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Abstract

In this paper, we study a novel problem in egocentric
action recognition, which we term as “Multimodal Gener-
alization” (MMG). MMG aims to study how systems can
generalize when data from certain modalities is limited or
even completely missing. We thoroughly investigate MMG
in the context of standard supervised action recognition and
the more challenging few-shot setting for learning new ac-
tion categories. MMG consists of two novel scenarios, de-
signed to support security, and efficiency considerations in
real-world applications: (1) missing modality generaliza-
tion where some modalities that were present during the
train time are missing during the inference time, and (2)
cross-modal zero-shot generalization, where the modali-
ties present during the inference time and the training time
are disjoint. To enable this investigation, we construct
a new dataset MMG-Ego4D containing data points with
video, audio, and inertial motion sensor (IMU) modali-
ties. Our dataset is derived from Ego4D [27] dataset, but
processed and thoroughly re-annotated by human experts
to facilitate research in the MMG problem. We evaluate
a diverse array of models on MMG-Ego4D and propose
new methods with improved generalization ability. In par-
ticular, we introduce a new fusion module with modality
dropout training, contrastive-based alignment training, and
a novel cross-modal prototypical loss for better few-shot
performance. We hope this study will serve as a bench-
mark and guide future research in multimodal generaliza-
tion problems. The benchmark and code are available at
https://github.com/facebookresearch/MMG _Ego4D

1. Introduction

Action recognition systems are typically trained on data
captured from a third-person or spectator perspective [37,
]. However, in areas such as robotics and augmented
reality, we capture data through the eyes of agents, i.e.,
in a first-person or egocentric perspective. With head-
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Figure 1. Overview of MMG-Ego4D challenge. In a typical eval-
uation setting (a) networks are trained for the supervised setting or
the few-shot setting using training/support sets with data from all
modalities and evaluated on data points with all modalities. How-
ever, there can often be a mismatch between training and testing
modalities. Our proposed challenge contains two tasks to mimic
these settings. In (b) missing modality evaluation, the model can
only use a subset of training modalities for inference. In (c) Cross-
modal zero-shot evaluation, the models are on modalities unseen
during training.

mounted devices such Ray-Ban Stories becoming popu-
lar, action recognition from egocentric videos is critical to
enable downstream applications, such as contextual rec-
ommendations or reminders. However, egocentric action
recognition is fundamentally different and more challeng-
ing [6,7,43,55]. While third-person video clips are of-
ten curated, egocentric video clips are uncurated and have
low-level corruptions, such as large motion blur due to head
motion. Moreover, egocentric perception requires a careful
understanding of the camera wearer’s physical surround-
ings, and must interpret the objects and interactions from
the wearer’s perspective.

Recognizing egocentric activity exclusively from one
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Figure 2. Multimodal data is crucial for egocentric perception.
Input data consists of three modalities: video, audio, and IMU.
(top) Video action recognition identifies the clip with a tool and
much grass in the background as the class trim grass with other
tools. Audio action recognition system classifies the periodic rub-
bing sound as put trash in a trash can. The IMU model clas-
sifies the head movement action into the class wipe a table. (bot-
tom) Multimodal action recognition system correctly combines the
video feed and audio feed and identifies the activity as collect dry
leaves on the ground.

modality can often be ambiguous. This is because we want
to perceive what the device’s wearer is performing instead
of what the camera feed is capturing. To this end, Mul-
timodal information can be crucial for understanding and
disambiguating the user’s intent or action. We demonstrate
it through an example in Fig. 2. In the example, the video
feed shows a tool in the background of the grassland. An
activity recognition model exclusively based on video rec-
ognizes it as the class trim grass with other tools. Similarly,
a model exclusively trained in audio identifies the rubbing
sounds in the clip as the class put trash in a trash can, and
an IMU model mistakes the head motion as wipe a table.
However, a multimodal system correctly identifies the class
as collect dry leaves on the ground by combining video, au-
dio, and IMU signals.

While using multimodal information is essential to
achieve state-of-the-performance, it also presents a unique
challenge - we may not be able to use all modalities in
the real world due to security or efficiency considerations.
For example, a user might be located in a sensitive envi-
ronment and decide to turn off the camera due to security
concerns. Similarly, users may turn off microphones so that
their voices are not heard. In these situations, multimodal
systems must be able generalize to missing modalities (Fig.
1 (b)), i.e., work with an incomplete set of modalities at in-
ference, and make a robust prediction. These challenges are
not just limited to inference time but could manifest in re-

Modality | video audio IMU

Memory per second of data (KB) | 593.92 62.76 9.44
Typical model FLOPs (G) 70.50 42.08 1.65

Table 1. Compute and memory cost for different modalities.
Memory used per second for each modality is computed by aver-
aging the memory used by 1000 data points drawn randomly from
Ego4D [27]. The provided compute number corresponds to the
forward pass cost of MVIT [15] for video, AST [26] for audio,
and a ViT [ 1] based transformer model for IMU data.

strictions during training. For example, if a user has to train
a system, often in a few-shot setting, computationally ex-
pensive modalities like video are best trained on the cloud.
However, the user might prefer that their data stays on the
device. However, the video will consume 60 x more stor-
age, and 43 x more compute compared to cheaper modali-
ties like IMU (see Tab. 1), significantly increasing the dif-
ficulty of training on devices with limited compute and
storage. In this situation, we may want to enable training
with computationally less demanding modalities like audio
while maintaining the flexibility of performing inference on
more informative modalities like video. Multimodal sys-
tems should robustly generalize across modalities.

In this work, we propose MMG-Ego4D: a challenge de-
signed to measure the generalization ability of egocentric
activity recognition models. Our challenge consists of two
novel tasks: (1) missing modality generalization aimed at
measuring the generalization ability of models when eval-
uated on an incomplete set of modalities (shown in Fig. 1
(b)), and (2) cross-modal zero-shot generalization aimed at
measuring the generalization ability of models in general-
izing to unseen modalities during test time (shown in Fig.
1 (c)). We evaluate several widely-used architectures us-
ing this benchmark and introduce a novel approach that en-
hances generalization capability in the MMG-Ego4D chal-
lenge, while also improving performance in standard full-
modalities settings. Our primary contributions are:

* MMG Problem. We present MMG, a novel and practical
problem with two tasks, missing modality generalization
and cross-modal zero-shot generalization, for evaluating
the generalization ability of multimodal action recogni-
tion models. These tasks are designed to support real-
world security and efficiency considerations, and we de-
fine them in both supervised and more challenging few-
shot settings.

* MMG-Ego4D Dataset. To facilitate the study of MMG
problem in ego-centric action recognition task, we intro-
duce a new dataset, MMG-Ego4d, which is derived from
Ego4D [27] dataset by preprocessing the data points and
thoroughly re-annotating by human experts to suit the
task. To the best of our knowledge, this is the first work
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to introduce these novel evaluation tasks and a benchmark
challenge of its kind.

e Strong Baselines. @We present a new method that
achieves strong performance on the generalization abil-
ity benchmark and also improves the performance un-
der the normal full-modalities setting. Our method em-
ploys a Transformer-based fusion module, which allows
for flexible input of different modalities. We employ a
cross-modal contrastive alignment loss to project features
of different modalities into a unified space. Finally, a
novel loss function is introduced, which is called cross-
modal prototypical loss, achieving state-of-the-art results
in multimodal few-shot settings. Extensive ablation stud-
ies are performed to identify each proposed component’s
contribution.

2. Related Work

Multimodal egocentric action recognition. Action recog-
nition systems are typically trained on video [15-19, 25,
, 70]. However, for egocentric activity recognition (i.e.,
first-person perspective, or recognizing the activity the user
wearing the capturing device is performing), complimen-
tary multimodal information is essential for identifying the
correct activity (see Fig. 2). Previous methods for multi-
modal fusion in egocentric activity recognition have ranged
from simple concatenation [57, 73] to tensor decomposi-
tion [45], with some recent studies adopting transformer-
based architectures [ 1,38,46,49] that have shown promising
results. In this work, we utilize a Transformer-based fusion
module and a modality dropout training strategy to further
improve performance on MMG tasks.
Generalizability of multimodal models. As one of the
tasks belonging to MMG problem, the missing modality
problem has been studied by a few work recently [40, 46,
,53,60,67]. However, most work focuses on the bimodal
situation. [67] solve the multimodal image (two domains)
classification problem by learning factorized multimodal
representations. [47] addresses the audio-visual classifica-
tion problem leveraging a Bayesian meta-learning frame-
work. [46] specifically investigate the robustness of the mul-
timodal transformer model to missing-modality data on the
text-visual classification task, and improve robustness via
multi-task learning and a searched optimal fusion strategy.
Cross-modal zero-shot action recognition is still an under-
explored new problem. It is related to the cross-modal
retrieval problem [63, 74,75, 77], while the latter focuses
on how to measure the feature similarity across different
modalities.
Multimodal few-shot learning. Multimodal few-shot
learning [13, 48, 52, 53, 68] is an emerging research area
that aims to enable machine learning models to recog-
nize and classify new objects based on limited examples

from multiple modalities. Existing research in few-shot
learning has predominantly focused on a single modality,
like image [5, 8, 12, 23, 24, 41, 50, 59, 62, 64, 78] or lan-
guage [2,29,71,72,76]. However, there has been an in-
creasing interest in extending few-shot learning to multi-
modal scenarios. Pioneering work in this area includes us-
ing text-conditional GANs to augment data via hallucinat-
ing images, as demonstrated in [52,53]. Eloff et al. [13] uti-
lize a siamese network for a one-shot cross-modal matching
problem on speech and image modalities.

Datasets and benchmarks. Availability of datasets and
clearly defined benchmark tasks have been a driving fac-
tor in improving performance in use cases like classifica-
tion [9], detection [ 4], segmentation [44] and action recog-
nition [3, 14,28,37]. While performance on these tasks has
often surpassed human performance [31], researchers have
shown that state-of-the-art methods are often fragile [35]
and do not generalize well to slightly different data points
like corruptions [10, 21] or adversarial examples [4, 39].
Having clearly defined benchmarks, datasets, and tasks to
measure the generalization ability has greatly contributed to
driving robustness research [32—34]. Our proposed bench-
mark and dataset, Ego4D-MMG, is the first benchmark
designed specifically to measure multimodal generaliza-
tion ability in egocentric action recognition. We hope this
benchmark will spur progress in MMG tasks and encourage
the development of safety-aware generalizable models.

3. Proposed Benchmark: MMG-Ego4D
3.1. Overview

Preliminaries. We use the term “supervised setting” to re-
fer to the regular action recognition task where a large num-
ber of labeled training data (training set) are available. Dur-
ing test time, the goal is to classify each testing data point
(testing set) into one of the training labels. In contrast, in the
few-shot setting, only a few labeled training data are avail-
able. The goal at test time is the same as in the supervised
setting. In practice, we refer to the training and testing sets
in the few-shot setting as the support and query sets, respec-
tively. The collection of support and query sets together is
called an “episode” [20,61,69]. The terms training modal-
ities and testing modalities refer to the available modalities
during supervised training and testing, respectively, in the
supervised setting. In the few-shot setting, they refer to the
support and query modalities.

Data. The MMG-Ego4D dataset comprises data points with
three modalities - video, audio, and inertial motion sen-
sors (IMU) sourced from the Ego4D dataset [27] (we illus-
trate why we do not choose other datasets in supplemen-
tary). The IMU data contains signals obtained from the
accelerometer and gyroscope. We use approximately 202
hours of data from the Ego4D dataset to create our bench-
mark: 167 hours of unlabelled temporal-aligned Video-
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Audio-IMU data and 35 hours of labeled temporal-aligned
data. We perform several steps to make the data suitable for
our benchmark.

First, we identify timestamps in the data where the activ-
ity occurs and standardize each data point to five seconds,
drawing data from the Ego4D Moments track [27]. IMU
and video data are subsampled to 200 Hz and 4 FPS.

Second, several data points in Ego4D contain multiple
labels, primarily resulting from (1) multiple activities being
performed and (2) activities being related to each other in a
hierarchy (e.g., mixing ingredients vs. cooking). We used
the WordNet hierarchy as a heuristic to consolidate the label
space, using human annotators to scrutinize the labels. If
annotators could not conclusively identify a single correct
label, we discarded that data point from our benchmark.

Finally, we created the MMG-Ego4D few-shot bench-
mark with two main criteria. Firstly, it must consist of two
semantically-disjoint class sets, namely the base classes and
novel classes. Secondly, data points from the same original
clip cannot be present in both the base and novel classes.
We accomplished this in two steps. Initially, the annota-
tors manually split the 79 labels into 65 base classes and 14
novel classes, ensuring that no semantically similar labels
were included in the few-shot evaluation benchmark. Then,
we confirmed that data points from the same underlying clip
were not present in both the base and novel classes. We used
the base classes as the training set for the supervised task
and drew additional data from the Ego4D Moments track to
form the corresponding testing set for the supervised task.

3.2. Proposed MMG Tasks

The goal of MMG-Ego4D is to evaluate the generaliza-
tion ability of machine learning algorithms in situations
where there is a mismatch between training and testing
modalities. Humans can deal with missing modalities quite
well. For example, we can identify an action from just a
video. Similarly, even if a concept was introduced to us
only using video, we can often identify this concept using
another modality like audio (e.g., a crying baby). In this
section, we describe two novel tasks designed to evaluate
the generalization ability of multimodal activity recogni-
tion systems. These tasks reflect real-world security con-
siderations while using wearable devices. Further, perfor-
mance on these tasks could also measure how close our cur-
rent multimodal machine perception is to human percep-
tion. The overview of MMG tasks is presented in Fig. 1.
Missing modality evaluation. This task measures how
well models can perform inference using only a subset of
modalities that were used for training. During inference,
maybe due to power or computational constraints, we may
only use a subset of the modalities to perform the evalu-
ation. This presents us with variable evaluation settings,
and we select some of them to report their results on the

benchmark. In the context of the few-shot setting, this task
reduces to using a subset of the support modalities as the
query modalities.

Zero-Shot Cross-Modal generalization. This task mea-
sures how well models can generalize to unseen modali-
ties. The training and testing modalities are disjoint. In our
context, the models may only use IMU and audio for train-
ing (training video models is extremely expensive), but they
could use video data at test time (the budget for video infer-
ence is acceptable and may yield better results). Similarly,
in the context of few-shot learning, the support and query
modalities are disjoint in this task.

4. Improving Generalization Performance

This section introduces a strong baseline that achieves
high performance on the proposed MMG-Ego4D bench-
mark. Our method comprises three novel components de-
signed to improve the generalization ability of multimodal
systems. We begin by presenting an overview of our pro-
posed method, emphasizing the significance of each com-
ponent, and providing a detailed description of their imple-
mentation.

4.1. Method Overview

We illustrate the overview of our proposed method
pipeline in this section. Under the few-shot setting, all eval-
uation tasks adopt the same training pipeline, composed of
three stages. (1) unimodal supervised pre-training: feature
extractor for each modality is trained separately. (2) multi-
modal supervised pre-training: a fusion module is attached
at the end of unimodal networks to form a multimodal sys-
tem, which is then trained with a cross-entropy loss and
a cross-modal contrastive alignment loss. The latter loss
term aims to enhance the multimodal generalizability of the
model by constructing a unified feature space for all modali-
ties. (3) multimodal meta-training: the multimodal network
is meta-trained with prototypical-based loss to further im-
prove the model’s cross-modal generalizability. It’s worth
noting that data of all modalities are used in the above train-
ing pipeline of the few-shot setting. The modality restric-
tion of MMG-Ego4D tasks is only applied in the support
and query set during the few-shot evaluation.

In the supervised setting, the regular and missing modal-
ity evaluation settings adopt the same training pipeline, con-
taining (1) unimodal supervised pre-training and (2) mul-
timodal supervised pre-training, the same as the first two
stages of the few-shot setting training pipeline. In con-
trast, the zero-shot cross-modal setting has a different two-
stage training pipeline. (1) multimodal unsupervised pre-
training: the multimodal network is trained with a cross-
modal contrastive alignment loss using unlabeled data, to
establish a modality-agnostic unified feature space. (2) mul-
timodal supervised pre-training: the multimodal network is
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Multimodal ~ Unimodal Multimodal

Setting Task unsupervised supervised supervised I\I/I“le'lt?:l;gzl
pre-train pre-train train
Regular - Lcg Lcg + Laign
Supervised | Missing Modal - Lcg Lce + Laiign
Zero-Shot Lalign - Lcr
Regular - Lce Lce + Laiign Loroto
Few-shot | Missing Modal - Lcg Lck + Laign Loroto
Zero-Shot - Lcg Lk + Latign Lproto

Table 2. Training pipelines of supervised & few-shot settings.
Lce denotes the cross-entropy 10ss. Laiign and Lproro are cross-
modal contrastive alignment loss and cross-modal prototypical
loss, which will be explained in Sec. 4.3 and 4.4.

trained using a cross-entropy loss, without the contrastive
alignment loss term used in previous settings, as the evalua-
tion modality is absent in the labeled data, due to the restric-
tion of this setting. It is meaningless to construct an align-
ment between the training modalities. Therefore we choose
to build such an alignment using the modality-complete un-
labeled data, which also does not violate the rule of this
setting. It should be noted that the modality restriction in
the MMG-Ego4D tasks applies to the labeled training data
used in the multimodal supervised pre-training stage and
the evaluation stage. This is different from the few-shot set-
ting. We have summarized the training pipeline in Tab. 2.

4.2. Multimodal Network with a Transformer-
based Fusion Module

Our proposed multimodal network consists of two main
components: unimodal backbones and a Transformer-based
fusion module. The unimodal backbones consist of three
separate feature extractors, which extract features from dif-
ferent input modalities. The fusion module aims to fuse
and aggregate the features of different modalities from uni-
modal backbones and output the fused feature. There are
two widely-used options for fusing modalities: using an
MLP to process the concatenated representations of dif-
ferent modalities [51, 54, 57], or utilizing a Transformer-
based fusion module to take a series of tokens from differ-
ent modalities [46,49,60]. We adopt the Transformer-based
fusion design as it can easily scale to an arbitrary number
of input tokens using attention modules. This is especially
important as the multimodal model is expected to handle
data with a varying number of modalities in the context of
our proposed task. The final output of the fusion module
is obtained by averaging the output tokens instead of using
the CLS token [11,46]. Formally, the output of the fusion
module zg,¢ can be written as follows:

Ziuse = [ ([Towpu + €™ |m € {audio, video, IMU}]),
(D
where g, represents the output representation of the fea-
ture extractor for modality m. f is the fusion module that
takes a sequence of input tokens from different modalities.

Tokens from each modality are augmented with a modality-
specific learnable embedding €™, which is used to disam-
biguate input tokens’ modality information.

During the training of the fusion module, we applied a
technique named modality drop. A subset of modalities is
randomly dropped out with a probability p during training,
to ensure the robustness of the fusion module to a varying
number of input modalities.

4.3. Cross-Modal Alignment Multimodal Training

In the zero-shot cross-modal setting, the multimodal
model is required to learn and infer from disjoint modali-
ties. One approach to achieving this is to construct a uni-
fied feature space that captures representations from differ-
ent modalities. The feature space should ensure that fea-
tures from the same data point but different modalities are
in close proximity to each other. This allows knowledge
learned from one modality to be applied to inference in
other modalities. To achieve this, we propose to align fea-
tures from the same data point but different modalities in
multimodal training with contrastive loss. Specifically, the
unimodal feature output by the fusion module is represented
as follows:

m € {audio, video, IMU},

2
which is expected to lie in the unified feature space. We
impose Noise Contrastive Estimation (NCE) [58] loss to
align video-audio and video-IMU pairs, drawn from differ-
ent time stamps of video-audio-IMU data. Positive pairs
consist of different modalities pairs from the same temporal
location, while negative pairs are from different temporal
locations. Our NCE alignment loss Lxcg is written as fol-
lows:

Lalign (zvidem zm) = Z

mé {audio, IMU}

Zm = f (wﬁtpul + em) )

exp (z;lrdeoz’m/T)

exp (Z\—/Edeoz"b/T) + ZZ’GN exp (Z\Ideoz;n/T)

— log ,

3)

where N\ are negative pairs in a batch. We use cosine sim-
ilarity as the feature distance measurement metric in our
NCS loss. 7 is a temperature parameter controlling the
softness. Unlike previous methods that build a hierarchical
common space [1], our approach defines a unified feature
space for all modalities.

4.4. Cross-Modal Prototypical Loss

What properties can help representations better gener-
alize in the few-shot task? We design a novel extension of
prototypical loss [61] that takes into account the alignment
between features of different modalities.
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The prototypical loss aims to minimize the distance be-
tween the centroid of support embeddings and the query
embeddings in the feature space, where the labels for query
data points are assigned according to their distance to ev-
ery support centroid. In our proposed approach, support
and query examples can belong to different modalities, al-
lowing for cross-modal alignment (see Fig. 3). We use zF,
to denote a unified space support feature of class k and %,
to represent a unified space query feature, where they might
belong to different modalities m, n € {audio, video, IMU}.
The centroid unified space support feature c¥, is calculated
by averaging:

o = ‘Z% > 2k, )

m| k k
z’V?lEZTn

where Z* is the set of support features of class k with
modality m.

The predicted probability of a query example 2,, belong-
ing to class k is computed using the negative exponential of
the /5 distance d between the query feature and the centroid
of the unified space support feature for class k:

exp (—d (2n,ck,)) I
= ~ ~—,m,n € {audio, video, IMU
e e (—d Gy o

Our proposed cross-modal prototypical loss Lyt is then
formulated as the negative log-likelihood loss between the
predicted probability and the ground truth class for the
query example §:

Lyroto = NLL (log [Py, Py, ...Py_1],9) . (6)

Py

In summary, our cross-modal prototypical loss extends
the prototypical loss by enabling the cross-modal alignment
between support and query features in the unified feature
space. This loss can improve the generalization ability of
representations in the zero-shot cross-modal task under the
few-shot setting.

5. Experimental Setup
5.1. Architecture Details

Unimodal backbones. We use MVIiT-B (16 x 4) [I5]
as the feature extractor for video modality, which is pre-
trained on Kinetics-400 [37]. Audio Spectrogram Trans-
former (AST) [26] is used as the audio feature extractor,
and it is pre-trained on AudioSet [22]. For IMU feature ex-
tractor, we designed a ViT [1 1] based transformer network.
Fusion module. Our fusion module is a transformer net-
work with two layers. Each layer contains a self-attention
block with 12 heads. The embedding dimension is 768.

5.2. Training & Evaluation Details

We illustrate some basic details of the model training and
evaluation. Hyper-parameters like learning rate and batch
size are detailed in our supplementary material.

ooooan

"/
oOo0O
Avideo clip showing a woman is

conversing with someone.

A manis hanging clothes
onhangers.

O Support feature from video modality.

/\ Query feature from audio modality.

Figure 3. Cross-modal prototypical loss. Few-shot prototypes
centroid Cj, computed by averaging support examples’ feature. In
contrast to the vanilla prototypical loss, our approach allows sup-
port and query examples to belong to different modalities. The
figure shows an example where the support examples are video
data, and the query example is audio data.

5 Way 5 Shot Top-1

Model ‘ FLOPs (G) Param (M) ‘ Modality ‘ Accuracy Accuracy
MVIT-B [15] 70.50 36.50 video 58.89 52.40
AST [26] 42.08 87.03 audio 31.06 39.48
IMU Transformer 1.65 15.55 IMU 40.07 29.78

Table 3. Unimodal few-shot & supervised evaluation results.
Networks are trained on each modality independently. Video
achieves the best performance, while also consuming more com-
putational resources.

Supervised setting. Our model uses MMG-Ego4D base
classes for multimodal supervised training. Under the zero-
shot cross-modal setting, our model also utilizes MMG-
Ego4D unlabeled data to do the multimodal unsupervised
pre-training. We use Top-1 Accuracy to measure model per-
formance.

Few-Shot setting. We use the finetune-based method to
perform few-shot evaluation, where a small neural network
is trained on the support set and is used to classify data
points in the query set [30,36,42]. We adopt the standard N-
way K-shot setting [20, 69] as the evaluation setting. Top-1
Accuracy is used to measure model performance. The fi-
nal number is obtained by averaging the results on 10000
episodes.

6. Results on MMG-Ego4D Benchmark
6.1. MMG-Ego4D Few-Shot Setting Results

Multimodal system outperforms unimodal system sig-
nificantly. Tab. 3 presents the few-shot classification re-
sults for individual modalities. Notably, the video modal-
ity achieves the highest accuracy, which is anticipated since
most classes can be easily recognized using visual informa-
tion. However, as illustrated in Fig 2, fusing information
from different modalities is critical to achieving better per-
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Eval. | Support Modalities | Query Modalities | 5 Way 5 Shot
Setting | Video Audio IMU | Video Audio IMU | Accuracy

Regular | v/ v v | v v v | 63.00
v v v v v 61.76
wz v v v v v 50.77
Z3 v v v v v 62.79
== v v v v 62.68
v v v v 43.65
v v v v 4748
v v 46.90
e v v 42.07
£ VRV 50.80
£3 v v 44.01
N v v 46.56
v v v 49.37

Table 4. Multimodal few-shot evaluation results. These results
are obtained with a single network that works across all three eval-
uation settings. We show the regular evaluation results in the first
block, where the model is trained and evaluated with all the modal-
ities. The second block presents missing-modality results, where
the model is trained on all modalities but evaluated only on a sub-
set. The last block is the result of cross-modal zero-shot evalu-
ation, where the training and evaluation modalities are disjoint.
Note that all results are obtained using the same model weight.
Our supplementary material provides results with more training
and test modalities configurations.

formance in egocentric action detection. Our proposed mul-
timodal system outperforms the best-performing unimodal
system by 4.11 in terms of accuracy (Tab. 4 block 1).
Missing modality generalization. We present the results
of the missing modality evaluation in the second block of
Tab. 4, where the query modality is a subset of the sup-
port modality. Our model exhibits good generalizability
even when some modalities are missing during evaluation,
achieving solid accuracy. Notably, including the video
modality in the query set yields a slight change in per-
formance compared to the multimodal case. When video
modality is not included, there is a 19.41% drop in accu-
racy, indicating that video modality is the most informative.
Surprisingly, when queries have only one cheap modality
(audio or IMU), our method outperforms unimodal results
(Tab. 3) by a large margin of 19.24% on IMU and 40.53%
on audio modality, demonstrating the effectiveness of our
approach.

Zero-shot cross-modal generalization. This task presents
a more significant challenge than missing modality gener-
alization as the support and query modalities are disjoint.
We select a few combinations and present the results in
the last block of Tab. 4. To enable efficient training, we
choose a setting where the support modality is computation-
ally cheap, such as IMU and Audio, while the query modal-
ity is relatively more informative, such as video, to achieve
high performance. Our model significantly outperforms the
audio and IMU unimodal settings using this evaluation set-

Eval. ‘ Train Modalities ‘ Test Modalities ‘ Top-1
Setting | Video Audio IMU | Video Audio IMU | Accuracy
Regular | v/ v v v v v | 55.66
wz v v v v v 55.47
Z3 v v v v v 37.07
=3 v v v v v 54.57
v v 30.98
58 v v 20.00
52 v v v 25.03
2% v v 43.43
N2 v v 35.67
v v v 41.02

Table 5. Supervised setting evaluation results. Results are orga-
nized following the same structure as in Tab. 4. The model has the
same weight in regular and missing modality evaluation.

ting. We also present the results of using video as the sup-
port modality and IMU and/or audio as the query modality,
where our model still obtains decent accuracy. While we
did not include all support-query modality combinations in
the paper due to space limitations, readers can refer to our
supplementary materials for additional results.

6.2. MMG-Ego4D Supervised Setting Results

The results of the supervised settings are presented in
Tab. 5. Our multimodal model outperforms each unimodal
model in Tab. 3 significantly in the regular setting. Re-
garding the missing modality evaluation, our method ex-
hibits strong generalization ability in the presence of miss-
ing modalities. If the video modality is preserved in the
evaluation modality, the performance only experiences a
minor drop. However, when video data is missing during
evaluation, the performance drops by around 33%, suggest-
ing that the video modality is more informative than the
other two modalities. The last block of Tab. 5 shows the
zero-shot cross-modal results. We explore two cases: using
expensive modalities for training and cheap modalities for
inference, and using cheap modalities for training and ex-
pensive modalities for inference. We observe that the model
performs better in the latter case, indicating that learning
from informative modalities benefits the model more.

6.3. Insights from Ablation Study

In this section, we carefully ablate the effect of each
component in our designed multimodal system under var-
ious evaluation settings, including the regular, missing
modality, and cross-modal zero-shot evaluations.

Fusion module. In this study, we propose the use of
a Transformer-based fusion module as an alternative ap-
proach to integrating information from different modalities
in a multimodal network. To evaluate its performance, we
conduct a comparative analysis against an MLP-based fu-
sion module that concatenates representations from diverse
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Eval. ‘ Train/Support Modal. ‘ Test/Query Modal. ‘ Fusion  Contrastive ‘ Top-1 ‘ Cross-Modal ‘ 5 Way 5 Shot

Setting ‘ Video Audio  IMU ‘ Video Audio  IMU ‘ Module Alignment ‘ Accuracy ‘ Proto. Loss ‘ Accuracy
Attention v 55.66 v 63.00
Regular v v v v v v' | Attention X 52.18 v 61.16
MLP v 52.79 v 58.67
Attention v - X 62.37
Missing Attention v 37.07 v 50.77
Modality v v v v v Attention X 21.32 v 40.87
MLP v 32.89 v 49.00
Attention v - X 50.03
Zero-shot Attent@on v 25.03* v 51.40
Cross-Modal v v v Attention X 2.37 v 33.93
MLP v 24.54* v 51.08
Attention v - X 50.80

Table 6. Ablation study of each design component under supervised & few-shot settings. Our proposed components improve the per-
formance under all evaluation settings. Note that cross-modal prototypical loss is only applied under the few-shot setting. *Different from
other settings, the cross-modal contrastive alignment loss is applied at the unsupervised multimodal pre-training stage in the supervised

zero-shot cross-modal setting.

modalities and processes them using an MLP. To ensure a
fair comparison, we maintain the dimensionality of input
and output representations of both modules to be consis-
tent, with a similar number of parameters. In situations
where some modalities are not present in the input of the
MLP-based fusion module, we replace their representations
with zero vectors. The results of the ablation study pre-
sented in Tab. 6 demonstrate that the Transformer-based fu-
sion module outperforms the MLP-based fusion module in
both few-shot and supervised learning scenarios across all
tasks. We also investigate three decision choices empiri-
cally. Specifically, we examine the efficacy of using the
CLS token or averaging all output tokens for the final pre-
diction. We find that averaging all output tokens produces
better performance. Additionally, we evaluate the inclusion
of modality-specific embeddings before fusion and find that
it is effective in aiding the model’s ability to differentiate
between modalities. Finally, we experiment with various
dropout rates (p) for modality dropout and find that consis-
tent performance is obtained across a range of values (0.3
to 0.8), with the best results achieved at p = 0.6.

Cross-modal contrastive alignment loss. Our motiva-
tion for incorporating cross-modal alignment loss into our
pipeline is rooted in the desire to enhance cross-modal zero-
shot generalization performance. In Tab. 6, the inclusion
of this component resulted in a remarkable improvement
of 22.66 and 17.47 in cross-modal zero-shot generalization
performance in supervised and few-shot learning settings,
respectively. Additionally, we observed that the incorpo-
ration of cross-modal alignment loss also yielded perfor-
mance gains in regular and missing modality tasks. These
results underscore the importance of cross-modal alignment
in succeeding in the MMG-Ego4D benchmark.

Cross-Modal prototypical loss. In our study, we pro-

posed the incorporation of cross-modal prototypical loss as
a means of enhancing few-shot performance in MMG tasks.
Our experimental results, as demonstrated in Tab. 6, reveal
that this novel component contributes to performance im-
provements of 0.74 and 0.6 points in missing modality and
zero-shot scenarios, respectively, while also yielding an en-
hancement of 0.63 points in the regular modality complete
evaluation setting. These findings attest to the efficacy of
cross-modal prototypical loss as a valuable addition to the
MMG task performance optimization strategy.

7. Conclusions

In this paper, we introduced the first comprehensive
benchmark for multimodal generalization (MMG) and pro-
posed three components to improve the generalization per-
formance of models. Our benchmark, MMG-Ego4D, in-
cludes two new tasks and a new dataset. The evaluation
of different baseline architectures showed that the gener-
alization ability of current systems is limited. Therefore,
benchmarking and improving generalization ability deserve
attention, especially as models are deployed into more sen-
sitive use cases. Through extensive experiments and ab-
lation study, we demonstrated that our proposed attention-
based fusion mechanism with modality dropout training and
alignment of unimodal representation during fusion could
improve the performance of supervised and few-shot tasks
in MMG-Ego4D. Our proposed cross-modal prototypical
loss also improves the performance of few-shot tasks in
MMG-Ego4D. We created a new dataset and introduced
novel experiments for the rigorous study of multimodal gen-
eralization problems. These methods can increase general-
izability and are essential for real-world settings where se-
cure environemnts are important.
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