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Abstract

Neural Architecture Search (NAS) has been increasingly
appealing to the society of object Re-Identification (ReID),
for that task-specific architectures significantly improve the
retrieval performance. Previous works explore new opti-
mizing targets and search spaces for NAS ReID, yet they
neglect the difference of training schemes between image
classification and ReID. In this work, we propose a novel
Twins Contrastive Mechanism (TCM) to provide more ap-
propriate supervision for ReID architecture search. TCM
reduces the category overlaps between the training and val-
idation data, and assists NAS in simulating real-world ReID
training schemes. We then design a Multi-Scale Interac-
tion (MSI) search space to search for rational interaction
operations between multi-scale features. In addition, we
introduce a Spatial Alignment Module (SAM) to further
enhance the attention consistency confronted with images
from different sources. Under the proposed NAS scheme,
a specific architecture is automatically searched, named
as MSINet. Extensive experiments demonstrate that our
method surpasses state-of-the-art ReID methods on both in-
domain and cross-domain scenarios. Source code available
in https://github.com/vimar-gu/MSINet.

1. Introduction
Object re-identification (Re-ID) aims at retrieving spe-

cific object instances across different views [39, 40, 57,

65, 70], which attracts much attention in computer vi-

sion community due to its wide-range applications. Pre-

vious works have achieved great progresses on both super-

vised [42, 49, 58] and unsupervised ReID tasks [17, 50, 78],

most of which adopts backbone models originally designed

for general image classification tasks [20, 52].

Recent literature [64,75] has shown that applying differ-
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Figure 1. The left panel shows the example activation maps of

ResNet50 (1st row) and MSINet (2nd row). The right panel shows

the average distances between the most similar 10 negative sam-

ples and each query image at the inference. Best viewed in color.

ent architectures on ReID leads to large performance vari-

ations. Some works employ Neural Architecture Search

(NAS) for ReID [28, 45]. The proposed optimizing targets

and search spaces stably improve the model performance,

yet the main search scheme still follows traditional NAS

methods designed for general classification tasks [12, 36].

As an open-set task, ReID contains different categories in

the training and validation sets [64, 71], while the two sets

share exactly the same categories in standard classifica-

tion tasks [10], which is also followed by traditional NAS

methods. The incompatibility between search schemes and

real-world training schemes makes the searched architec-

ture sub-optimal for ReID. Moreover, ReID is required to

distinguish more subtle distinctions among fine-grained in-

stances compared with image-level classification [48, 63].

Some previous works [4,44,68,75] have manifested that lo-

cal perspectives and multi-scale features are discriminative

for ReID. However, current utilizations of these features are

mostly empirically designed, which can be more flexible

according to the characteristics of different network layers.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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In this work, we propose a novel NAS scheme aiming at

addressing the aforementioned challenges. In order to sim-

ulate the real-world ReID training schemes, a Twins Con-

trastive Mechanism (TCM) is proposed to unbind the cat-

egories of the training and validation sets. An adjustable

overlap ratio of categories builds up the compatibility be-

tween NAS and ReID, which provides more appropriate su-

pervision for ReID architecture search. Moreover, to search

for more rational utilizations of multi-scale features, we de-

sign a Multi-Scale Interaction (MSI) search space. The MSI

space focuses on interaction operations between multi-scale

features along the shallow and deep layers of the network,

which guides the features to promote each other. Addi-

tionally, to further improve the generalization capability, we

propose a Spatial Alignment Module (SAM) to enhance the

attention consistency of the model confronted with images

from different sources. With the above NAS scheme, we

obtain a light-weight yet effective model architecture, de-

noted as Multi-Scale Interaction Net (MSINet).

We visualize the example activation maps of our pro-

posed MSINet and ResNet50 [20] trained on VeRi-776 [38,

39] in Fig. 1. Compared to ResNet50, MSINet focuses on

more unique distinctions with specific semantic informa-

tion to recognize instances. Besides, MSINet largely in-

creases the distance margin between query image and cor-

responding negative samples, reflecting extraordinary dis-

criminative capability. Extensive experiments demonstrate

that MSINet surpasses state-of-the-art (SOTA) ReID meth-

ods on both in-domain and cross-domain scenarios. Our

source codes are available in the supplementary material.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to build

the NAS search scheme according to the real-world

ReID training schemes, which provides more appro-

priate supervision for the ReID architecture search.

• We propose a novel search space based on the Multi-

Scale Interaction (MSI) operations and a Spatial

Alignment Module (SAM) to improve the model per-

formance on in-domain and cross-domain scenarios.

• We construct a light-weight yet effective architec-

ture for ReID tasks, denoted as MSINet. With only

2.3M parameters, MSINet surpasses ResNet50 [20]

by 9% mAP on MSMT17 [60] and 16% mAP on

MSMT17→Market-1501 [69].

2. Related Works
Neural Architecture Search. NAS has been increas-

ingly appealing to the computer vision society, due to its au-

tomatic architecture designing characteristics. NAS meth-

ods can be roughly separated into four categories: reinforce-

ment learning [1,77], evolutionary algorithms [35,46], gra-

dient desent [36, 43] and performance prediction [11, 34].

Liu et al. establish a differentiable architecture search

(DARTS) method [36], which improves the practicability

of NAS by a large extent. Some later works further im-

prove the structure through sampling strategy [62], network

pruning [2, 8], progressive learning [5], collaborative com-

petition [7], etc. Most of NAS works focus on general im-

age classification tasks, where the training and validation

sets share the exact same categories. Following the setting,

however, leads to incompatibility with the real-world train-

ing schemes of object ReID. In this work, we unbind the

category bond between the two sets and propose a novel

search scheme suitable for ReID.

ReID Network Design. Current ReID works mostly

adopt backbones designed for image classification [20, 23,

47, 52]. Some works [14, 31, 67] design attention modules

based on the common backbones to unearth their potential

on distinguishing local distinctions. However, these meth-

ods usually lead to large calculation consumption.

There are also several works focusing on designing

ReID-specific architectures. Li et al. present a Filter Pairing

Neural Network to dynamically match patches in the feature

maps [30]. Wang et al. separate and regroup the features

of two samples with a WConv layer [56]. Guo et al. ex-

tract multi-scale features to directly evaluate the similarity

between samples [18]. However, the siamese structure is

inconvenient when conducting retrieval on large galleries.

Zhou et al. aggregate multi-scale information to achieve

high accuracy with small computing consumption [75].

Quan et al. introduce a part-aware module into the DARTS

search space [36, 45]. Li et al. propose a new search space

in regard to receptive field scales [28]. These methods have

excellent performance on limited parameter scales, but fail

to surpass those networks with complex structures. Differ-

ent from previous works, we design a light-weight search-

ing structure focusing on rational interaction operations be-

tween multi-scale features. The searched MSINet surpasses

SOTA methods on both in-domain and cross-domain tasks.

3. Methods
Our goal is to construct an effective NAS scheme to

search for a light-weight backbone architecture suitable for

ReID tasks. Based on the training schemes of ReID, we

propose a novel Twins Contrastive Mechanism to provide

more appropriate supervision for the search process. Aim-

ing at rational interaction between multi-scale features, we

design a Multi-Scale Interaction search space. We further

introduce a Spatial Alignment Module to improve the gen-

eralization capability with limited parameter growth.

3.1. Twins Contrastive Mechanism

NAS aims at automatically searching for the optimal net-

work architecture for certain data. Inspired by [36], a basic
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Figure 2. The model structure of the proposed MSINet. The input can be either person or vehicle. Inside a cell, the input is separated

to two branches, with different receptive field scales. The interaction module exchanges information between two branches. Architecture

search automatically select the most appropriate interaction for each cell.

differentiable architecture search scheme is established. We

define the ordinary model parameters as ω, and architecture

parameters as α. For network layer i with a search space of

O, αi controls the weight of each operation o in the space.

The features are parallelly passed through all the operations,

and the final output is formulated by the softmax-weighted

sum of operation outputs:

f(xi) =
∑
o∈O

exp {αo
i }∑

o′∈O exp
{
αo′
i

} · o(xi). (1)

The search process is conducted in an alternative manner.

Training data is utilized to update the model parameters,

and validation data is then employed to update the archi-

tecture parameters. For most NAS methods designed for

image classification tasks, the training and validation data

share exactly the same categories and a linear classification

layer for loss calculation.

Different from standard image classification, as an open-

set retrieval task, ReID has different categories in the train-

ing and validation sets. The incompatibility between search

schemes and real-world training schemes might lead to sub-

optimal searching results. Accordingly, we propose a novel

Twins Contrastive Mechanism (TCM) for NAS ReID train-

ing. Specifically, we employ two independent auxiliary

memories Ctr and Cval to store the embedded features of

the training and validation data, respectively. The mem-

ories are initialized with the centroid features, which are

calculated by averaging the features of each category. At

each iteration, the training loss is first calculated with Ctr
for model parameter updating. Given an embedded feature

f with category label j, the contrastive classification loss is

calculated with:

Lcls
tr = − log

exp(f · cjtr/τ)∑Nc
tr

n=0 exp(f · cntr/τ)
, (2)

where cntr represents the memorized feature of category n,

N c
tr stands for the total number of categories in the training

set, and τ is the temperature parameter, which is set as 0.05

empirically [17]. After updating the model parameters, the

embedded feature f with category label j is integrated into

the corresponding memorized feature cjtr by:

cjtr ← βcjtr + (1− β)f , (3)

where β is set as 0.2 empirically [17]. Then the updated

model is evaluated on the validation data to generate to val-

idation loss with Cval replacing Ctr in Eq. 2. The architec-

ture parameter is then updated with the validation loss to

finish an iteration.

As the loss calculation does not rely on the linear clas-

sification layer, the categories of the training and validation

sets are unbound. We are able to dynamically adjust the cat-

egory overlap ratio in these two sets. The advantages of a

proper overlap ratio are summarized as two folds. Firstly,

TCM better simulates the real-world training of ReID and

helps the model focus on truly discriminative distinctions.

The differences between the training and validation data im-

proves the generalization capability of the model. Secondly,

a relatively small proportion of overlapped categories stabi-

lizes the architecture parameter update through a consistent

optimizing target with the model parameter update.

3.2. Multi-Scale Interaction Space

Although the local perspective and multi-scale features

have already been investigated in previous ReID works [4,

28, 44, 51, 68, 72, 75, 76], the utilization of these informa-

tion is mainly empirically designed aggregation, which is

monotonous and restrained. We argue that on the one hand,

the rational utilization of multi-scale features should be dy-

namically adjusted along the shallow and deep layers of the

network. On the other hand, introducing interaction other

than aggregation creates direct information exchange, and
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Figure 3. The aligning pipeline of the proposed Spatial Alignment Module. The correlation activation vectors are calculated between the

anchor feature and all features in a mini-batch. The positive vectors are aligned with the learnable self-activation, and the negative vectors

are aligned with each other. The structure of PAM is shown on the left.

Table 1. The detailed interaction operation in the proposed

MSINet architecture. N: None; E: Exchange; G: Channel Gate;

A: Cross Attention.

Cell #1 Cell #2 Cell #3 Cell #4 Cell #5 Cell #6

1 2 3 4 5 6 7 8 9 10 11 12

G G E G A G G N G A E A

makes fuller use of multi-scale features. Therefore, we pro-

pose a novel Multi-Scale Interaction (MSI) search space to

establish a light-weight architecture suitable for ReID.

As shown in Fig. 2, the network is mainly grouped with

MSI cells and down-sample blocks, which is generally con-

sistent with OSNet [75]. In each cell, the input features

are passed through two branches with different receptive

field scales. To reduce the calculation burden of the net-

work, for the layers inside each branch, we adopt the stack

of 1×1 convolution and multiple depth-wise 3×3 convolu-

tion to implement specific scales. A scale ratio ρ of 3:1

is selected for the two branches. These two branches do

not share model parameters, except for the Interaction Mod-

ules (IM). IM introduces information exchange for the two

branches. There are 4 operation options for the IM. With

the two-branch input features defined as (x1,x2), the oper-

ations can be formulated as:

None. None operation involves no parameters, and out-

puts exactly the input features (x1,x2).

Exchange. Exchange acts as the strongest interaction

among all options. It directly exchanges the features for the

two branches and outputs (x2,x1). Exchange contains no

extra parameters, as well.

Channel Gate. Channel gate introduces a Multi-Layer

Perceptron (MLP) to generate a channel-wise attention

gate [61, 75] as:

G(x) = σ(MLP (x))), (4)

Cell 
#1

Cell 
#2

Cell 
#3

Cell 
#4

Cell 
#5

Cell 
#6

Figure 4. Output feature maps of MSI cells at different layers.

and returns (G(x1) ·x1, G(x2) ·x2). The MLP is composed

of 2 fully connected layers and its parameters are shared for

both branches. Thereby it achieves interaction by jointly

screening discriminative feature channels.

Cross Attention. Traditional channel attention mod-

ule calculates the channel correlation inside a single fea-

ture map [15]. The original feature map x ∈ RC×H×W is

firstly reshaped into the query feature x̃ ∈ RC×N , where

N = H ×W . Then the correlation activation is calculated

by performing a matrix multiplication between the query
feature x̃ and the key feature x̃�. We propose to exchange

the keys of the two branches to explicitly calculate the cor-

relation between each other. The correlation activation is

then transformed to a mask, and is added up to the original

features with a learnable proportion.

After interaction, the multi-scale branches are fused

through a sum operation. It is worth noting that the extra

parameters brought by multiple interaction options are lim-

ited, which enables searching for each cell along the whole

network independently. At the beginning of the network, we

employ the same stem module as that in OSNet [75], con-

taining a 7× 7 convolutional layer and a 3× 3 max pooling

with a stride of 2. After the searching process, the interac-

tion operation o with the largest weight αo
i at each layer is

reserved to form the searched architecture.

After searching the architecture, the model is validated

on various Re-ID tasks. The training is constrained by the
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Table 2. Supervised performance on object ReID datsets. The results in the top part are trained from scratch, and those in the bottom part

are pre-trained on ImageNet in advance. As the compared methods are originally proposed for person ReID, we reproduce the results in

vehicle datasets. ∗ indicates that the results of person ReID are reproduced by us. The evaluation results of architecture searched on VR

can be found in the supplementary material.

Method Params
Inference M MS VR VID MS→M VR→VID

Time R-1↑ mAP↑ R-1↑ mAP↑ R-1↑ mAP↑ R-1↑ R-5↑ R-1↑ mAP↑ R-1↑ R-5↑
ResNet50∗ [42] ∼ 24M 1× 85.7 68.3 48.0 25.7 92.8 69.9 70.6 76.6 - -

OSNet [75] 2.2M 0.79× 93.6 81.0 71.0 43.3 95.4 72.8 76.0 88.7 - - - -

CDNet [28] 1.8M 0.67× 93.7 83.7 73.7 48.5 94.3 73.0 74.5 88.8 - - - -

MSINet 2.3M 0.71× 94.6 87.0 76.0 52.5 95.9 75.0 76.5 89.8 - - - -

ResNet50∗ [42] ∼24M 1× 94.5 85.9 75.5 50.4 94.5 73.6 76.5 89.9 58.8 31.8 42.8 61.9

OSNet [75] 2.2M 0.79× 94.8 84.9 78.7 52.9 95.5 76.4 76.0 88.6 66.6 37.5 46.5 63.1

CDNet [28] 1.8M 0.67× 95.1 86.0 78.9 54.7 - - - - - - - -

MSINet 2.3M 0.71× 95.3 89.6 81.0 59.6 96.8 78.8 77.9 91.7 74.9 46.2 48.0 65.6

MSINet-SAM 2.4M 0.71× 95.5 89.9 80.7 59.5 96.7 79.0 78.0 91.9 76.3 48.4 49.0 66.8

classification id loss and the triplet loss, formulated by:

Lid =
1

N

N∑
i=1

− log

(
expW�

i fi∑
j expW

�
j fi

)
, (5)

where fi is a feature vector, the corresponding classifier

weight of which is Wi, and

Ltri = [D(fa, fp)−D(fa, fn) +m]+ , (6)

where fa, fp, fn are the embedded features for the anchor,

the hardest positive and negative samples in a mini-batch,

D(·, ·) is the Euclidean distance, m is the margin parameter,

and [·]+ is the max(·, 0) function.

3.3. Spatial Alignment Module

The retrieval precision of object ReID tasks are largely

affected by the variation of appearances such as poses, illu-

mination and occlusion when the camera conditions change.

In order that the model correctly and consistently focuses

on the discriminative spatial positions, we design a Spatial

Alignment Module (SAM) to explicitly align the spatial at-

tention between images, as shown in Fig. 3.

Specifically, we first calculate the position-wise correla-

tion activation map A between the feature maps in a mini-

batch. The activation between sample i and j can be formu-

lated as: A(i, j) = x̃�
j × x̃i, where x̃ ∈ RC×N is reshaped

from the original feature x ∈ RC×H×W . Then we take the

maximum activation for each position of sample i as:

a(i, j) = max
dim=1

A(i, j). (7)

The above process is denoted as “Mutual Conv” in Fig. 3.

We evaluate the consistency between activation vectors with

cosine similarity. For negative samples specifically, there

can be many different hints for recognition, some of which

might be inappropriate, such as the backgrounds. By align-

ing all the correlations for sample i, we hope that the net-

work can correct some attention bias and consistently focus

on discriminative positions.

However, through aligning positive sample pairs, the ID-

related features are expected to be emphasized, which can-

not be achieved by aligning negative pairs. Therefore, we

introduce an extra position activation module (PAM) to gen-

erate supervision for the alignment between positive pairs.

The spatial alignment loss is formulated as:

Lsa(i) =
1

N+

∑
p∈I+

(1− S(â(i),a(i, p)))+

1

N−

∑
n1,n2∈I−

(1− S(a(i, n1),a(i, n2))) ,

(8)

where I+ contains positive indices for sample i, the total

number of which is N+, and vice versa. â(i) stands for the

generated activation vector for positive sample alignment,

and S(·, ·) is the cosine similarity.

4. Experiments

4.1. Datasets and Evaluation Metrics

Our proposed method is evaluated on two person ReID

datasets Market-1501 [69], MSMT17 [60], and two vehi-

cle ReID datasets VeRi-776 [38, 39] and VehicleID [37].

For simplicity, the four datasets are denoted as M, MS,

VR and VID in the following sections, respectively. Eval-

uation metrics include Cumulative Matching Characteristic

(CMC) and mean average precision (mAP), which are com-

monly utilized on ReID tasks.

19247



Table 3. Supervised performance comparison between MSINet

and SOTA methods on M and MS datasets.

Method
M MS

R-1↑ mAP↑ R-1↑ mAP↑
PCB [51] 93.8 81.6 68.2 40.4

MGN [55] 95.7 86.9 76.9 52.1

OSNet [75] 93.6 81.0 71.0 43.3

IANet [22] 94.4 83.1 75.5 46.8

DGNet [73] 94.8 86.0 77.2 52.3

Auto-ReID [45] 94.5 85.1 - -

SAN [26] 96.1 88.0 79.2 55.7

CDNet [28] 95.1 86.0 78.9 54.7

BAT-Net [14] 95.1 87.4 79.5 56.8

SFT [41] 94.1 87.5 79.0 58.3

CTF [66] 94.8 87.7 - -

RGA-SC [67] 96.1 88.4 80.3 57.5

MSINet 95.3 89.6 81.0 59.6

4.2. Architecture Search

We conduct the searching process on MSMT17. SGD is

adopted for model parameter update with an initial learn-

ing rate of 0.025. The model is trained for 350 epochs in

total. We adopt a warm-up strategy for the first 10 epochs.

Then the learning rate is decayed by 0.1 at 150, 225 and 300

epochs, respectively. Adam [27] is adopted for the architec-

ture parameter update with an initial learning rate of 0.002.

The learning rate is decayed at the same pace. The images

are reshaped to 256×128 for person and 256×256 for vehi-

cles. Data augmentation includes random flip, random crop

and random erasing [74]. The searched architecture is pre-

sented in Tab. 1. The “MSINet” in the following experiment

sections refers to this architecture.

We visualize the feature maps extracted by each MSI cell

in Fig. 4. At the shallow layers of the network, the kernels

mainly focus on overall contour information. Channel gate

helps to filter out inferior information, such as the back-

ground. As we approach deeper layers, the extracted fea-

tures each have specific semantic information, where cross

attention is more likely to be selected for the interaction. It

indicates that cross attention is more rational for exchanging

high-level semantic information.

4.3. Comparison with Other Backbones

We first compare our proposed MSINet with ResNet50

and recent proposed light-weight backbones in both in-

domain and cross-domain ReID scenarios.

In-Domain Tasks. We adopt a two-group supervised

evaluation scheme similar to that in [28, 75]: training from

scratch and fine-tuning ImageNet [10] pre-trained models.

The training parameters for both schemes are kept the same

as that in architecture search, except for an initial learning

rate of 0.065. Triplet loss and cross entropy loss are adopted

Table 4. Unsupervised performance applying MSINet to SOTA

methods for USL on M and UDA on M→MS.

Method
M M→MS

R-1↑ mAP↑ R-1↑ mAP↑
MMCL [54] 80.3 45.5 40.8 15.1

MMT [16] - - 50.1 24.0

JVTC+ [29] 79.5 47.5 48.6 25.1

CycAs [59] 84.8 64.8 - -

GCL [3] 87.3 66.8 51.1 27.0

MPRD [24] 83.0 51.0 - -

SpCL [17] 88.1 73.1 53.7 26.8

GS [19] 92.3 79.2 - -

GS+MSINet 91.7 81.5 - -

HDCRL [6] 92.4 81.7 - -

HDCRL+MSINet 92.9 82.7 - -

IDM [9] - - 61.3 33.5

IDM+MSINet - - 66.0 37.8

for the parameter update. The margin m in Eq. 6 is set as

0.3. [28] adopts an FBLNeck. We also employ the same

structure. The results are shown in Tab. 2.

ResNet50 is the most commonly utilized backbone net-

work in ReID tasks, yet holds the worst performance. More-

over, ResNet50 largely depends on ImageNet pre-training,

while MSINet without pre-training has already surpassed

pre-trained ResNet50 on all metrics. Compared with the

other datasets, MS contains more variations on illumina-

tion, background and camera pose, and brings a large per-

formance gap between ResNet50 and other methods. It also

validates the inadequacy of image classification networks

on ReID tasks. OSNet [75] and CDNet [28] are recently

proposed architectures designed specifically for ReID tasks.

Both architectures focus on fusing multi-scale features to

better suit ReID. CDNet employs a traditional NAS scheme

to search for the proper receptive field scales for each cell.

MSINet fixes the receptive field scale and instead selects

optimal interaction operations inside each cell. With only a

bit more parameters, MSINet surpasses all the other back-

bones by a large margin.

Cross-Domain Tasks. Cross-domain experiments ver-

ify the generalization capability of the model. Following

previous domain generalizable ReID works [25, 33], data

augmentation is adjusted to random flip, random crop and

color jittering. The model is pre-trained and fine-tuned for

250 epochs to avoid over-fitting. The other settings are kept

the same as supervision scenes. With no present pre-trained

models for CDNet [28], it is excluded from this section.

Tab. 2 shows that ResNet50 can be easily interfered by

different image styles confronted with new image domains.

OSNet learns multi-scale features with specific semantic

information for ReID, which is domain invariant to some

extent. Our proposed search scheme also takes into ac-
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(a) (b) (c) (d) (e)

Figure 5. Ablation studies on (a) search scheme; (b) architecture; (c) multi-scale aggregation; (d) scale ratio ρ; (e) spatial alignment weight.

Table 5. The effectiveness of each components in SAM. Both

in-domain performance on VR and cross-domain performance on

VR→VID is evaluated.

Model Pos. Neg. Align
VR VR→VID

R-1↑ mAP↑ R-1↑ R-5↑

MSINet

- 96.7 78.5 48.0 65.6

� Self 96.7 78.1 48.4 66.0

� Self 96.7 78.4 48.5 66.2

� � Unified 96.6 78.3 48.3 65.8

� � Separated 96.8 78.6 48.7 66.4

� � PAM-Self 96.7 79.0 49.0 66.8

OSNet
None 95.5 76.4 46.5 63.1

� � PAM-Self 95.9 76.3 47.5 63.3

count the generalization capability of the model. By partly

separating the categories for training and validation sets,

the searched interaction operations generalize well con-

fronted with new image domains. Except for discrimina-

tion, MSINet also surpasses the other backbones on cross-

domain tasks by a large margin with faster inference speed.

Additionally, we introduce SAM into the model, which

aligns the spatial correlations between images. A weighted

sum of ReID loss and spatial alignment loss is utilized when

training the network with SAM. The weight of spatial align-

ment loss is set as λsa = 2.0. Without extra inference con-

sumption or damages on the supervised performance, SAM

further boosts the generalization capability of MSINet.

4.4. Comparison with State-of-the-art Methods

Tab. 3 further illustrates the supervision performance

comparison of our proposed MSINet with the SOTA meth-

ods on M and MS datasets. With much less parameters

than most of the compared methods, MSINet achieves a

retrieval accuracy comparable to that of more complicated

ones. Auto-ReID [45] first designs a NAS scheme for ReID,

yet the DARTS-style architecture contains 13M parameters.

RGA-SC [67] carefully designs a relation-aware global at-

tention module. MSINet achieves even higher performance

with less training consumption, which validates the superi-

ority of selecting rational interaction.

We also evaluate the model performance replacing the

backbone network from ResNet50 to MSINet for SOTA

unsupervised ReID methods in Tab. 4. For purely unsu-

pervised learning (USL) method GS [19] on M dataset,

MSINet performs slightly lower on rank-1, yet has a large

superiority on mAP. For HDCRL [6], MSINet shows ob-

vious superiority over ResNet50. For unsupervised do-

main adaptation (UDA) method IDM [9] on M→MS task,

MSINet surpasses ResNet50 by a large margin, which fur-

ther proves that the TCM brings outstanding generalization

capability to the searched architecture.

4.5. Ablation Studies

Effectiveness of Architecture Search. To verify the ef-

fectiveness, we conduct supervised training on MS with dif-

ferent search schemes in Fig. 5 (a). Under the standard clas-

sification scheme (“CE Overlap”), the searched model per-

forms poor. Replacing the cross entropy loss to contrastive

loss (“TCM Overlap”) only brings a slight improvement.

The complete TCM framework unbounds the categories be-

tween the training and validation set, and thereby improves

the performance by a large margin.

In Fig. 5 (b) we compare the performance of differ-

ent architectures. Firstly, we validate 4 models each with

a unique interaction operation from the 4 options in the

search space. None and Exchange, with no trainable pa-

rameters, achieve poor performance. Channel gate intro-

duces channel-wise attention, whose model performs the

best among 4 options. Cross attention exchanges the key

features for the two branches. Over-frequent exchange in-

terferes the ordinary feature extraction and degrades the net-

work performance. Through appropriately arranging inter-

action operations along the architecture, MSINet surpasses

all the above 4 models. Random architecture, on the other

hand, shows no rational appliance of interaction operations,

which validates that the proposed search scheme helps find
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Table 6. Supervised performance comparison between MSINet

and Transformers on VR and MS datasets.

Method Params
Inference MS VR

Time R-1↑ mAP↑ R-1↑ mAP↑
DeiT-S [21] ∼22M 0.97x 76.3 55.2 95.5 76.3

DeiT-B [21] ∼86M 1.79x 81.9 61.4 95.9 78.4

ViT-B [21] ∼86M 1.79x 81.8 61.0 96.5 78.2

MSINet 2.3M 0.71x 81.0 59.6 96.8 78.8

ResNet50

MSINet

Figure 6. Example top-15 retrieved sequences comparison on VR.

Appearance differences caused by variant camera conditions are

well addressed by the proposed MSINet. Visualization of person

ReID can be found in the supplementary material.

suitable architectures for ReID.

Effectiveness of Spatial Alignment Module. We vali-

date the effectiveness of each components of SAM on the

VR→VID cross-domain experiment in Tab. 5. Firstly, we

introduce the spatial alignment for positive and negative

sample pairs, respectively. Each of them brings certain per-

formance improvements. However, a unified alignment for

all sample pairs damages ID-related features and degrades

the performance instead. Therefore, we separate the align-

ment of positive and negative samples, which retains some

discriminative features and integrates the effect of both as-

pects. The extra PAM for positive sample alignment further

guarantees the focus on ID-related positions and achieves

the best performance. We also conduct in-domain experi-

ment on VR to prove that SAM improves the generalization

capability without sacrificing the supervision performance.

Adding SAM to OSNet receives similar results, which vali-

dates the universality of SAM.

Fusing Operation. After interaction, the multi-scale

features are fused by sum operation. We investigate sev-

eral fusing options on MS training from scratch in Fig. 5

(c). Subtracting (“Minus”) a branch from the other leads

to about the same results as “Sum” while multiplication

(“Mul”) performs poorly.

Comparison with Transformer. Transformer, as a new

architecture, has recently been continuously making pro-

gresses in many computer vision domains [13, 53], includ-

ing ReID [21, 32]. We compare the model performance

with some baseline Transformer models in Tab. 6. DeiT-B

and ViT-B [21] achieves higher performance on MSMT17,

with much larger calculation burden compared with our pro-

posed MSINet. On VeRi-776, MSINet surpasses all the

baseline Transformer methods. It proves that rational inter-

action operations between multi-scale features are capable

to assist light-weighted pure-CNN models to obtain compa-

rable performance with complex Transformers.

Parameter Analysis. Firstly, we study the influence of

different receptive field scale ratios ρ inside an MSI cell on

MS training from scratch in Fig. 5 (d). Introducing scale

differences between branches improves the model perfor-

mance significantly, and subsequent increases brings more

modest impacts. Considering both parameter scales and

model performance, the ratio of 3:1 is selected for MSINet.

Secondly, the model performance fluctuation influenced

by spatial alignment weight is visualized in Fig. 5 (e). The

experiment is conducted on the VR→VID cross-domain

scenario. Employing the alignment generally makes a pos-

itive impact on the generalization capability of the model.

The optimal loss weight λsa locates at 2.0.

Visualization Results. We visualize the top-15 retrieved

sequences and the corresponding distances from an query

image on VR in Fig. 6. By comparison, ResNet50 mainly

focuses on general appearance features, where the top-rated

negative samples share similar car bodies. MSINet, oppo-

sitely, concentrates on discriminative distinctions, an empty

car hopper in this case, and creates an evident distance gap

between positive and negative samples. More details can be

seen in the supplementation material.

5. Conclusion
In this paper, we design a Twins Contrastive Mechanism

for NAS to build the compatibility with ReID. The task-

specific search scheme provides the searching process with

more appropriate supervision. A Multi-Scale Interaction

search space is proposed to establish rational and flexible

utilization of multi-scale features. With a Spatial Align-

ment Module, our proposed MSINet achieves SOTA perfor-

mance on both supervision and cross-domain scenarios with

limited parameter amount. We hope the proposed approach

could inspire more works focusing on designing network

architectures suitable for ReID tasks.
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