










with ranks counted from 0 and loss component value ties re-
solved by left bisection. Then, the weighted (left-bisection)
max-rank lossMq,m,n of the hyperparameter vector �q,m

at the end of generation n is
Mq,m,n = max

l∈{1,...,L}
(wl · Rq,m,nl ) . (13)

The max-rank loss is dynamic. For a given �q,m its val-
ues are monotone non-decreasing with respect to the ad-
dition of data. Because weights multiply ranks, they are
non-dimensional, hence dial in the relative importance of
loss components. While Mosleh et al. [36] scale each wl by
the (damped) running proportion of individuals that “fail”
to pass a user-defined threshold, we find that such adaptive
weigths break monotonicity. Instead, we keep wls fixed.
We also improve on Mosleh et al. in that we average left and
right bisection ranks (exception: if the left bisection rank is
0, the “average” is set to 0) to stabilizeMq,m,n with respect
to loss value tie breaking (from, e.g., noise) and creation
(quantization); this defines our stable (dynamically mono-
tone) max-rank loss scalarization.
Dual-Weight CMA-ES Besides more refined seatbelting
(see Supplemental Material), Algorithm 1 differs from ear-
lier CMA-ES in its use of non-constant (hyperparameter,
not loss) centroid weights. Although variable CMA-ES
generation sizes are common [39], the formula used to
derive centroid weights is invariably kept fixed; in con-
trast, the proposed CMA-ES alternates between gradient-
seeking centroid weights [36], which assign zero weight
to the worst quartile of each generation instead of the
usual half to exploit the symmetry of the second and third
quartiles of Gaussian distributions to get a more accurate
gradient approximation, and boundary-stabilizing centroid
weights [48] with no discard so that further exploration not
go in the wrong direction near generic local minima.

Other novel components are that the loss of the weighted
centroid of every generation is evaluated (standard CMA-
ES only generate Gaussian clouds with them) and the
greedy branch in Algorithm 1 (Lines 18–20): If any indi-
vidual of the generation, weighted centroid included, turns
out to be a strict minimizer, it becomes the next generation
Gaussian cloud center.
5. Experiments

In the following, we first validate the proposed approach
with the LiDAR simulation model, jointly optimizing depth
estimation and downstream 3D object detection within sim-
ulated scenes. Then, we compare the proposed optimization
algorithm to recent 0th-order solvers. Finally, we present
experiments with an off-the-shelf hardware LiDAR unit.
Experimental Setup As described in Sec. (3.5), hyperpa-
rameters affect the wavefront and DSP. We optimize the
DSP rising edge threshold V (m) and 10 LiDAR hyperpa-
rameters that control low-level sensing parameters includ-
ing the laser power P (m)

0 and laser pulse width τ (m) for

Algorithm 1 LiDAR Hyperparameter Optimization.

Require: LiDAR Φ, Θ∈ [0, 1]P (initial hyperparameter vector),
N∈N∗ (number of generations), ε∈

(
0, 1

3

)
(small bound),

C∈RP×P (CMA-ES “directional” covariance matrix factor),
σ∈

[
ε, 1

3

]
(square root of covariance matrix “scale” factor)

1: p← 0, c← 0 (CMA-ES path vectors), Θcenter ← Θ
2: for n = 1 to N do
3: Θ0,n← Θ
4: L0,n← losses for LiDAR Φ modulated by Θ0,n

5: for p = 1 to 4P do
6: Θp,n← random draw from Gaussian distribution with

covariance matrix σ2C centered at Θcenter

7: Θp,n←Θp,n+ Gaussian distribution with diagonal cov.
matrix proportional to square of quantization grain [48]

8: Θp,n ← Θp,n reflected back into [0, 1]P

9: Lp,n← losses for LiDAR Φ modulated by Θp,n

10: end for
11: Compute {Mq,m,n}q∈{0,...,4P},m∈{1,...,n} by including

{Lp,n}p∈{0,...,4P} in rank computations
12: Use “eager” [36] centroid weights with λ = 4P, µ = 3P
13: if n is odd then
14: Use “stable” [48] centroid weights with λ = µ = 4P
15: end if
16: Standard CMA-ES update [21] of Θ, σ, C, p, c based on

{Θp,n}p∈{1,...,4P} and {Mp,n,n}p∈{1,...,4P}
17: Θcenter ← Θ
18: if min

p∈{0,...,4P}
Mp,n,n < min

q∈{0,...,4P},m∈{1,...,n}
Mq,m,n

then
19: Θcenter ← minimizer closest to centroid of minimizers
20: end if
21: end for
22: return Θp,n in the (guaranteed nonempty) intersection of

the Pareto front and the set of minimizers of Mq,m,N , with
ties resolved by choosing the one closest to their centroid and
remaining ties resolved by maximizing n, then p

each of the 128 channels.

5.1. Optimization for Depth and Intensity
Next, we assess the method by optimizing point clouds

for depth and intensity with the proposed optimizer. We
minimize the average RMSE of the depth and the average
RMSE of the intensity, specifically

Ldepth(�)= 1
F

∑F
f=1RMSE

(
Rf ,Φ

(R)
f (�)

)
, and (14)

Lint.(�)= 1
F

∑F
f=1RMSE

(
If ,Φ

(I)
f (�)

)
, (15)

with F the number of frames in the validation set, see Sup-
plemental Material. The depth loss Ldepth rewards accurate
point cloud depth estimates over the full range, whereasLint.
ensures that accurate intensities are measured with the pulse
power P (j)

0 . High output power generally results in more
accurate point clouds at farther distances but also leads to
excessive saturation; Lint. penalizes saturation.

Fig. 4 shows a comparison between ground-truth, expert-
tuned and optimized PCs for a Pareto point that mini-

13409








