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Abstract

Bird’s-Eye-View (BEV) semantic maps have become an
essential component of automated driving pipelines due to
the rich representation they provide for decision-making
tasks. However, existing approaches for generating these
maps still follow a fully supervised training paradigm and
hence rely on large amounts of annotated BEV data. In this
work, we address this limitation by proposing the first self-
supervised approach for generating a BEV semantic map
using a single monocular image from the frontal view (FV).
During training, we overcome the need for BEV ground truth
annotations by leveraging the more easily available FV se-
mantic annotations of video sequences. Thus, we propose
the SkyEye architecture that learns based on two modes of
self-supervision, namely, implicit supervision and explicit
supervision. Implicit supervision trains the model by enforc-
ing spatial consistency of the scene over time based on FV
semantic sequences, while explicit supervision exploits BEV
pseudolabels generated from FV semantic annotations and
self-supervised depth estimates. Extensive evaluations on
the KITTI-360 dataset demonstrate that our self-supervised
approach performs on par with the state-of-the-art fully su-
pervised methods and achieves competitive results using
only 1% of direct supervision in BEV compared to fully su-
pervised approaches. Finally, we publicly release both our
code and the BEV datasets generated from the KITTI-360
and Waymo datasets.

1. Introduction
Bird’s-Eye-View (BEV) maps are an integral part of

an autonomous driving pipeline as they allow the vehi-
cle to perceive the environment using a feature-rich yet
computationally-efficient representation. These maps cap-
ture both static and dynamic obstacles in the scene while
encoding their absolute distances in the metric scale using a
low-cost 2D representation. Such characteristics allow them
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Figure 1. SkyEye: The first self-supervised framework for semantic BEV
mapping. We use sequences of FV semantic annotations to train the network
to estimate a semantic map in BEV using a single RGB input.

to be used in many distance-based time-sensitive applications
such as trajectory estimation and collision avoidance [12,14].
Existing approaches that estimate BEV maps from frontal
view (FV) images and/or LiDAR scans require large datasets
annotated in the BEV as they are trained in a fully super-
vised manner [6, 19, 23, 43]. However, BEV ground truth
generation relies on the presence of HD maps, annotated
3D point clouds, and/or 3D bounding boxes, which are ex-
tremely arduous to obtain [27]. Recent approaches [29, 36]
circumvent this problem of requiring BEV ground truths by
leveraging data from simulation environments. However,
these approaches suffer from the large domain gap between
simulated and real-world images, which results in their re-
duced performance in the real world.

In this work, we address the aforementioned limitations
by proposing SkyEye, the first self-supervised learning frame-
work for generating an instantaneous semantic map in BEV,
given a single monocular FV image. During training, our
approach, depicted in Fig. 1, overcomes the need for BEV
ground truths by leveraging FV semantic ground truth labels
along with the spatial and temporal consistency offered by
video sequences. FV semantic ground truth labels can easily
be obtained with reduced human annotation effort due to the
relatively small domain gap between FV images of different
datasets which allows for efficient label transfer [15, 17, 37].
Additionally, no range sensor is required for data recording.
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During inference, our model only uses a single monocular
FV image to generate the semantic map in BEV.

Our proposed self-supervised learning framework lever-
ages two supervision signals, namely, implicit and explicit
supervision. Implicit supervision generates the training sig-
nal by enforcing spatial and temporal consistency of the
scene. To this end, our model generates the FV semantic
predictions for the current and future time steps using the
FV image of only the current time step. These predictions
are supervised using the corresponding ground truth labels
in FV. Explicit supervision, in contrast, supervises the net-
work using BEV semantic pseudolabels generated from FV
semantic ground truths using a self-supervised depth estima-
tion network augmented with a dedicated post-processing
procedure. We perform extensive evaluations of SkyEye on
the KITTI-360 dataset and demonstrate its generalizability
on the Waymo dataset. Results demonstrate that SkyEye
performs on par with the state-of-the-art fully-supervised
approaches and achieves competitive performance with only
1% of pseudolabels in BEV. Further, we outperform all base-
line methods w.r.t. generalization capabilities.

Our main contributions can thus be stated as follows:
• The first self-supervised framework for generating se-

mantic BEV maps from monocular FV images.
• An implicit supervision strategy that leverages seman-

tic annotations in FV to encode semantic and spatial
information into a latent voxel grid.

• A pseudolabel generation pipeline to create BEV pseu-
dolabels from FV semantic ground truth labels.

• A novel semantic BEV dataset derived from Waymo.
• Extensive evaluations as well as ablation studies to

show the impact of our contributions.
• Publicly available code for our SkyEye framework at
http://skyeye.cs.uni-freiburg.de.

2. Related Work
In this section, we review the existing work related to

BEV semantic mapping and self-supervised 3D representa-
tion learning based on monocular images.

BEV Mapping: BEV map generation typically involves
three stages: (i) FV feature extraction using an image en-
coder, (ii) feature transformation from FV to BEV, and
(iii) BEV map generation using the transformed features
- with most approaches focusing on FV-BEV transforma-
tion. The earliest approaches, VED [24] and VPN [30] learn
the FV-BEV mapping using a variational encoder-decoder
architecture and a two-layer multi-layer perceptron respec-
tively. However, they do not account for the geometry of
the scene which results in their poor performance in the real
world. Later approaches address this limitation by integrat-
ing scene geometry into the network design. PON [32] pro-
poses an end-to-end network wherein a dense transformer
module learns the mapping between a column in the FV

image and a ray in the BEV prediction. LSS [31] uses
a learnable categorical depth distribution to “lift” the FV
features into the 3D space. Both these approaches, how-
ever, do not generalize across different semantic classes.
PanopticBEV [6] addresses these limitations by employ-
ing a dual-transformer approach to independently map the
vertical and flat regions in the scene from FV to BEV. Re-
cently, multiple approaches [2, 33, 44] have proposed using
vision transformer-based architectures to learn the FV-BEV
mapping, while others have explored incorporating range
sensors such as LiDARs and Radars into the BEV map gen-
eration pipeline [19, 23]. It is important to note that all the
aforementioned approaches follow a fully-supervised train-
ing strategy and hence rely on BEV ground truth labels for
training. Although such approaches result in state-of-the-
art performance, their reliance on BEV ground truth labels
severely impacts their scalability. In this paper, we propose
the first self-supervised approach using only FV image se-
quences, their corresponding FV semantic annotations, and
the ego-poses for training.

Self-Supervised Monocular 3D Representation Learn-
ing: This task forms one of the fundamental challenges of
computer vision and is used in tasks such as novel view syn-
thesis and 3D reconstruction [1]. Early works use geometry-
based approaches such as structure-from-motion [34], multi-
view stereo [4], and multi-hypothesis labeling [11], while
recent approaches typically employ deep learning-based so-
lutions [16, 40] to address this challenge. More recently,
self-supervised approaches have been proposed to alleviate
the amount of annotated data required to learn the 3D struc-
ture. Video Autoencoder [18] uses an autoencoder to learn
the 3D structure of a static scene for the task of novel view
synthesis. In the context of robotics, self-supervised repre-
sentation learning has been used for tasks such as depth
estimation [5, 8], surface normal estimation [7], optical
flow [21, 22], visual-inertial odometry [9], keypoints estima-
tion [41], stereo matching [42], image enhancement [26],
and scene flow [13] among many others. These approaches
have shown tremendous potential in the real world due to
their ability to efficiently scale across multiple locations
without needing expensive human intervention. We extend
this set of self-supervised approaches by proposing the first
self-supervised learning framework to predict BEV semantic
maps without the need for any BEV ground truth data.

3. Technical Approach

In this section, we present our novel self-supervised learn-
ing framework, SkyEye, for generating BEV semantic maps
from a single monocular FV image without any ground truth
supervision in BEV. The core idea of our approach is to
generate an intermediate 3D voxel grid that serves as a joint
feature representation for both FV and BEV segmentation
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Figure 2. Overview of our proposed self-supervised BEV semantic mapping framework, SkyEye. The core component of our approach is the latent voxel
grid V0 that serves as a joint feature representation for segmentation tasks in FV and BEV. We encode spatial and semantic information into the voxel grid
using implicit supervision during a pretraining step and explicit supervision in a subsequent refinement step using pseudolabels that are generated with a
self-supervised depth prediction pipeline. The path in red denotes the processing steps during inference time.

tasks, thus allowing us to leverage FV supervision to aug-
ment the BEV semantic learning procedure. An overview of
our proposed self-supervised pipeline is depicted in Fig. 2.

Our framework generates the supervision signal using two
strategies, namely, implicit supervision and explicit supervi-
sion. Implicit supervision generates the training signal by
exploiting the spatial and temporal consistency of the scene
via FV Semantic Scene Consistency (Lfv, Sec. 3.2) which
operates on the depth-wise projection of the voxel grid. The
explicit supervision, in turn, operates on the orthographic
height-wise projection of the voxel grid and provides supervi-
sion in BEV via pseudolabels generated in a self-supervised
manner (Lbev , Sec. 3.3). The final loss is thus computed as:

L = Lfv + Lbev (1)

In the following sections, we present an overview of our
network architecture and provide further insight into the
computation of the aforementioned losses. Further, in all the
upcoming notations, the subscript i refers to an instance of
an element at time step ti.

3.1. Network Architecture

Our model comprises five major components: (i) an im-
age encoder to generate 2D image features, (ii) a lifting
module to generate the 3D voxel grid using a learned depth
distribution, (iii) an FV semantic head to generate the FV
semantic predictions for implicit supervision, (iv) a BEV
semantic head to generate the BEV semantic map, and (v) an
independent self-supervised depth network to generate the
BEV pseudolabels. Fig. 2 presents an overview of our pro-
posed framework.
The encoder follows the EfficientDet-D3 backbone [39]

which takes an FV image as input and outputs 2D features at
four different scales which we subsequently merge using the
multi-scale fusion strategy outlined in EfficientPS [28]. The
lifting module projects the 2D features to a 3D voxel grid
representation using the camera projection equation coupled
with a learned depth distribution that provides the likelihood
of features in a given voxel. We then process the voxel grid
depth-wise or height-wise based on whether the output is in
the FV or BEV respectively. We generate the FV semantic
logits by applying perspective distortion to the 3D voxel grid,
flattening it along the depth dimension, and mapping it to
the output channels using a 1 × 1 convolution. Similarly,
we generate the BEV logits by flattening the 3D voxel grid
orthographically along the height dimension and passing it
through a 1 × 1 convolution to generate the required out-
put channels in the BEV. Our self-supervised depth network
is independent from the aforementioned model and is only
used to generate the BEV semantic pseudolabels. It uses a
separate instance of EfficientDet-D3 backbone and feature
merging module outlined above. The depth decoder con-
sists of three upsampling layers, each of which follow the
upsampling strategy defined in [5]. The final depth is then
computed by applying a 3× 3 convolution, normalizing it
using a sigmoid function and scaling it to the required range.

3.2. Implicit Supervision

Autonomous driving scenes comprise many static ele-
ments such as parked cars and buildings which establish
a strong framework for generating a supervision signal by
exploiting their consistency over multiple time steps. We
exploit this characteristic of the real world and generate the
implicit supervision signal by enforcing consistency between
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FV semantic predictions at multiple time steps. To this end,
we predict the FV semantic maps for the initial (t0) as well
as future time steps (t1, ..., tn) using only the intermediate
voxel grid representation at the initial time step as depicted
in Fig. 3. We hypothesize that this formulation would help
the network generate a spatially consistent volumetric rep-
resentation of the scene from a single FV image. Further,
we also hypothesize that this formulation would help the
voxel grid encode complementary information from multiple
images to resolve occlusions and hence play a pivotal role
in generating accurate BEV semantic maps from the limited
view of only a single time step.

We first use the provided FV monocular image I0 to gen-
erate the intermediate 3D voxel grid representation V0. This
voxel grid is perspectively distorted using the camera intrin-
sics and processed along the depth dimension to generate
the FV semantic prediction Ŝ0. Perspective distortion of the
voxel grid prior to processing it in FV is crucial to prevent
implicit supervision from distorting the voxel grid. Parallelly,
we transform V0 to generate the voxel grids V0→i = T0→iV0

for future time steps (t1, ...tn) using the relative ego poses
T0→i between the initial and future time steps. We then
use the generated pseudo voxel grids to infer the future FV
semantic predictions Ŝ0→1, Ŝ0→2, ..., Ŝ0→n. Subsequently,
we compute the cross entropy loss between the FV seman-
tic predictions and their corresponding FV semantic ground
truths to generate the implicit supervision signal for training
the model. We linearly down-weight the loss for future time
steps to negate the ill effects of dynamic objects and error
propagation during model training. Thus, we compute the
FV semantic scene consistency loss Lfv by accumulating
the losses for each time step Lfv,i as:

Lfv =

n∑
i=0

Lfv,i =

n∑
i=0

wiCE(Ŝ0→i,Si), (2)

where wi refers to the time step-based weight which lin-
early decays from 1 to 0.2, and CE(a, b) refers to the cross
entropy loss between tensors a and b.

3.3. Explicit Supervision

Our model comprises a BEV segmentation head with
learnable parameters that is designed to generate the desired
BEV semantic map. However, implicit supervision does
not generate a gradient flow through the BEV head, which
underlines the need for explicit supervision in BEV. To this
end, we propose a pseudolabel generation procedure con-
sisting three steps as depicted in Fig. 2, namely (i) a depth
prediction pipeline to lift FV semantic annotations into BEV
yielding a semantic point cloud, (ii) an instance generation
module based on DBSCAN [35], and (iii) a densification
module to generate dense segmentation masks from sparse
depth predictions for static classes. Prior to pseudolabel

generation, we train our depth network on the corresponding
dataset in a self-supervised manner as proposed in [5] using
the ego poses to ensure metric scale of the depth estimates.

Pseudolabel Generation: We generate pseudolabels for
time step t0 by employing a sequence W of FV images and
their corresponding semantic ground truths. Fig. 4 illustrates
the proposed pipeline. We first predict the depth map D̂i for
each FV image Ii ∈ W to lift FV semantic ground truths
into BEV using the known camera intrinsics and poses. We
then accumulate the semantic point clouds and transform
them into the perspective of t0, to obtain a single accumu-
lated semantic point cloud Ṗ0 =

⋃
k∈W P̂k→0. For dynamic

objects, we retain only those points in the point cloud that
are consistent with the FV semantic ground truth at t0 to
prevent object motion from corrupting the supervision sig-
nal. We then use the accumulated point cloud to both create
dense semantic labels for static classes and fit boxes around
dynamic objects (Fig. 2).
First, we orthographically project points belonging to static
classes to generate a sparse BEV map. We then densify this
map by applying a series of morphological dilate and erode
operations to generate the first set of labels B̂s for static
classes. Second, we try to mitigate the lack of observability
of the shape of dynamic objects by fitting boxes around each
object instance. However, we are faced with two challenges:
(i) the FV data has no notion of object instances, and (ii)
the predicted depth maps are prone to outliers due to trans-
parent and reflective surfaces. We address these challenges
by introducing the notion of instances and rejecting outliers
in depth maps. We do so by clustering the accumulated
semantic point cloud using DBSCAN to yield a set M of
C clusters, where M = {mj , j = 1...C}. We then project
the M clusters orthographically into BEV and fit an ellipse
E = {xc, yc, a, b, θ}, which serves as a differentiable re-
placement of a bounding box, around each cluster using the
RANSAC [3] algorithm. The predicted ellipse parameters
with its 2D center point (xc, yc), semi-minor axes (a, b) and
orientation θ define the position, extents, and orientation
of the bounding box in BEV, respectively. This procedure
generates a second BEV map B̂d which is then overlaid on
B̂s to generate the final pseudolabel map B̂pl containing both
static and dynamic classes. Finally, this pseudolabel map
is used to further supervise the semantic BEV map at the
network output using the cross-entropy loss as

Lbev = CE(B̂pl, B̂). (3)

4. Experimental Results
In this section, we present the quantitative and qualitative

results of our proposed self-supervised BEV semantic map
generation pipeline, SkyEye, along with comprehensive abla-
tion studies to highlight the importance of our contributions.
We also present the datasets used for experimental evaluation
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Figure 3. Semantic predictions of SkyEye for future time steps using the FV image of only the initial time step. The disocclusion of sidewalks in the semantic
predictions indicates that SkyEye can reason about both occluded regions and spatial extents of objects in the scene with the encoded semantic information.

Figure 4. Overview of our pseudolabel generation pipeline. We lift semantic annotations in FV into the 3D world (P̂k→0) and accumulate them (Ṗ0). We
then densify the static classes in BEV (B̂s) and fit boxes around clustered dynamic objects (B̂d). B̂s and B̂d are merged to generate BEV pseudolabels B̂pl.

and provide a detailed description of the training protocol to
ensure transparency and result reproduction.

4.1. Datasets

We evaluate SkyEye on the KITTI-360 [20] dataset and
study its generalization ability by pretraining it on KITTI-
360 and evaluating it on Waymo Open Dataset [38]. We
select these datasets to evaluate our approach on a wide
variety of driving scenarios encountered in different regions
of the world. Since neither KITTI-360 nor Waymo provide
BEV semantic labels, we follow the data generation process
outlined in PanopticBEV [6] to generate the BEV semantic
ground truth labels. We slightly modify this process and
remove the occlusion masking step to make BEV labels
occlusion-agnostic. It is important to note that the generated
BEV ground truths are only used to train the fully-supervised
baselines and perform the quantitative evaluation, and are not
used in our self-supervised learning framework. Of the 10
sequences in the KITTI-360 dataset, we use sequence 10 for
validation and use the remaining sequences for training. For
the generalization experiment, we evaluate our pretrained
model on all samples in the Waymo validation split.

4.2. Training Protocol

We train SkyEye on images of size 1408 × 384 pixels
by following a two-step training protocol. First, we learn to
infer the 3D geometry of the scene from a single FV image
by training the model using only implicit supervision on a
window size of 10 for 20 epochs with a learning rate (LR) of
0.005. We sample every second image from the window to
capture a long time horizon while reducing the training time
of the model. We then specialize the model for BEV segmen-
tation by explicitly supervising it using the generated BEV
pseudolabels for 20 epochs and LR of 0.001. We augment
the dataset during both stages using random combinations of
horizontal image flipping, as well as color perturbations via
changes to image brightness, contrast, and saturation. We

optimize the network across both training steps using SGD
with a batch size of 12, momentum of 0.9, and weight decay
of 0.0001. We follow a multi-step training schedule wherein
we decay LR by a factor of 0.5 at epoch 15 and 0.2 at epoch
18. We initialize the EfficientDet backbone using weights
from COCO pretraining while the other layers are initialized
using the Kaiming-He [10] initialization strategy.

4.3. Quantitative Results

Since we are the first to propose a method for
self-supervised BEV segmentation, we benchmark Sky-
Eye against EfficientPS [28] + IPM [25] as well as 5 fully-
supervised approaches, namely Translating Images Into
Maps (TIIM) [33], Variational Encoder Decoder (VED) [24],
View Parsing Network (VPN) [30], Pyramid Occupancy Net-
work (PON) [32], and PanopticBEV (PoBEV) [6]. We train
the baseline models on our dataset using the open source
code provided by the authors after minimally adapting them
to handle the different input size, output size, and number
of output semantic classes. We ensure fair comparison by
adhering as closely as possible to the training protocols out-
lined in their respective publications. Tab. 1 presents the
results of this evaluation using the class-wise Intersection-
over-Union (IoU) and overall mean IoU (mIoU) metrics for
the KITTI-360 dataset.

We observe that our proposed SkyEye model outperforms
5 of 6 baseline models by more than 3.65 pp and performs
on par with the state-of-the-art fully-supervised approach
PoBEV while not using any form of BEV ground truth su-
pervision. We further note that our approach exceeds the
baselines by up to 3.66 pp on all static classes such as road,
sidewalk, building, and terrain. This superior performance
for static classes can largely be attributed to our consistency-
based implicit supervision which enables the network to
infer spatially consistent features as well as reason about
occluded and distant regions. At the same time, we observe
that our model demonstrates inferior performance on dy-
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Table 1. Evaluation of BEV semantic mapping on the KITTI-360 dataset. All metrics are reported in [%].

Method BEV GT Road Sidewalk Building Terrain Person 2-Wheeler Car Truck mIoU

IPM [25] ✗ 53.03 24.90 15.19 32.31 0.20 0.36 11.59 1.90 17.44
TIIM [33] ✓ 63.08 28.66 13.70 25.94 0.56 6.45 33.31 8.52 22.53
VED [24] ✓ 65.97 35.41 37.28 34.34 0.13 0.07 23.83 8.89 25.74
VPN [30] ✓ 69.90 34.31 33.65 40.17 0.56 2.26 27.76 6.10 26.84
PON [32] ✓ 67.98 31.13 29.81 34.28 2.28 2.16 37.99 8.10 26.72
PoBEV [6] ✓ 70.14 35.23 34.68 40.72 2.85 5.63 39.77 14.38 30.42

SkyEye (Ours) ✗ 71.39 37.62 37.48 44.38 4.73 4.72 32.73 10.84 30.49

namic classes such as car and truck as compared to PoBEV,
reporting nearly 7 pp and 3.5 pp lower on car and truck re-
spectively. This result is caused by the use of only a forward-
facing FV image which impedes the network from reasoning
about the shape and extent of various objects. Further, the
sparsity of points on dynamic objects in distant regions hin-
ders the generation of accurate pseudolabels and negatively
impacts the performance of our pipeline. Nevertheless, our
approach still extracts strong features for dynamic objects
from both implicit and explicit supervision which allows it to
outperform IPM, VED, and VPN, and be on par with TIIM.

4.4. Ablation Study

In this section, we study the impact of various compo-
nents of our self-supervised pipeline using an ablation study
on the KITTI-360 dataset. To this end, we perform two ab-
lative experiments to independently analyze the impact of
implicit and explicit supervision on the overall performance.

Implicit Supervision: In this experiment, we quantify the
impact of implicit supervision on model performance by
comparing the IoU metrics obtained when our model with
and without implicit supervision is trained on different per-
centages of BEV pseudolabels. We thus define five percent-
age splits, i.e., 0.1%, 1%, 10%, 50%, and 100% of BEV
pseudolabels, and accordingly sample a fixed subset of im-
ages given the split percentage. In these experiments, we use
all FV images from the training split for model pretraining.
We ensure equal representation of all scenes in the dataset
by independently sampling the given percentage of images
from each of the scenes. We also ensure model convergence
for all percentage splits by increasing the number of epochs
for splits having a lower percentage of BEV pseudolabels.
Lastly, we also train the state-of-the-art fully-supervised
approach, PoBEV, on the same percentage splits of BEV
ground truth labels to act as a benchmark for evaluating the
performance of our approach. Note that these approaches
are evaluated using the same set of BEV ground truth labels.
Tab. 2 presents the results for all percentage splits. We fur-
ther present results of SkyEye trained using different splits
of BEV ground truth labels in Sec. S.3 of the supplementary.

We observe that our model with implicit supervision (Sky-
Eye) significantly outperforms both PoBEV as well as our
model without implicit supervision (SkyEye*) by more than
7 pp for extremely low percentage splits of 0.1% and 1%.

At such low sample counts, PoBEV suffers from the lack
of BEV ground truth data while SkyEye is able to lever-
age FV training to generate good results in BEV. A large
part of the gain can be attributed to the better segmentation
of static classes which is a direct consequence of the ro-
bust supervision generated from the warping step of implicit
training. We also observe that SkyEye* outperforms PoBEV
by more than 1.5 pp at these percentages which highlights
the training efficiency of our network architecture. Further,
we observe that with only 10% of the labels, SkyEye al-
most matches the state-of-the-art result, while SkyEye* and
PoBEV are 2.09 pp and 2.66 pp away respectively. This
observation further emphasizes the benefit of incorporating
implicit supervision into the training procedure to circum-
vent the need for expensive BEV ground truth annotations.
However, from this percentage split onwards, we observe
that PoBEV starts outperforming SkyEye for the car class
which can be attributed to the better and consistent super-
vision of BEV ground truth labels. As the percentage of
BEV samples increases, all approaches converge to a sim-
ilar mIoU score since the labels in BEV compensate for
the privileged information supplied by implicit supervision.
However, we still note that SkyEye outperforms PoBEV for
all static classes which demonstrates the ability of implicit
supervision to positively augment the training procedure
even in the presence of 100% of BEV labels. To further
demonstrate the impact of implicit supervision on the trained
model, we provide further results for every percentage split
in Sec. S.3 and Sec. S.5 of the supplementary.

Explicit Supervision: In this experiment, we study the influ-
ence of various components of our BEV pseudolabel genera-
tion pipeline by removing each component from the overall
solution proposed in Sec. 3.3 and analyzing the change in
the overall model performance. Tab. 3 outlines the results of
this ablation study. The first row of Tab. 3 shows the results
of the model trained with all components of our pseudola-
bel generation pipeline and acts as a baseline for evaluating
the impact of each constituent module. We observe in the
second row that frame accumulation forms the most im-
portant step of the pseudolabel generation pipeline whose
removal results in a drop of 7.23 pp. Frame accumulation
improves the density of static regions and helps the model
reason about far-away and occluded regions. In the third
row, we replace the depth-based lifting of static classes for
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Table 2. Ablation study on the impact of Implicit Supervision on the overall network performance. All scores are reported on the KITTI-360 dataset.

BEV (%) Method BEV GT Implicit Epochs Road Sidewalk Building Terrain Person 2-Wheeler Car Truck mIoU

0.1
PoBEV ✓ -

300
54.73 19.08 22.63 5.40 0.00 0.00 3.81 0.00 13.21

SkyEye ✗ ✗ 55.20 18.42 20.95 11.63 0.00 0.00 15.53 0.00 15.22
SkyEye ✗ ✓ 68.49 31.11 32.98 29.92 0.00 0.00 19.19 0.00 22.71

1
PoBEV ✓ -

100
61.70 17.10 27.81 26.72 0.07 0.36 21.51 0.84 19.51

SkyEye ✗ ✗ 64.25 22.43 32.20 24.41 0.44 0.00 24.09 0.69 21.06
SkyEye ✗ ✓ 72.00 33.76 37.59 38.75 3.77 1.81 28.04 9.53 28.15

10
PoBEV ✓ -

50
70.00 32.75 38.07 34.43 0.80 3.33 34.46 9.25 27.89

SkyEye ✗ ✗ 70.44 33.88 33.74 41.66 3.47 3.83 31.54 9.14 28.46
SkyEye ✗ ✓ 72.40 37.06 36.89 43.67 3.90 4.20 31.05 9.86 29.88

50
PoBEV ✓ -

30
72.09 35.64 36.64 42.41 1.61 3.92 41.41 9.77 30.44

SkyEye ✗ ✗ 71.93 33.59 36.43 42.63 4.05 4.30 31.44 12.76 29.64
SkyEye ✗ ✓ 71.85 37.43 38.76 44.15 5.07 4.54 31.07 11.54 30.55

100
PoBEV ✓ -

20
70.14 35.23 34.69 40.71 2.85 5.63 39.78 14.38 30.43

SkyEye ✗ ✗ 71.00 36.38 37.76 44.13 4.47 4.37 30.98 12.76 30.23
SkyEye ✗ ✓ 71.39 37.62 37.48 44.38 4.73 4.72 32.73 10.84 30.49

Table 3. Ablation study on the efficacy of various constituent components of Explicit Supervision. All results are reported on the KITTI-360 dataset.

Accumulation Depth Clustering BBox Road Sidewalk Building Terrain Person 2-Wheeler Car Truck mIoU

✓ ✓ ✓ ✓ 71.39 37.62 37.48 44.38 4.73 4.72 32.73 10.84 30.49
✗ ✓ ✓ ✓ 60.27 26.75 19.89 41.22 0.44 1.43 26.06 10.01 23.26
✓ ✗ ✓ ✓ 66.28 33.43 27.24 38.95 4.62 3.90 21.04 9.08 25.57
✓ ✓ ✗ ✗ 72.68 37.32 37.60 44.91 2.17 2.49 29.96 11.17 29.79
✓ ✓ ✓ ✗ 72.73 37.42 37.30 44.54 0.00 0.00 25.95 9.25 28.40

Table 4. Evaluation of model generalizability across datasets. Models
pretrained on KITTI-360 are evaluated on Waymo.

Method TIIM VED VPN PON PoBEV SkyEye (Ours)

mIoU 16.53 14.02 13.52 12.05 16.94 22.57

pseudolabel creation with the IPM algorithm and observe
a drop in performance of both static and dynamic classes.
We attribute this behavior to the strong correlation between
static and dynamic classes as they are predicted in a joint
manner within a single map. The last two rows indicate that
the outlier removal and incorporation of prior knowledge on
dynamic classes yield a large performance gain w.r.t. cars
(7.23 pp and 6.78 pp respectively) but have a minor impact
on static classes and trucks.

4.5. Generalization Experiments

We evaluate the generalization ability of SkyEye by eval-
uating the best model from the KITTI-360 dataset on the
Waymo dataset and comparing its performance to that of the
other baselines. VED, VPN, PON, and PoBEV use image
dimensions as channel count in their learnable layers which
forces the Waymo image size to be equal to that of KITTI-
360 (1408 × 384). TIIM and SkyEye are agnostic to the
image size and we thus report the result obtained when using
images of size 512× 352 which aligns the Waymo camera
intrinsics with that of KITTI-360. Tab. 4 presents the results
of this experiment. We observe that our approach general-
izes significantly better to the Waymo dataset as compared to
other baselines outperforming them by 5.63 pp. This large
gain in mIoU can be credited to the superior geometric rea-

soning and world modeling of our approach which is largely
facilitated by our self-supervised learning framework. Our
implicit supervision guides the network to learn geometri-
cally coherent features which helps it in generalizing well
across different datasets. On the contrary, the BEV ground
truths do not enforce geometric consistency which results in
the poor performance of the fully supervised baselines.

4.6. Qualitative Results

We further evaluate SkyEye by qualitatively comparing it
with the state-of-the-art fully supervised approach, PoBEV,
in Fig. 5. We observe from Fig. 5(a) that both PoBEV and
SkyEye are able to capture the characteristics of close re-
gions and are also able to localize nearby vehicles to a high
accuracy. Further, as evident from the error/improvement
maps in the last column, our approach precisely captures the
contour of the sidewalk for near as well as distant regions.
A similar observation can be made in Fig. 5(b) where our
model accurately predicts the curve of the road over long
distances, but PoBEV fails to do so and instead confuses
road with sidewalk. This superiority in inferring static ele-
ments of the scene can be attributed to implicit supervision
which encourages the network to learn consistent features
over long horizons. Fig. 5(c, d) demonstrate that our network
is able to successfully localize a large number of vehicles in
the scene. These images also depict a limitation of SkyEye,
i.e., the failure to predict cars in distant regions. This can
be attributed to the extreme sparsity of dynamic objects in
distant regions which results in the generation of sub-optimal
BEV pseudolabels. This limitation, however, is not faced
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Input FV Image PanopticBEV [6] SkyEye (Ours) Improvement/Error

(a)

(b)

(c)

(d)

Figure 5. Qualitative results of our self-supervised framework SkyEye in comparison with PanopticBEV [6] on the KITTI-360 dataset. We also show the
Improvement/Error map which shows pixels misclassified by PanopticBEV and correctly predicted by SkyEye in green, pixels misclassified by SkyEye and
correctly by PanopticBEV in blue, and pixels misclassified by both models in red.

by PoBEV which uses BEV ground truth labels and thus
receives reliable supervision throughout the BEV image. We
also observe that our network accurately estimates the con-
tours of road, sidewalk, and terrain, thus highlighting the
benefit of implicit supervision. We provide further qualita-
tive results of our approach in Sec. S.5 of the supplementary.

4.7. Discussion of Limitations

While our self-supervised approach, SkyEye, performs
on par with fully supervised state-of-the-art approaches, it is
subject to three kinds of limitations. Firstly, the reliance on
temporal context can deteriorate its performance in highly
dynamic scenes where moving objects may produce artifacts
in both the generated pseudolabels and the implicit super-
vision signal. Here, explicit handling of moving objects
can help minimize these effects. Secondly, our pseudola-
bels suffer from incorrect object extent and object heading
estimates, especially when dealing with far-away objects.
Lastly, perspective distortion limits the spatial observability
of the scene for distant regions. This, however, is a long-
standing limitation of camera-based methods that can be
overcome using a longer temporal baseline in conjunction
with a dedicated dynamic object handling strategy.

5. Conclusion

In this paper, we present SkyEye, the first self-supervised
approach to generate a semantic map in BEV using a single
FV monocular image, thus alleviating the need for expen-
sive BEV semantic ground truth annotations. Our approach
relies on only FV image sequences and their corresponding
FV semantic annotations to generate two modes of supervi-
sion, namely, implicit supervision and explicit supervision.
Using extensive evaluations on the KITTI-360 dataset, we
demonstrate that SkyEye performs on par with the state-
of-the-art fully supervised BEV approaches while already
achieving competitive performance with only 1% of pseu-
dolabels in the BEV. Future work includes relaxing the re-
quirement for FV semantic ground truth labels and instead
relying on coarse FV predictions from a generic pre-trained
FV semantic network or leveraging scene knowledge from
unsupervised FV semantic segmentation approaches.
Acknowledgements: This work was partly funded by
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