ 30.8 27.8 14.0 - - -
TempAgg [70] Obj+Flow+ROI IN1K ✓ 23.2 31.4 14.7 - - -

AVT [25] None IN21K 30.2 31.7 14.9 378 - 420
AVT+ [25] Obj IN21K ✓ 28.2 32.0 15.9 - - -

TSN-AVT+ [25] Obj IN21K ✓ 31.8 25.5 14.8 - - -
MeMVit [80] None K400 32.8 33.2 15.1 59 - 160
MeMVit [80] None K700 32.2 37.0 17.7 212 368 350
RAFTformer None K400 + IN1K 33.3 35.5 17.6 26 23 40
RAFTformer None K700 33.7 37.1 18.0 26 27 110

RAFTformer-2B None K700 + IN1K 33.8 37.9 19.1 52 50 160

Te
st

RULSTM [19] Obj+Flow IN1K ✓ 25.3 26.7 11.2 - - -
TBN [83] Obj+Flow IN1K ✓ 21.5 26.8 11.0 - - -
AVT+ [25] Obj+Flow IN21K ✓ 25.6 28.8 12.6 - - -

Abstract Goal [69] Obj+Flow IN1K ✓ 31.4 30.1 14.3 - - -
AFFT [85] Obj+Flow - ✓ 20.7 31.8 14.9 - - -

RAFTformer None K400 + IN1K 27.3 32.8 14.0 26 23 40
RAFTformer None K700 27.4 34.0 14.7 26 27 110

RAFTformer-2B None K700 + IN1K 30.1 34.1 15.4 52 50 160

Table 2. Offline Evaluation Results on the EK-100 dataset for tf = 1 second horizon. Latency is measured over the entire model
including the backbone & head networks on a single 16G Tesla V100 GPU. Methods that use other modalities (+RGB) are deemphasized.

3.5. Loss Functions

We observe that the ground truth action distributions are
often long-tailed, and propose to use the the focal loss [52],
for supervising the future action prediction distributions.

Lfocal =
∑
Ai∈A

n∑
i=0

−(1− pAi
)γ log(pAi

)

where pi is the predicted probability for the correct class for
the ith example, Ai represents predictions from a specific
anticipation token and γ is the focusing parameter where
γ = 0 is cross entropy loss. Increasing γ results in an in-
creased penalty for hard, misclassified examples.

For self-supervision using shuffled causal masking to
predict next-token embeddings, we use an expected ℓ2 loss
over both past tokens, with the expectation being oversam-
pled permutations π∗ ∼ π.

LSCM = E
π∗∼π

N−1∑
j=0

∥Eπ∗[j] − Êπ∗[j]∥
2

2

where Eπ∗[j] and Êπ∗[j] denotes the original and the pre-
dicted clip embedding at position j after permuting with
π∗. For future token prediction, we use a simple ℓ2 loss:

Lfuture = ∥Efuture − Êfuture∥22
where Efuture is the MViT embedding for the next clip (after
tf). Finally, the overall loss is simply a weighted sum,

L = Lfocal + λ1LSCM + λ2Lfuture

4. Experiments
Datasets & Metrics. We use the widely benchmarked
EPIC-KITCHENS dataset [9], an unscripted set with nearly
20× more action classes and 10-100× more observed se-
quences than other action datasets like 50 Salads [47] and
Breakfast [46], used in prior work [19]. We use both the
EPIC-55 & EPIC-100 anticipation splits and the EGTEA+
Gaze dataset [50]. Dataset details in supplementary.

Since human decision-making is inherently multimodal,
we propose an approach to predict multiple reasonable fu-
ture action forecasts. In addition to top-1 accuracy, we re-
port top-5 recall following prior works [19, 25, 80]. We use
the baseline data splits and report metrics on both the val-
idation and test set. In addition, we report the number of
trainable model parameters (M), the total compute spent for
training the model to convergence on a Tesla V100 GPU (in
hours), and the inference latency (in milliseconds).

4.1. Evaluation Setting
Offline evaluation is the setting where the model infer-
ence latency is ignored, or in other words, assumed to be
zero. All prior works [19, 25, 80] consider this setting. Re-
ferring to Figure 1, prior works assume access to all past
video frames up till the present moment T = t. Using this
information, the model then predicts that action with a tf
second horizon at T = t + tf . However, the prediction
would actually be produced at time T = t + tl where tl is
the model inference latency. This is not practically useful

18764

Model Init
Latency Inference Start Inference End Target Top-5 Recall
(tl ms) Time Stamp Time Stamp Time Stamp Verb Noun Action

AVT [25] IN21K tavt = 420 T T + tavt T + 1 30.2 31.7 14.9
RAFTformer K400 + IN1k tours = 40 T + tavt − tours T + tavt T + 1 34.1 38.2 19.3 (+4.4)

MemViT [80] K400 tvit = 160 T T + tvit T + 1 32.8 33.2 15.1
RAFTformer K400 + IN1k tours = 40 T + tvit − tours T + tvit T + 1 33.8 37.1 18.1 (+3.0)

MemViT [80] K700 tvit = 350 T T + tvit T + 1 32.2 37.0 17.7
RAFTformer K400 + IN1k tours = 40 T + tvit − tours T + tvit T + 1 33.7 37.9 19.0 (+1.3)

Table 3. Real-time Evaluation Results for benchmarking action forecasting methods in a practical setting (§4.1). Each comparison is
performed between a pair of models where their start time (‘Inference Start’) times have been adjusted (Figure 1) by their latency so that
they produce the forecasting output for the ‘Target Time’ simultaneously (‘Inference End’). For prior works [25, 80], start & end times are
kept the same as their original offline settings (Table 2) to avoid any training recipe change. Faster models can pragmatically utilize recent
frames while slower models must rely on higher fidelity prediction from older frames. Latency measured on a single 16G Tesla V100 GPU.

Model Init
Top-1
Acc

RULSTM [19] TSN/IN1k 13.1
ActionBanks [70] TSN/IN1k 12.3

AVT-h [25] TSN/IN1k 13.1
RAFTformer TSN/IN1k 13.8

Table 4. Offline Evaluation results on the Epic-Kitchens-55.

since often, we require time horizon tf to meaningfully use
the predicted future outcomes. Further, this does not ac-
count for absurdities where a large model might even have
latency tl > tf , in which case the model is predicting an
action that has already happened by the time it predicts it!
A complex model can have great offline performance but its
inference time would make it unusable in practice.

Real-time evaluation. To remedy this impractical situa-
tion, we consider the real-time evaluation setting. In this
setting, the model is required to finish inference with at
least tf seconds horizon before the target time (Fig. 1).
Hence, the model is allowed access to past video data only
for T < t − tl. This setting even allows for large mod-
els where tl > tf since predictions would still be produced
with tf seconds before the target time. Unlike other recog-
nition scenarios where latency is a mere annoyance, in the
case of future forecasting, models are often used in real-
time rather than offline. The offline setting subtly oversteps
the prediction horizon tf , by receiving forecasts with a mar-
gin much less than the postulated tf horizon. By coupling
model latency to the past video data observed, the real-time
setting incentivizes the development of efficient forecasting
methods that utilize the recent data better than relying on
slow large models that cannot miss the recent frames, which
arguably are the most crucial for near future prediction.

4.2. EPIC-Kitchens-100

Network Details. For feature extraction, we fix the pre-
trained 16x4 (K400+IN1K) and 32x3 (K700) MViT-B
backbones [12, 49] trained for recognition on the EK100

Model
Setting Top-5

RecallAT FL SCM 2×AT
Mean pooling 15.2

RAFTformer

✓ 16.1 (+0.9)
✓ ✓ 16.8 (+0.7)
✓ ✓ ✓ 17.4 (+0.6)
✓ ✓ ✓ ✓ 17.6 (+0.2)

Table 5. EK100 Ablation Study. FL is feature loss (no SCM),
SCM is Shuffled Causal Masking (§3.3.2), AT (2×) are single
(double) anticipation tokens (§3.3.1).

dataset. Each clip is embedded as a 768-dimensional fea-
ture vector. Unless mentioned otherwise, the action fore-
casting experiments use a tf = 1 second horizon. RAFT-
former encoder is a lightweight 4 layer, 4 head transformer
encoder using post-normalization and ReLU activations. A
linear projection from up-projects 768 → 1024 for the
transformer. We only shuffle during training with a prob-
ability of 0.3. The output of the encoder is down projected
from 1024 → 768 channels. Both short-term and long-
term action prediction heads are fast & lightweight MLPs
(1024 → 2048 → 3806). We set λ1 = λ2 = 14. For other
details, please see supplementary.

Offline Evaluation. In Table 2 we first report RAFT-
former results against prior works, including previous
SOTA MeMViT [80]. Results that use additional modali-
ties like Object (Obj), Flow (Flow), Object Region of Inter-
est (ROI), or Epic Kitchen boxes are de-emphasized. Using
only RGB, RAFTformer (K700) outperforms the AVT RGB
model in action T5R by 3.1 points and the AVT RGB+Obj
model by 2.1 points. RAFTformer slightly outperforms
MeMViT action T5R while predicting actions 8.75× faster
with 8.2× lesser trainable parameters and a 16× faster
training. We also combine two separate RAFTformer mod-
els to train a two-backbone model (RAFTformer-2B) that
achieves state-of-the-art by with a 1.4% T5R increase. In
the second section, we report our submitted results to the
EK100 test server. We observe that RAFTformer general-

18765

Model Init Modality Top-5 Recall
DMR [75] - RGB 38.1
ATSN [9] TSN/IN1k RGB+Flow 31.6
MCE [18] TSN/IN1k RGB+Flow 43.8
TCN [6] - RGB 47.1
FN [10] VGG-16 RGB 42.7
ED [21] VGG-16/TS RGB+Flow 54.6

RULSTM [19] TSN/IN1k RGB+Obj+Flow 58.6
RAFTformer TSN/IN1k RGB 63.5

Table 6. EGTEA Gaze+. Under same initialization, RAFTformer
outperforms prior methods without additional modalities.

izes well to the test set, improving upon the AVT+ multi-
modal ensemble model [25] by 2.8 T5R points.

4.3. Additional Datasets
EPIC-Kitchens 55. We also compare RAFTformer to
prior baselines on the EK55 dataset in Table 4 on top-1 ac-
curacy. We evaluate against other models using the same
initialization for a fair comparison. We observe that RAFT-
former outperforms prior benchmarks by about 0.7% using
the exact same backbone features. This shows the superior-
ity of our proposed shuffle causal masking (§3.3.2) & antic-
ipation token prediction (§3.3.1) in a controlled setting.
Real-time Evaluation. In table 3, we fix the target -
start time difference to be what the prior models such as,
AVT [25] or MeMViT [80] were designed for, to avoid any
unintended change in their training recipes. Hence, we shift
RAFTformer start time so that the output forecasts are pro-
duced simultaneously for the pair.

We observe that RAFTformer outperforms prior meth-
ods by an even larger margin in the real-time evaluation set-
ting than than the offline setting. RAFTformer effectively
utilizes its compute to produce the maximum forecasting
effect at the least latency cost. This allows RAFTformer to
exploit more recent information that slower models miss be-
cause of higher inference latencies (tours < {tavt, tvit}). This
also shows the disproportional effect of inference latency
on forecasting performance. While RAFTFormer K400 +
IN1K has a similar Top-5 Recall as MeMViT K700 in the
offline setting, in the practical real-time evaluation (Table
3), RAFTformer outperforms MeMViT by 1.3% by lever-
aging its faster inference latency (40 vs. 350 ms).

4.3.1 Latency vs. Offline & Real-time Forecasting
In offline evaluation, latency is ignored and all models have
data access parity. As scaling laws [39] would predict, big-
ger models (with higher latency) have stronger forecasting
performance (Blue curve in Fig. 2). In the real-time setting,
a higher latency implies access to less recent data (Green
curve in Fig. 2) and hence, an interesting trade-off materi-
alizes. At first, as latency (and model size) increases, the
performance improves. This is because the benefit of hav-
ing a more expressive model outweighs the cost of access
to older video data. However, as the latency increases fur-

ther, the real-time performance starts decreasing. Now the
harm of not having access to recent data outweighs the ben-
efit of a more expressive model. For our setting, the optimal
RAFTformer model has a latency of 40 ms with an offline
and real-time performance of 19.6 and 19.3 Top-5 recall re-
spectively. A similar trade-off would exist for any combina-
tion of dataset, model, and deployment hardware regimes.
Plots are for RAFTformer models of varying backbone pa-
rameter count for tf = 0.58 second prediction on EK100.

4.3.2 Ablations

We ablate RAFTformer thoroughly in Table 5. In contrast
to prior works [25,80] that pool information or use the same
embedding for feature supervision and action prediction, we
train explicit anticipation tokens (§3.3.1) to perform fore-
casting, improving T5R by 1.1. Anticipation tokens spe-
cialize in predicting the next action instead of using features
that multi-task between reconstructing clip features and fu-
ture action prediction [25]. Self-supervision via feature loss
(FL) further improves by 0.7 T5R. Further, our SCM tech-
nique effectively regularizes FL that improves 0.6 T5R. Fi-
nally, an additional anticipation token (2×AT) for supervi-
sion further improves 0.2 T5R. Additional longer-horizon
anticipation task helps in learning transferable global video
features to the main anticipation task.
EGTEA Gaze+. We also evaluate the EGTEA Gaze+
dataset in Table 6 to showcase RAFTformer performance
on new settings outside of EPIC-Kitchens. Again, we use
the setting of anticipating 1s into the future and use the T5R
metric. While prior methods use many input modalities in-
cluding as object, flow, and RGB, we significantly outper-
form the prior state-of-the-art in this setting [19] by 4.9%.
Note that we use pre-extracted TSN RGB features as pro-
vided by [19] for direct comparison. Our very strong per-
formance on another egocentric video dataset with complex
human tasks further validates the promise of RAFTformer.

5. Conclusion
We propose Real-Time Action Forecasting Trans-

former (RAFTformer), a parsimonious two-stage fully
transformer-based architecture consisting of a short-range
video transformer backbone for feature extraction and a
long-range head transformer encoder for long-term tempo-
ral aggregation across multiple clips. We also introduce
a real-time evaluation setting for action forecasting mod-
els that directly penalizes high latency and closely mimics
the real-world deployment scenario for forecasting models.
RAFTformer outperforms prior state-of-the-art methods by
significant margins across several action forecasting bench-
marks in the offline setting, and by an even larger margin
of upto 4.4 T5R, in the real-time setting. RAFTformer
achieves 9× lower inference latency at the same forecast-
ing fidelity, using 16× less training compute and 10× lesser
trainable parameters than prior baselines.

18766

References
[1] Yazan Abu Farha, Alexander Richard, and Juergen Gall.

When will you do what?-anticipating temporal occurrences
of activities. In CVPR, pages 5343–5352, 2018. 2

[2] Georges Aoude, Joshua Joseph, Nicholas Roy, and Jonathan
How. Mobile agent trajectory prediction using bayesian non-
parametric reachability trees. In Infotech@ Aerospace 2011,
page 1512. 2011. 2

[3] Relja Arandjelovic and Andrew Zisserman. Look, listen and
learn. In Proceedings of the IEEE International Conference
on Computer Vision, pages 609–617, 2017. 2

[4] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 6836–6846,
2021. 2

[5] Yuki M Asano, Christian Rupprecht, and Andrea Vedaldi.
A critical analysis of self-supervision, or what we can learn
from a single image. arXiv preprint arXiv:1904.13132, 2019.
2

[6] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical
evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271,
2018. 8

[7] Sayantan Chatterjee, Faheem H Zunjani, and Gora C Nandi.
Real-time object detection and recognition on low-compute
humanoid robots using deep learning. In 2020 6th Interna-
tional Conference on Control, Automation and Robotics (IC-
CAR), pages 202–208. IEEE, 2020. 3

[8] Hsu-kuang Chiu, Ehsan Adeli, and Juan Carlos Niebles. Seg-
menting the future. IEEE Robotics and Automation Letters,
5(3):4202–4209, 2020. 2

[9] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
Scaling egocentric vision: The epic-kitchens dataset. In
ECCV, pages 720–736, 2018. 6, 8

[10] Roeland De Geest and Tinne Tuytelaars. Modeling temporal
structure with lstm for online action detection. In WACV,
pages 1549–1557. IEEE, 2018. 8

[11] Alexey Dosovitskiy et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 3

[12] Haoqi Fan et al. Multiscale vision transformers. arXiv
preprint arXiv:2104.11227, 2021. 2, 3, 7

[13] Mingyuan Fan, Shenqi Lai, Junshi Huang, Xiaoming Wei,
Zhenhua Chai, Junfeng Luo, and Xiaolin Wei. Rethinking
bisenet for real-time semantic segmentation. In CVPR, pages
9716–9725, 2021. 3

[14] Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaim-
ing He. Masked autoencoders as spatiotemporal learners.
arXiv preprint arXiv:2205.09113, 2022. 2

[15] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
ICCV, pages 6202–6211, 2019. 2

[16] Basura Fernando, Hakan Bilen, Efstratios Gavves, and
Stephen Gould. Self-supervised video representation learn-
ing with odd-one-out networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3636–3645, 2017. 2

[17] R James Firby. An investigation into reactive planning in
complex domains. In AAAI, volume 87, pages 202–206,
1987. 1

[18] Antonino Furnari, Sebastiano Battiato, and Giovanni
Maria Farinella. Leveraging uncertainty to rethink loss func-
tions and evaluation measures for egocentric action anticipa-
tion. In ECCV, pages 0–0, 2018. 8

[19] Antonino Furnari and Giovanni Maria Farinella. Rolling-
unrolling lstms for action anticipation from first-person
video. TPAMI, 2020. 1, 2, 3, 6, 7, 8

[20] Antonino Furnari and Giovanni Maria Farinella. Towards
streaming egocentric action anticipation. In 2022 26th Inter-
national Conference on Pattern Recognition (ICPR), pages
1250–1257. IEEE, 2022. 2

[21] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. Red: Re-
inforced encoder-decoder networks for action anticipation.
arXiv preprint arXiv:1707.04818, 2017. 8

[22] Harshayu Girase, Haiming Gang, Srikanth Malla, Jiachen
Li, Akira Kanehara, Karttikeya Mangalam, and Chiho Choi.
Loki: Long term and key intentions for trajectory prediction.
In ICCV, pages 9803–9812, 2021. 1, 2

[23] Harshayu Girase, Jerrick Hoang, Sai Yalamanchi, and Mi-
col Marchetti-Bowick. Physically feasible vehicle trajectory
prediction. arXiv preprint arXiv:2104.14679, 2021. 1

[24] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zis-
serman. Video action transformer network. In CVPR, pages
244–253, 2019. 2

[25] Rohit Girdhar and Kristen Grauman. Anticipative video
transformer. In ICCV, pages 13505–13515, 2021. 1, 2, 3,
4, 5, 6, 7, 8

[26] Dayoung Gong, Joonseok Lee, Manjin Kim, Seong Jong Ha,
and Minsu Cho. Future transformer for long-term action an-
ticipation. In CVPR, pages 3052–3061, 2022. 3

[27] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan
Essa. Efficient hierarchical graph-based video segmentation.
In 2010 ieee computer society conference on computer vision
and pattern recognition, pages 2141–2148. IEEE, 2010. 2

[28] Tengda Han, Weidi Xie, and Andrew Zisserman. Video rep-
resentation learning by dense predictive coding. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision Workshops, pages 0–0, 2019. 2

[29] Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-
augmented dense predictive coding for video representation
learning. In European conference on computer vision, pages
312–329. Springer, 2020. 2

[30] Mark Handley. Delay is not an option: Low latency routing
in space. In Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, pages 85–91, 2018. 1

[31] Harish Haresamudram, Apoorva Beedu, Varun Agrawal,
Patrick L Grady, Irfan Essa, Judy Hoffman, and Thomas
Plötz. Masked reconstruction based self-supervision for hu-
man activity recognition. In Proceedings of the 2020 inter-

18767

national symposium on wearable computers, pages 45–49,
2020. 2

[32] Joel Hasbrouck and Gideon Saar. Low-latency trading. Jour-
nal of Financial Markets, 16(4):646–679, 2013. 1

[33] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, pages 16000–16009, 2022. 2, 4

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 3

[35] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki
Zadeh, Debapriya Banerjee, and Fillia Makedon. A survey
on contrastive self-supervised learning. Technologies, 9(1):2,
2020. 2

[36] Dinesh Jayaraman and Kristen Grauman. Learning image
representations tied to ego-motion. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1413–1421, 2015. 2

[37] Dinesh Jayaraman and Kristen Grauman. Slow and steady
feature analysis: higher order temporal coherence in video.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3852–3861, 2016. 2

[38] Eugen Käfer, Christoph Hermes, Christian Wöhler, Helge
Ritter, and Franz Kummert. Recognition of situation classes
at road intersections. In 2010 IEEE International Conference
on Robotics and Automation, pages 3960–3965. IEEE, 2010.
2

[39] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361,
2020. 8

[40] Shian-Ru Ke, Hoang Le Uyen Thuc, Yong-Jin Lee, Jenq-
Neng Hwang, Jang-Hee Yoo, and Kyoung-Ho Choi. A re-
view on video-based human activity recognition. Computers,
2(2):88–131, 2013. 2

[41] Chanho Kim, Li Fuxin, Mazen Alotaibi, and James M Rehg.
Discriminative appearance modeling with multi-track pool-
ing for real-time multi-object tracking. In CVPR, pages
9553–9562, 2021. 3

[42] Dahun Kim, Donghyeon Cho, and In So Kweon. Self-
supervised video representation learning with space-time cu-
bic puzzles. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 33, pages 8545–8552, 2019. 2

[43] Irena Koprinska and Sergio Carrato. Temporal video seg-
mentation: A survey. Signal processing: Image communica-
tion, 16(5):477–500, 2001. 2

[44] Bruno Korbar, Du Tran, and Lorenzo Torresani. Coopera-
tive learning of audio and video models from self-supervised
synchronization. Advances in Neural Information Process-
ing Systems, 31, 2018. 2

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. 2017. 1

[46] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language
of actions: Recovering the syntax and semantics of goal-
directed human activities. In CVPR, pages 780–787, 2014.
6

[47] Colin Lea, René Vidal, and Gregory D Hager. Learning con-
volutional action primitives for fine-grained action recogni-
tion. In ICRA, pages 1642–1649. IEEE, 2016. 6

[48] Jiangtong Li, Wentao Wang, Junjie Chen, Li Niu, Jianlou Si,
Chen Qian, and Liqing Zhang. Video semantic segmentation
via sparse temporal transformer. In Proceedings of the 29th
ACM International Conference on Multimedia, pages 59–68,
2021. 2

[49] Yanghao Li et al. Improved multiscale vision trans-
formers for classification and detection. arXiv preprint
arXiv:2112.01526, 2021. 2, 7

[50] Yin Li, Miao Liu, and Jame Rehg. In the eye of the beholder:
Gaze and actions in first person video. IEEE transactions on
pattern analysis and machine intelligence, 2021. 6

[51] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 3

[52] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 6

[53] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In ECCV, pages
21–37. Springer, 2016. 3

[54] Zhihua Liu, Pierre Magal, Ousmane Seydi, and Glenn Webb.
A covid-19 epidemic model with latency period. Infectious
Disease Modelling, 5:323–337, 2020. 1

[55] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3202–3211, 2022. 2

[56] Tahmida Mahmud, Mahmudul Hasan, and Amit K Roy-
Chowdhury. Joint prediction of activity labels and starting
times in untrimmed videos. In ICCV, pages 5773–5782,
2017. 2

[57] Karttikeya Mangalam, Yang An, Harshayu Girase, and
Jitendra Malik. From goals, waypoints & paths to
long term human trajectory forecasting. arXiv preprint
arXiv:2012.01526, 2020. 1

[58] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal,
Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik, and Adrien
Gaidon. It is not the journey but the destination: Endpoint
conditioned trajectory prediction. In ECCV, pages 759–776.
Springer, 2020. 1

[59] RJW Mansfield. Latency functions in human vision. Vision
research, 13(12):2219–2234, 1973. 1

[60] Peter McLeod. Visual reaction time and high-speed ball
games. Perception, 16(1):49–59, 1987. 2

[61] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Assel-
mann. Video transformer network. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3163–3172, 2021. 2

[62] Kriti Ohri and Mukesh Kumar. Review on self-supervised
image recognition using deep neural networks. Knowledge-
Based Systems, 224:107090, 2021. 2

[63] Venkata N Padmanabhan and Jeffrey C Mogul. Improving
http latency. Computer Networks and ISDN Systems, 28(1-
2):25–35, 1995. 1

18768

[64] Bo Pang, Kaiwen Zha, Hanwen Cao, Chen Shi, and Cewu
Lu. Deep rnn framework for visual sequential applications.
In CVPR, pages 423–432, 2019. 2

[65] David A Patterson. Latency lags bandwith. Communications
of the ACM, 47(10):71–75, 2004. 1

[66] Amir Rasouli, Iuliia Kotseruba, and John K Tsotsos. Pedes-
trian action anticipation using contextual feature fusion in
stacked rnns. arXiv preprint arXiv:2005.06582, 2020. 2

[67] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, pages 779–788, 2016. 3

[68] Cristian Rodriguez, Basura Fernando, and Hongdong Li. Ac-
tion anticipation by predicting future dynamic images. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV) Workshops, pages 0–0, 2018. 2

[69] Debaditya Roy and Basura Fernando. Predicting the next
action by modeling the abstract goal. arXiv preprint
arXiv:2209.05044, 2022. 6

[70] Fadime Sener, Dipika Singhania, and Angela Yao. Temporal
aggregate representations for long-range video understand-
ing. In ECCV, pages 154–171. Springer, 2020. 2, 3, 6, 7

[71] Yuge Shi, Basura Fernando, and Richard Hartley. Action an-
ticipation with rbf kernelized feature mapping rnn. In ECCV,
pages 301–317, 2018. 2

[72] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip HS
Torr, and Fabio Cuzzolin. Online real-time multiple spa-
tiotemporal action localisation and prediction. In ICCV,
pages 3637–3646, 2017. 3

[73] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy,
and Cordelia Schmid. Videobert: A joint model for video
and language representation learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 7464–7473, 2019. 2

[74] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
Videomae: Masked autoencoders are data-efficient learn-
ers for self-supervised video pre-training. arXiv preprint
arXiv:2203.12602, 2022. 2

[75] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. An-
ticipating visual representations from unlabeled video. In
CVPR, pages 98–106, 2016. 8

[76] Haochen Wang, Xiaolong Jiang, Haibing Ren, Yao Hu, and
Song Bai. Swiftnet: Real-time video object segmentation. In
CVPR, pages 1296–1305, 2021. 2, 3

[77] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks for action recognition in videos. IEEE transactions
on pattern analysis and machine intelligence, 41(11):2740–
2755, 2018. 2

[78] Wen Wang, Xiaojiang Peng, Yanzhou Su, Yu Qiao, and Jian
Cheng. Ttpp: Temporal transformer with progressive pre-
diction for efficient action anticipation. Neurocomputing,
438:270–279, 2021. 3

[79] Donglai Wei, Joseph J Lim, Andrew Zisserman, and
William T Freeman. Learning and using the arrow of time.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8052–8060, 2018. 2

[80] Chao-Yuan Wu et al. Memvit: Memory-augmented multi-
scale vision transformer for efficient long-term video recog-
nition. arXiv:2201.08383. 1, 2, 3, 6, 7, 8

[81] Yu-Syuan Xu, Tsu-Jui Fu, Hsuan-Kung Yang, and Chun-Yi
Lee. Dynamic video segmentation network. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 6556–6565, 2018. 2

[82] Ceyuan Yang, Yinghao Xu, Bo Dai, and Bolei Zhou. Video
representation learning with visual tempo consistency. arXiv
preprint arXiv:2006.15489, 2020. 2

[83] Olga Zatsarynna, Yazan Abu Farha, and Juergen Gall. Multi-
modal temporal convolutional network for anticipating ac-
tions in egocentric videos. In CVPR, pages 2249–2258,
2021. 6

[84] Bowen Zhang, Limin Wang, Zhe Wang, Yu Qiao, and Hanli
Wang. Real-time action recognition with enhanced motion
vector cnns. In CVPR, pages 2718–2726, 2016. 3

[85] Zeyun Zhong, David Schneider, Michael Voit, Rainer
Stiefelhagen, and Jürgen Beyerer. Anticipative feature fu-
sion transformer for multi-modal action anticipation. arXiv
preprint arXiv:2210.12649, 2022. 3, 6

[86] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
ralba. Temporal relational reasoning in videos. In ECCV,
pages 803–818, 2018. 2

[87] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen
Wei. Deep feature flow for video recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2349–2358, 2017. 2

18769

