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Abstract
LiDAR has become a cornerstone sensing modality for

3D vision. LiDAR systems emit pulses of light into the
scene, take measurements of the returned signal, and rely
on hardware digital signal processing (DSP) pipelines to
construct 3D point clouds from these measurements. The
resulting point clouds output by these DSPs are input to
downstream 3D vision models – both, in the form of train-
ing datasets or as input at inference time. Existing LiDAR
DSPs are composed of cascades of parameterized opera-
tions; modifying configuration parameters results in signif-
icant changes in the point clouds and consequently the out-
put of downstream methods. Existing methods treat LiDAR
systems as fixed black boxes and construct downstream task
networks more robust with respect to measurement fluctua-
tions. Departing from this approach, the proposed method
directly optimizes LiDAR sensing and DSP parameters for
downstream tasks. To investigate the optimization of LiDAR
system parameters, we devise a realistic LiDAR simulation
method that generates raw waveforms as input to a LiDAR
DSP pipeline. We optimize LiDAR parameters for both 3D
object detection IoU losses and depth error metrics by solv-
ing a nonlinear multi-objective optimization problem with
a 0th-order stochastic algorithm. For automotive 3D object
detection models, the proposed method outperforms manual
expert tuning by 39.5% mean Average Precision (mAP).

1. Introduction
Environment perception for autonomous drones [12, 53]

and vehicles [72] requires precise depth sensing for safety-
critical control decisions. Scanning LiDAR sensors have
been broadly adopted in autonomous driving [3, 7, 56] as
they provide high temporal and spatial resolution, and re-
cent advances in MEMS scanning [67] and photodiode tech-
nology [64] have reduced their cost and form factor.

The 3D LiDAR point cloud (PC) data that existing 3D
detection methods take as input is produced by a LiDAR
and digital signal processor (DSP) pipeline with many mea-
surement and processing steps. Typical LiDAR sensors op-
erate by sending out a laser pulse and measuring the tem-
poral response through an Avalanche Photo Diode (APD).
This temporal wavefront signal is fed to a DSP that extracts

peaks corresponding to echos from candidate targets within
the scene [70]. As such, DSP processing results in a 1000-
fold data reduction for a single emitted beam, producing
single or multiple 3D points per beam. Compressing the
waveform into points in 3D space with minimal informa-
tion loss is challenging because of object discontinuities,
sub-surface scattering, multipath reflections, and scattering
media, see Fig. 1. In particular, significant scattering occurs
in adverse weather conditions like fog [3,4,6,20,23,25,66],
rain [6,18,66] and snow [19,25,27,34]. LiDAR manufactur-
ers currently handle such complications by manually adjust-
ing internal sensing and DSP parameters in controlled envi-
ronments and restricted real-world scenarios using a com-
bination of visual inspection and depth quality metrics.

Generally, LiDAR production units are black boxes with
configuration parameters hidden from the user. To ac-
count for noisy point cloud measurements with spurious ar-
tifacts, existing work has explored methods that add sim-
ulated adverse effects and point cloud degradations that
model rain [18, 26, 58], fog [3, 20, 50] and snow [19] to
real black-box LiDAR datasets. Augmented point clouds
in hand, downstream vision models are retrained for pre-
dictions more robust to point cloud data corruption. An-
other approach consists of generating synthetic measure-
ments from 3D scenes using rendering engines [24, 57, 69].
Such existing methods typically avoid simulating transient
light propagation and signal processing by converting 3D
scene depth directly into a point cloud, thus lack physi-
cally realistic modeling of fluctuations arising from mul-
tipath effects or measurement noise. Notably, existing sim-
ulation methods that alter measurements or generate syn-
thetic point clouds do not optimize sensing or DSP param-
eters for downstream vision performance.

In this work, we directly optimize LiDAR pulse con-
figuration and DSP hyperparameters for end-to-end down-
stream 3D object detector losses and PC depth quality met-
rics, a challenging task because hyperparameter space in-
volves tens to hundreds of categorical, discrete and effec-
tively continuous parameters affecting downstream tasks in
complex nonlinear ways via the intermediate point cloud.
Examples of categorical hyperparameters are Velodyne
LiDAR sensor return modes that configure internal wave-
front peak selection algorithms for point cloud formation;
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Figure 1. LiDAR Point Cloud Formation. Typical LiDAR sensor PC measurements are produced by a multi-stage measurement and signal
processing chain: The LiDAR emits a laser pulse. This signal travels through the scene and returns to the detector after single or multiple
reflections. Cluttered surfaces (a), strong retroreflectors (b) and ambient light are introduced (c) in the returned signals. Thus, the full
transient waveform read by sensors is the superposition of multiple return paths. The DSP, itself a chain of processing blocks, processes
all temporal waveforms and extracts a continuous stream of 3D points that forms the final point cloud (bottom).

rotation velocity, which impacts angular resolution, is an
example of a continuous hyperparameter [4].

Grid search optimization is impractical here because of
combinatorial explosion. Orthogonally to LiDAR, it was
recently shown that 0th order solvers can find camera DSP
hyperparameters that improve downstream 2D object de-
tectors [36, 48]. We propose an optimization method for
LiDAR sensing and DSP hyperparameters that minimizes
end-to-end domain-specific losses such as RMSE of the
measured depth against ground truth and IoU measured on
downstream 3D object detection. To assess the proposed
method, we devised a LiDAR simulation method based on
the CARLA engine [13] that models a LiDAR DSP as well
as the full transient noisy waveform formed by multiple
laser echoes. We optimize sensing and DSP hyperparam-
eters by solving a Multi-Objective black-box Optimization
(MOO) problem with a novel CMA-ES (Covariance Matrix
Adaptation-Evolution Strategy [21]) that relies on a max-
rank multi-objective scalarization loss [36] to dynamically
improve scale matching between different loss components.
In combination with a novel champion selection method, it
finds a balanced Pareto-optimal solution for which no loss
component has a comparatively poor value for LiDAR op-
timization with multiple objectives. We validate the pro-
posed optimization method for 3D object detection and
point cloud depth estimation, both in simulation and using
an off-the-shelf experimental LiDAR sensor.

Specifically, we make the following contributions:

• We introduce a LiDAR wavefront simulation for the
CARLA simulation environment that models realistic
transient scene responses.

• We devise a novel multi-objective optimization
method for balanced MOO of LiDAR parameters.

• We validate end-to-end LiDAR sensing and DSP opti-
mization for 3D object detection and depth estimation
through simulation and with a real system. For all ap-

plications, our approach outperforms existing state-of-
the-art methods, including expert tuning.

Simulator code and DSP models are published here1.
Limitations Because commercial LiDAR units are IP-
protected black boxes, interfacing their DSP hyperparam-
eters is not straightforward. While the off-the-shelf LiDAR
system used in this work makes some DSP hyperparame-
ters accessible, most LiDAR systems are completely closed.
We hope that these findings spur LiDAR vendors to follow
the lead of digital camera and ISP (Image Signal Processor)
vendors and open their processing pipelines.

2. Related Work
DSP and Sensor Hyperparameter Optimization. A
growing body of work explores the optimization of sensors
and DSPs for downstream vision tasks. Existing methods
target camera ISPs and optics [36, 48, 59, 60, 71]. Depart-
ing from manual hyperparameter tuning by experts, these
approaches optimize them automatically, driven by one or
more downstream performance metric. As DSP and sen-
sor hyperparameters can be categorical and losses are often
non-convex and noisy, diverse optimization methods have
been proposed. Early methods targeted specific process-
ing blocks [35, 40, 44] as differentiable programs or in a
reduced parameter space. Recent methods rely on differen-
tiable pipeline proxies [60] or 0th-order optimization [36],
alone or in combination with block coordinate descent [48].
One advantage of 0th-order optimizers is that they handle
black box hardware and DSPs. 0th-order solvers used to
optimize camera systems include MOEA/D [40, 73] and
CMA-ES [21,36,48]. These approaches successfully tackle
camera pipeline optimization, from the optics [59] to down-
stream detectors [36, 48]. To our knowledge, however,
no loss-driven method has been proposed for end-to-end
LiDAR system optimization: existing LiDAR sensors are
designed in isolation from downstream depth and detection

1https://light.princeton.edu/LITL-Optimization/
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Figure 2. LiDAR Simulation Method. We propose a parameterizable LiDAR simulation model that generates full transient waveforms by
extracting scene response H , ambient light a and object reflectances s, d, α from CARLA. End-to-end loss functions drive an MOO solver
toward an optimal vector Θ that includes both pulse and DSP hyperparameters: Wavefronts are processed by the DSP, resulting in a point
cloud O. The “loop is closed” by feeding O to 3D object detection and depth estimation methods, the output of which is “rated” by loss
functions L. Validation datasets cycle through the loop until Θ converges.

tasks. Aiming to close this gap, this work proposes auto-
mated LiDAR hyperparameter optimization.

LiDAR Sensing and Point Cloud Generation. LiDAR
sensors produce point clouds by emitting pulses of light
into a scene and measuring the round trip time of sensor
returns. Extracting a point cloud from time-of-flight mea-
surements is a complex process that depends on measure-
ment procedure specifics like beam formation, scanning,
pulse/continuous wave generation and peak finding within
the acquired temporal laser response [1,46]. LiDAR sensors
differ in their scanning pattern, beam steering technology,
wavelength, pulse profile, coherence of the measurement
step, detector technology and DSP capabilities to process
the measurement echos [1, 31].

Existing LiDAR sensors can extract single or multiple
peaks resulting from multi-path interreflections in the scene.
Assuming a single Lambertian reflector in the scene, the
temporal resolution and signal-to-noise ratio (SNR) of the
measurement are tied to laser power. Accordingly, some
existing optimization methods [43] use automated runtime
laser power adjustment to maximize SNR while prevent-
ing oversaturation. Other approaches have been proposed
for adaptive beam steering [38, 45]. Recently, Vodisch et
al. [65] proposed beam configuration optimization via re-
inforcement learning methods driven by a downstream 3D
detection loss. This method is the most similar to the pro-
posed approach; however, it only predicts beam patterns,
i.e., where to place sparse samples. In contrast, we op-
timize DSP hyperparameters in addition to sensing ones,
pulse power and scanning parameters included.

LiDAR Simulation. To assess and validate the proposed
method, we introduce a new LiDAR simulation method
that plugs directly into the CARLA simulator. Existing

work [5,14,37,47,52] proposes several simulation environ-
ments; the open-source CARLA [14] simulator is broadly
adopted in academia. Simulation frameworks have en-
abled the creation of multimodal synthetic datasets used
successfully in academia and industry, e.g., PreSIL [24],
SHIFT [57], AIODrive [32, 69] and SYNTHIA [49]. How-
ever, underlying simulation methods employ heuristic for-
ward models; in addition, none of the datasets include
full waveform returns that would allow simulating LiDAR
point cloud generation. Even the AIODrive dataset [69], in
which multiple peaks are returned via depth image convo-
lution and Single Photon Avalanche Diode (SPAD) quanti-
zation, bakes transients into SPAD image formation, hence
falls short of enabling realistic transient simulation. Simi-
larly, real PC datasets augmentation methods have been em-
ployed to tackle rare occuring events like obstacles [16,33],
traffic [68], rain [20], fog [20] or snow [19, 26]. However,
since the underlying datasets do not include the raw wave-
fronts, none of these approach facilitate modeling the DSP
pipeline. We address these challenges with our simulation
method that simulates full wavefront signals. Combined
with a realistic DSP model, this produces PC data repre-
sentative of real systems.

3. Transient LiDAR Forward Model
Consider a single laser pulse emitted by a LiDAR unit

into a 3D scene, from which a returned signal is detected by
a SPAD detector which sends temporal histograms to the
sensor DSP. For channel n at time t, we model the sensor-
incident temporal photon flux ψ [22, 41, 54] as

ψ(n)(t) = (H ∗ g(n))(t) + a(t), (1)

where g(n) is the temporally varying photon flux emitted by
the laser for channel n, H is the transient response from the

13406



scene, a(t) is the ambient photon flux, and ∗ is the temporal
convolution operator. By definition, the transient scene re-
sponse H includes multipath returns from scene interreflec-
tions and scattering. The detector measures the returned
signal and digitizes the temporal measurement into tempo-
ral wavefronts processed by the DSP. For low photon counts
or path lengths above a few meters typical in automotive
scenes, the binning process can be modeled as a Poisson
random process [22, 41, 43, 54]. We consequently model
the wavefront’s number of photons r(n) detected within the
integration time ∆ in channel n’s time bin k as

r(n)[k] ∼ Poisson

(∫ (k+1)∆

k∆

ψ(n)(t)dt

)
. (2)

3.1. Transient Scene and Pulse Model
Rasshofer et al. [46] introduced a linear model for di-

rect laser reflections in the LiDAR context for the incident
transient response H ∗ g(n) of Eq. (1). With this model, we
formalize the transient response as

(H ∗ g(n))(R) = C

∫ 2τ(n)

0

g(n)(t)H

(
R− ct

2

)
dt, (3)

whereR is the distance between the sensor and the observed
point, c is the speed of light, C is a proportionality con-
stant, independent of t and R, describing the system, and
2τ (n) is the total pulse duration for channel n. We convert
path length to time with t = R/c. Following Hahner et
al. [19] and Rasshofer et al. [46], we adopt the following
pulse shape

g(n)(t) =

{
P

(n)
0 sin2

(
πt

2τ(n)

)
if 0 ≤ t ≤ 2τ (n)

0 otherwise
, (4)

where P (n)
0 is channel n’s pulse power magnitude. The

transient scene response H embedded in Eq. (3) consists
of the geometric attenuation of the light, proportional to
1/(2R)2, and the scene response. For a single opaque point
object i, the latter is proportional to its reflectance ρi and a
Dirac function δ(R − Ri), Ri being the object distance to
the sensor. Reformulating Eq. (3) for a single echo from i
yields

(H ∗ g(n))i(R)=

{
f
(n)
i (R) if Ri ≤ R ≤ Ri + cτ (n)

0 otherwise
(5)

with f (n)i (R)=
CP

(n)
0 ρi
4R2

i

sin2
( π

cτ (n)
(R−Ri)

)
. (6)

3.2. Object Reflectance Model
The object reflectance ρi depends on the material BRDF

and the angle of incidence θ. We model reflectance using
specular and diffuse components of the retroreflected por-
tion of the Cook-Terrance model [9], that is,

ρi=
α4s cos θ

4[cos2 θ(α4−1)+1]2[cos θ(1−k)+k]2
+ d cos θ, (7)

where s, d and α ∈ [0, 1] refer to the specular, diffuse
and roughness properties of a surface material and k =
(α + 1)2/8, see Supplemental Material. To render realistic
textures without a large texture database, we approximate
s, d, α through CARLA’s Phong-like parameters s, d and α.
These parameters are not directly accessible, so we extract
them by projecting targeted hit points onto custom cam-
era images encoding their values, encoding illustrated at the
bottom right of Fig. 2. Specifically, we define a function Pi

that, for a rendered image Isdα, returns pixel information at
the location of projected point i, that is, [s, d, α]=Pi(Isdα).

3.3. Ambient Illumination
The ambient light a(t) in Eq. (1) is modeled following

Weng et al. [69]. A location i is projected on the red channel
of a rendered RGB camera image in which shadows and
reflections are properly accounted for; denote this image by
Ired. We approximate a(t) as a constant over waveform time
bins, that is, a(t)≡ ai = Pi(Ired), where ai is independent
of t. See Supplemental Material for details.

3.4. Multipath Transients
Multipath transients for laser beams hitting object dis-

continuities are taken as primary artifact sources in auto-
motive scenarios. Multipath transients are modeled as lin-
ear combinations of neighboring waveforms. Specifically, a
supersampled collection of {Ri} and channels is computed
using direct illumination only; then, for each LiDAR chan-
nel and each horizontal angle, a downsampled waveform
ψ
(m)
j is obtained:

ψ
(m)
j (R) =

∑
i∈N (j), n∈N (m)

(K
(n)
i (H ∗ g(n))i(R) + ai), (8)

where N (j) and N (m) define respectively the spatial
neighborhood of the target point j and the channel m, and
the K(n)

i s are normalized weights that can be interpreted as
a beam spatial intensity profile, see Supplemental Material.

3.5. LiDAR Sensing and DSP Model
A sensor-incident waveform ψ

(m)
j is measured according

to Eq. (2) and, along with sensor noise, subjected to clipping
at a saturation level that depends on detector type. The DSP
converts noisy and saturated waveforms r(m)

j into a point
cloud O that includes range and intensity information. The
entire process, from the emision of a laser pulse g(m) to the
output of a processed point cloud O is shown in Fig. 3.

With compressed notation, we model LiDAR sens-
ing as a function Φ(Θ) with hyperparameters Θ =

(P
(m)
0 , τ (m), V (m)). Laser power P (m)

0 and pulse dura-
tion τ (m) are functions of the channel m; they determine
the emitted pulse g(m). First, the DSP denoises by con-
volving the measured waveform r

(m)
j with the emitted pulse

g(m), see [61]. Next, ambient light is estimated by remov-
ing the waveform’s median from r

(m)
j . This allows the DSP
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Figure 3. LiDAR Sensing and DSP Model Φ. The LiDAR sensing
and DSP hyperparameters Θ, including pulse power, duration, and
parameters for rising edge detection in a transient wavefront, affect
the quality of the generated point cloud O.

to find adequate noise thresholds V (m) since ambient light
varies strongly throughout the scene. Typical DSPs use a
rising edge detector [30] that finds peaks along the denoised
waveform by identifying intersections with V (m). Multi-
ple peaks may arise; the peak with the highest intensity is
added to the point cloud O. Finally, the maximum inten-
sity is compensated for the emitted laser pulse: The pulse
half width τ (m)/2 and power level P (m)

0 are used as scaling
factors to recover the true intensities, see Eq. 3.

Modern consumer LiDAR sensors have upward of 128
channels. Optimizing every channel hyperparameter in-
dividually is prohibitive. The Velodyne HDL-64 bundles
lasers in two groups [62]; our LiDAR model likewise
groups lower and upper lasers. Within each group, hyper-
parameter modulation is an affine function of the channel
number with tuneable slope and bias. The edge threshold
is modeled as a continuous parameter V (m)∈[0, 2]. In con-
trast, power levels P (m)

0 can only take one of 11 values, the
lowest making the peak almost indistinguishable from am-
bient noise and the highest likely to saturate at close range.
Pulse duration τ (m) takes discrete values ranging from 3 to
15 ns in 1 ns increments. See Supplemental Material.

4. Optimization
We propose a multi-objective optimization (MOO)

method that finds Pareto-optimal (see the Supplemental Ma-
terial for a definition) LiDAR hyperparameters. Specifi-
cally, optimization returns high-quality point clouds when
optimized for depth precision and optimal mAP when point
clouds are fed to a downstream object detection module. We
first formulate the optimization problem, then we present
the proposed optimization method.

4.1. LiDAR Hyperparameter Optimization
We optimize hyperparameters with loss-driven end-to-

end optimization. Like Robidoux et al. [48], we optimize
the system as a whole, bundling hardware functionality, for
example the laser beam power of each channel, with DSP
functionality. The operation of the LiDAR imaging pipeline

Φ is modulated by P hyperparameters Θ = (Θ1, . . . ,ΘP)
with ranges of values normalized to the unit interval [0, 1].
With T≫ 2τ , we model each of the J channels Φj of Φ=
(Φ1, . . . ,ΦJ) as

Φj : [9T, 0]
[0,∞)×[0, 1]

P→ S[0,∞), (rj ,Θ) 7→ Oj , (9)

Oj being a mapping from the unit sphere S (proxy for pro-
jective geometry) to nonnegative distances with 0 under-
stood as “undefined” so that each Φj reconstructs a portion
Oj of the overall point cloud O from a waveform rj trun-
cated to the time interval [9T, 0]. The overall Θ-modulated
LiDAR pipeline

Φ : (r(H,Θ),Θ)→ O (10)
maps the set of truncated wave forms r = (r1, . . . , rJ) to
the point cloud O that contains the compressed information
available to downstream detectors about the changing scene
H . We seek solutions of

Θ∗ = argmin
Θ∈[0,1]P

L(Θ), (11)

which are Pareto-optimal with respect to the MOO loss vec-
tor L = (L1, . . . ,LL). Loss components may not directly
use O; for example, Ll may use data tapped out of the
pipeline (e.g., a channel’s waveform rj) or the output of a
downstream detector (e.g., a deep CNN) which ingests O
(e.g., mAP). The Pareto front [28], which contains Pareto-
optimal compromises between losses, is the solution set of
Eq. (11), from which a single “champion” is selected using
additional criteria.

4.2. Optimization Algorithm
To solve the MOO problem, we propose a variant of the

Covariance Matrix Adaptation-Evolution Strategy methods
of Mosleh et al. [36] and Robidoux et al. [48] that differs
from the state of the art in a number of ways. It is listed in
Algorithm 1. We use centroid weights that change between
generations; to obtain better transients, we greedily override
the CMA-ES centroid whenever a new Best So Far (BSF) is
found, isolating the computation of CMA-ES statistics from
the resulting “jump” as well as from the novel inclusion of
centroids as BSF candidates; and we formulate a stable dy-
namic max-rank loss scalarization which we use to drive
optimization and as champion selection criterion.
Stable Dynamic Max-Rank Loss Scalarization Scalar-
izations like the well-known convex combination∑L

l=1wlLl which boils down to the ℓ1-norm of the
loss vector L with unit weights wl, are used to combine
multiple objectives so that a single objective optimizer yield
MOO solutions [15]. Scalarization weights are difficult to
choose when loss variations are not commensurate. The
max-rank loss addresses this issue. In the context of a
generation-based algorithm like Algorithm 1, Mosleh et
al. [36] define a max-rank loss as follows. Let

Rq,m,n
l = rank of Lq,m

l within {Lr,o
l }o∈{1,...,n}

r∈{0,...,4P} (12)
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with ranks counted from 0 and loss component value ties re-
solved by left bisection. Then, the weighted (left-bisection)
max-rank loss Mq,m,n of the hyperparameter vector Θq,m

at the end of generation n is
Mq,m,n = max

l∈{1,...,L}
(wl · Rq,m,n

l ) . (13)

The max-rank loss is dynamic. For a given Θq,m its val-
ues are monotone non-decreasing with respect to the ad-
dition of data. Because weights multiply ranks, they are
non-dimensional, hence dial in the relative importance of
loss components. While Mosleh et al. [36] scale each wl by
the (damped) running proportion of individuals that “fail”
to pass a user-defined threshold, we find that such adaptive
weigths break monotonicity. Instead, we keep wls fixed.
We also improve on Mosleh et al. in that we average left and
right bisection ranks (exception: if the left bisection rank is
0, the “average” is set to 0) to stabilize Mq,m,n with respect
to loss value tie breaking (from, e.g., noise) and creation
(quantization); this defines our stable (dynamically mono-
tone) max-rank loss scalarization.
Dual-Weight CMA-ES Besides more refined seatbelting
(see Supplemental Material), Algorithm 1 differs from ear-
lier CMA-ES in its use of non-constant (hyperparameter,
not loss) centroid weights. Although variable CMA-ES
generation sizes are common [39], the formula used to
derive centroid weights is invariably kept fixed; in con-
trast, the proposed CMA-ES alternates between gradient-
seeking centroid weights [36], which assign zero weight
to the worst quartile of each generation instead of the
usual half to exploit the symmetry of the second and third
quartiles of Gaussian distributions to get a more accurate
gradient approximation, and boundary-stabilizing centroid
weights [48] with no discard so that further exploration not
go in the wrong direction near generic local minima.

Other novel components are that the loss of the weighted
centroid of every generation is evaluated (standard CMA-
ES only generate Gaussian clouds with them) and the
greedy branch in Algorithm 1 (Lines 18–20): If any indi-
vidual of the generation, weighted centroid included, turns
out to be a strict minimizer, it becomes the next generation
Gaussian cloud center.
5. Experiments

In the following, we first validate the proposed approach
with the LiDAR simulation model, jointly optimizing depth
estimation and downstream 3D object detection within sim-
ulated scenes. Then, we compare the proposed optimization
algorithm to recent 0th-order solvers. Finally, we present
experiments with an off-the-shelf hardware LiDAR unit.
Experimental Setup As described in Sec. (3.5), hyperpa-
rameters affect the wavefront and DSP. We optimize the
DSP rising edge threshold V (m) and 10 LiDAR hyperpa-
rameters that control low-level sensing parameters includ-
ing the laser power P (m)

0 and laser pulse width τ (m) for

Algorithm 1 LiDAR Hyperparameter Optimization.

Require: LiDAR Φ, Θ∈ [0, 1]P (initial hyperparameter vector),
N∈N∗ (number of generations), ε∈

(
0, 1

3

)
(small bound),

C∈RP×P (CMA-ES “directional” covariance matrix factor),
σ∈

[
ε, 1

3

]
(square root of covariance matrix “scale” factor)

1: p← 0, c← 0 (CMA-ES path vectors), Θcenter ← Θ
2: for n = 1 to N do
3: Θ0,n← Θ
4: L0,n← losses for LiDAR Φ modulated by Θ0,n

5: for p = 1 to 4P do
6: Θp,n← random draw from Gaussian distribution with

covariance matrix σ2C centered at Θcenter

7: Θp,n←Θp,n+ Gaussian distribution with diagonal cov.
matrix proportional to square of quantization grain [48]

8: Θp,n ← Θp,n reflected back into [0, 1]P

9: Lp,n← losses for LiDAR Φ modulated by Θp,n

10: end for
11: Compute {Mq,m,n}q∈{0,...,4P},m∈{1,...,n} by including

{Lp,n}p∈{0,...,4P} in rank computations
12: Use “eager” [36] centroid weights with λ = 4P, µ = 3P
13: if n is odd then
14: Use “stable” [48] centroid weights with λ = µ = 4P
15: end if
16: Standard CMA-ES update [21] of Θ, σ, C, p, c based on

{Θp,n}p∈{1,...,4P} and {Mp,n,n}p∈{1,...,4P}
17: Θcenter ← Θ
18: if min

p∈{0,...,4P}
Mp,n,n < min

q∈{0,...,4P},m∈{1,...,n}
Mq,m,n

then
19: Θcenter ← minimizer closest to centroid of minimizers
20: end if
21: end for
22: return Θp,n in the (guaranteed nonempty) intersection of

the Pareto front and the set of minimizers of Mq,m,N , with
ties resolved by choosing the one closest to their centroid and
remaining ties resolved by maximizing n, then p

each of the 128 channels.

5.1. Optimization for Depth and Intensity
Next, we assess the method by optimizing point clouds

for depth and intensity with the proposed optimizer. We
minimize the average RMSE of the depth and the average
RMSE of the intensity, specifically

Ldepth(Θ)= 1
F

∑F
f=1RMSE

(
Rf ,Φ

(R)
f (Θ)

)
, and (14)

Lint.(Θ)= 1
F

∑F
f=1RMSE

(
If ,Φ

(I)
f (Θ)

)
, (15)

with F the number of frames in the validation set, see Sup-
plemental Material. The depth loss Ldepth rewards accurate
point cloud depth estimates over the full range, whereas Lint.
ensures that accurate intensities are measured with the pulse
power P (j)

0 . High output power generally results in more
accurate point clouds at farther distances but also leads to
excessive saturation; Lint. penalizes saturation.

Fig. 4 shows a comparison between ground-truth, expert-
tuned and optimized PCs for a Pareto point that mini-
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Figure 4. Comparison between expert-tuned and optimized point clouds. Colors encode the individual depth error of each point (clipped at
2 m). Convergence plot shows the loss components Ldepth and Lint. (Eq. (14)-(15)) against optimization step (3000 loss evaluations total),
the evolution of the champion and the final Pareto front, champion included.

mizes the depth error. Compared to the optimized point
cloud measurement, the expert-tuned point cloud suffers
from clutter, and its depth error increases with distance.
The results reported in Table 1 validate the optimization
method: The expert-tuned configuration has a loss vec-
tor L = (Ldepth,Lint.) equal to (12.195, 1.971); after 3000
evaluations of the objectives, the champion of the pro-
posed method has a loss vector of (10.754, 0.216), improv-
ing depth and intensity metrics by 12% and 89%, respec-
tively. We note that biasing optimization toward reducing
RMSEdepth more than RMSEint. can be done by changing
Eq. (13) loss weights wl. In this work, loss component
weights were kept at their default 1.

Table 1 also shows a comparison of the proposed algo-
rithm with other state-of-the-art MOO optimizers. With
both champion selection criteria—the one proposed by
Mosleh et al. [36], namely “last Pareto point of the run”, and
our own, “Pareto point that minimizes the stable (weighted)
max-rank loss”—Algorithm (1) is the best performer.

5.2. Optimization for Object Detection
Next, we investigate optimization for object detection

and classification. We use Average Precision (AP) as ad-
ditional optimization objective. AP is maximized for cars
and pedestrians at 40 recall positions [55] over an optimiza-
tion set with F = 100 frames. With standard KITTI IoU
thresholds [17], the CV loss is

Lobj,{car, ped.}(Θ) = −AP{car, ped.}(Φ(Θ)), (16)
evaluated over a 0-80 m range. We train a PV-RCNN [53]
for 3D object detection on 5900 full range point clouds
collected from the simulation environment with 8 different
expert-tuned parameterizations Θ, see training and dataset
details in the Supplemental Material.

Table 2 contains a quantitative comparison between the
proposed method and expert tuning. Compared to expert
tuning, the proposed method increases AP by 52.9% and
27.2% for cars and pedestrians, respectively, on the full
0-80 m range, with large increases predominately at close
range. Lower AP values in the 0-30 m range compared
to 30-50 m are due to a lower object occurrence (3.2 per
frame vs. 3.6) and a less varied distribution of object yaw

ℓ1-norm (↓) ℓ1-norm (↓)
last Pareto proposed

SOLVER point [36] champion

Expert-Tuned 14.091 14.091

Proposed 11.089 10.995
NSGA-III [10, 11] 11.408 11.574
Mosleh et al. [36] 11.497 11.497
AGE-MOEA [42] 11.547 11.427
C-TAEA [29] 11.622 11.461
RVEA [8] 11.851 11.437
R-NSGA-III [63] 12.306 11.619
U-NSGA-III [51] 13.423 11.512
SMS-EMOA [2] 13.658 11.750

Table 1. LiDAR Depth and Intensity MOO. The Pareto front (see
figure) is approximately a straight line with slope 91. So, the vari-
ations of Ldepth and Lint. are approximately balanced and the ℓ1-
norm of the loss vector is a reasonable evaluation metric. For all
solvers, the first column shows the ℓ1-norm of the last Pareto point
of the run (champion per Mosleh et al. [36]); the last column in-
stead uses the proposed champion selection method (Line 22 of
Algorithm (1)). The proposed solver performs favorably; in ad-
dition, the proposed champion selection method improves results
for all but two solvers (there is one tie). Median of three runs with
3000 loss evaluations; see the Supplemental Material for details.

angles (std. dev. of 0.63 rad vs. 1.25 rad) within the train-
ing set. Consequently, the detector can better adapt within
the 30-50 m bin. The quantitative findings agree with the
qualitative results of Fig. 5, where optimized and expert-
tuned point clouds are compared to the ground truth. Here,
the clutter in the expert-tuned point cloud results in false
positives and missed detections. In these examples, the pro-
posed method misses only one pedestrian, whereas on the
expert-tuned PC the detector misses them all. We also com-
pare the average depth RMSE before and after filtering sup-
pressed points; the low loss of the filtered PC suggests that
clutter has been removed and that the detector prefers an ac-
curate if sparser point cloud. Note however that a DSP opti-
mized for the removal of clutter, like the proposed method,
also suppresses ground points, with a small impact on ob-
ject detection results, see Table 2 last column.

5.3. Off-the-shelf LiDAR Optimization
In this section, we adapt the proposed optimization al-

gorithm to an off-the-shelf Baraja Spectrum LiDAR sensor.
Only a handful of hyperparameters are user-accessible: the
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Figure 5. Comparison between ground-truth, expert-tuned and optimized point cloud for 3D object detection. Optimization results in
clutter-free point clouds which helps reduce false positive detections. For visualization purposes only the camera field-of-view is shown.

mAP (↑) APcar (↑) APped. (↑) RMSEdepth (↓)
METHOD 0-80 m 0-30 m 30-50 m 50-80 m 0-80 m 0-30 m 30-50 m 50-80 m 0-80 m 0-30 m 30-50 m 50-80 m filtered

Expert 7.33 10.88 10.18 1.28 14.58 21.75 20.19 2.53 0.07 0.02 0.17 0.04 9.12 6.17

Proposed 46.86 52.14 58.70 27.08 66.47 75.06 84.86 41.20 27.25 29.22 32.53 12.95 12.87 5.13
Margin +39.53 +41.26 +48.52 +25.80 +51.89 +53.31 +64.67 +38.67 +27.18 +29.20 +32.36 +12.91 +3.75 -1.04

Table 2. Optimization for 3D Object Detection. We report mAP and AP in different distance range bins, and unfiltered and filtered RMSE,
for expert-tuned and proposed. Filtered RMSEdepth excludes all points suppressed by the DSP. Best in bold.

Figure 6. Left: ground truth 3D histogram used to compute losses,
see text, red bounding boxes denoting cars, with experimental
setup zoom-ins: captured static scene (top) and LiDAR installa-
tion (bottom); the LiDAR detector is the blue unit. Middle: loss
contributions for the expert-tuned parameters and Right: for opti-
mized parameters. Brighter color means a smaller loss.

return mode that selects the waveform peaks used to gen-
erate the point cloud, the sensor heads scanning pattern,
and the two sensor head motor frequencies which deter-
mine the PC angular resolution vs. sensor noise balance.
Because raw wavefronts are inaccessible, we optimize 3D
point cloud histograms taken over an (intermittently) static
scene such as a workplace parking lot. Fig. 6 shows the ex-
perimental setup along with a photograph of the scene over
which optimization was performed. The ground truth his-
togram is shown on the left of Fig. 6; it was generated by
averaging 100 captures with a uniform angular resolution
scanning pattern. Expert-tuned and optimized histogram
contributions to the fitness function (described in the Sup-
plemental Material) are respectively shown in the middle
and right of Fig. 6; brighter bins indicate larger contribu-
tions. Optimized hyperparameters achieved better results
by focusing laser scans in regions of interests (ROIs) where
the ground truth was denser; expert-tuned ones produced

more uniform point clouds. Using the RMSE of PC his-
tograms weighted by distance and number of points per bin,
we estimate a 10.1 cm error for the expert-tuned configura-
tion vs. 3.0 cm with optimized hyperparameters.

6. Conclusion
We propose an in-the-loop black box 0th-order optimiza-

tion method for LiDAR sensing pipelines that finds optimal
parameters for depth and intensity estimation and 3D ob-
ject detection and classification. To assess our method, we
propose a novel LiDAR simulation method integrated into
the CARLA simulator. We find that optimizing the LiDAR
sensing pipeline can significantly improve depth, intensity
and object detection and classification compared to man-
ual expert tuning. Specifically, for 3D object detection our
optimization method results in a major increase of 51.9%
AP for cars and 27.2% AP for pedestrians, compared to
fine-tuning a detector on expert-optimized LiDAR vendor
parameters. An interesting direction for future research is
real-time scene-dependent optimization of LiDAR scanning
parameters, potentially leading to adaptive sensing in ad-
verse weather in urban and highway scenarios.
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