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Abstract

The attention mechanism has become the de facto mod-
ule in scene text recognition (STR) methods, due to its capa-
bility of extracting character-level representations. These
methods can be summarized into implicit attention based
and supervised attention based, depended on how the at-
tention is computed, i.e., implicit attention and supervised
attention are learned from sequence-level text annotations
and or character-level bounding box annotations, respec-
tively. Implicit attention, as it may extract coarse or even
incorrect spatial regions as character attention, is prone to
suffering from an alignment-drifted issue. Supervised at-
tention can alleviate the above issue, but it is character
category-specific, which requires extra laborious character-
level bounding box annotations and would be memory-
intensive when handling languages with larger character
categories. To address the aforementioned issues, we pro-
pose a novel attention mechanism for STR, self-supervised
implicit glyph attention (SIGA). SIGA delineates the glyph
structures of text images by jointly self-supervised text seg-
mentation and implicit attention alignment, which serve
as the supervision to improve attention correctness with-
out extra character-level annotations. Experimental results
demonstrate that SIGA performs consistently and signifi-
cantly better than previous attention-based STR methods,
in terms of both attention correctness and final recognition
performance on publicly available context benchmarks and
our contributed contextless benchmarks.

1. Introduction
Scene text recognition (STR) aims to recognize texts

from natural images, which has wide applications in hand-

writing recognition [36, 47, 53], industrial print recogni-

tion [12, 16, 32], and visual understanding [8, 23, 31].

Recently, attention-based models with encoder-decoder ar-

chitectures are typically developed to address this task by

attending to important regions of text images to extract
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Figure 1. Three difference supervised manners for STR.

character-level representations. These methods can be sum-

marized into implicit attention methods (a) and supervised

attention methods (b) as shown in Figure 1, according to the

annotation type used for supervising the attention.

Specifically, implicit attention is learned from sequence-

level text annotations by computing attention scores across

all locations over a 1D or 2D space. For example, the 1D se-

quential attention weights [3, 39] are generated at different

decoding steps to extract important items of the encoded

sequence. The 2D attention weights [15, 50] are gener-

ated by executing a cross-attention operation with the em-

bedded time-dependent sequences and visual features on

all spatial locations. However, implicit attention methods,

which only extract coarse or even unaligned spatial regions

as character attention, may encounter alignment-drifted at-

tention. In contrast, supervised attention is learned from ex-

tra character-level bounding box annotations by generating

character segmentation maps. Although these supervised

attention methods [20, 28, 30, 42] can alleviate the above is-

sue, they rely on labour-intensive character-level bounding

box annotations, and their attention maps with respect to

character categories might be memory-intensive when the

number of character categories is large.

To address the aforementioned issues, we propose a

novel attention-based method for STR (Figure 1 (c)), self-

supervised implicit glyph attention (SIGA). As briefly

shown in Figure 2, SIGA delineates the glyph structures

of text images by jointly self-supervised text segmenta-

tion and implicit attention alignment, which serve as the

supervision for learning attention maps during training

to improve attention correctness. Specifically, the glyph

structures are generated by modulating the learned text

foreground representations with sequence-aligned attention
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vectors. The text foreground representations are distilled

from self-supervised segmentation results according to the

internal structures of images [18]; The sequence-aligned at-

tention vectors are obtained by applying an orthogonal con-

straint to the 1D implicit attention vectors [3]. They then

serve as the position information of each character in a text

image to modulate the text foreground representations to

generate glyph pseudo-labels online.

By introducing glyph pseudo-labels as the supervision

of attention maps, the learned glyph attention encourages

the text recognition network to focus on the structural re-

gions of glyphs to improve attention correctness. Differ-

ent from supervised attention methods, the glyph attention

maps bring no additional cost to enable character and de-

coding order consistency when handling languages with

larger character categories.

For recognizing texts with linguistic context, SIGA

achieves state-of-the-art results on seven publicly available

context benchmarks. We also encapsulate our glyph atten-

tion module as a plug-in component to other attention-based

methods, achieving average performance gains of 5.68%

and 1.34% on SRN [50] and ABINet [15], respectively.

It is worth mentioning that SIGA shows its prominent

superiority in recognizing contextless texts widely used in

industrial scenarios (e.g., workpiece serial numbers [16]

and identification codes [32]). Specifically, we contribute

two large-scale contextless benchmarks (real-world MPSC

and synthetic ArbitText) with random character sequences

that differ from legal words. Experiments demonstrate that

SIGA improves the accuracy of contextless text recognition

by a large margin, which is 7.0% and 10.3% higher than

MGP-STR [44] on MPSC and ArbitText, respectively. In

summary, the main contributions are as follows:

• We propose a novel attention mechanism for scene text

recognition, SIGA, which is able to delineate glyph

structures of text images by jointly self-supervised

text segmentation and implicit attention alignment to

improve attention correctness without character-level

bounding box annotations.

• Extensive experiments demonstrate that the proposed

glyph attention is essential for improving the perfor-

mance of vision models. Our method achieves the

state-of-the-art performance on publicly available con-

text benchmarks and our contributed large-scale con-

textless benchmarks (MPSC and ArbitText).

2. Related Work
Recently, some top-down approaches have been devel-

oped to recognize entire images instead of directly recog-

nizing character segments like traditional bottom-up ap-

proaches [35, 43]. These methods can be roughly di-

vided into language-free and language-aware methods.

Language-free methods These methods view STR as a

character-level classification task and mainly exploit the vi-

sual information to recognize texts. According to the an-

notation types used for supervising the attention, implicit

attention methods are developed for STR supervised by

sequence-level text annotations, while supervised attention

methods require additional character-level bounding box

annotations.

Specifically, some 1D implicit attention methods [4, 11,

29, 38, 39] execute sequence attention modeling over a

1D space. Input text images are first encoded into 1D

sequential features. Then, they employ a bidirectional

decoder to extract attentive features of the encoded se-

quence by outputting the corresponding attention weights

for prediction. Besides, some 2D implicit attention meth-

ods [15, 26, 27, 45, 50] develop various 2D attention mech-

anisms by attending to spatial vision features of each char-

acter of an image. For example, Li et al. [27] combine vi-

sual features with hidden states of the decoder to focus on

spatial character features at each decoding step. Fang et
al. [15] adopt a transformer-based structure to compute at-

tention scores across all spatial locations of visual features,

thereby obtaining attention maps of corresponding charac-

ters. However, supervised by sequence-level text annota-

tions, these implicit attention methods easily extract coarse

or even unaligned spatial regions as character attention.

In contrast, under the supervision of extra character-level

bounding box annotations, some supervised attention meth-

ods [20, 30, 42] employ a fully convolutional network to

predict character-level segmentation results and then per-

form classification tasks. For example, He et al. [20] utilizes

the segmentation probability maps to exploit spatial context

for text reasoning by graph convolutional networks. How-

ever, character-level annotations of text images are expen-

sive and laborious. Beyond the limitations of human anno-

tations, we delineate the glyph structures of text images as

the supervision of attention maps by jointly self-supervised

text segmentation and implicit attention alignment.

Language-aware methods Inspired by natural language

processing methods [9, 24], the visual outputs of STR meth-

ods are fed into a language model to implement recogni-

tion correction with linguistic context. For example, some

works [7, 50] stack multiple layers of self-attention struc-

tures [41] for semantic reasoning tasks. Inspired by the

masked language model (MLM) in BERT [24], Fang et
al. [15] pre-train the proposed BCN to predict the masked

character in text based on linguistic context, and unite visual

outputs to improve performance. Although these language-

aware methods leverage a language model to optimize the

joint character prediction probability with visual models,

which reduces prediction errors with linguistic context, they

do not generalize well to arbitrary texts (e.g., contextless

texts with a specific workpiece coding scheme). Therefore

extracting the distinctive visual features of characters is still
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Figure 2. Overview of the proposed self-supervised implicit glyph attention network (SIGA) for text recognition.

the key to text recognition.

3. Methodology
In this section, we first review the representative

attention-based method [3] that implicitly learns the 1D at-

tention weights, and then introduce our self-supervised im-

plicit glyph attention method.

3.1. Implicit Attention Method over 1D Space

The implicit attention method [3] consists of a transfor-

mation layer, an encoder and a decoder. First, the transfor-

mation layer employs a Thin Plate Spline (TPS), a variant of

the spatial transformation network (STN) [22], to transform

an input image X into a normalized image X′. Then, the

encoder extracts sequential features H ∈ R
C×1×N from

the normalized image X′ ∈ R
C×H×W by a variant of

ResNet [19], and splits the sequential features into a fixed-

length sequence {hi}i=1,...,N . In the decoder, as illustrated

in Figure 4 (a), the encoded sequence is fed into a recurrent

module (e.g., LSTM, GRU) to generate an output vector xt

and a new state vector st at the decoding step t. The specific

details are as follows:

(xt, st) = rnn(st−1, (gt, E(yt−1))), (1)

where (gt, E(yt−1)) denotes the combination of glimpse gt

and the embedding vector of the predicted character cate-

gory at the previous decoding step. Especially, y0 denotes

an artificially defined “<start>” token. The glimpse is com-

puted by the attention mechanism as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

et,i = wᵀtanh(Wst−1 + V hi + b),

αt,i = exp(et,i)/

N∑
i′=1

exp(et,i′),

gt =
∑
i

αt,ihi, i = 1, ..., N,

(2)

where the w,W, V are learnable parameters. Finally, the

output vector xt predicts the character classification by a

linear layer at the current decoding step t. The decoder is

executed T times (i.e., total decoding steps, T = 26) and

outputs classification results sequentially.

3.2. Our Self-supervised Implicit Glyph Attention

In this work, we follow the implicit attention method [3]

as the baseline structure, and delineate glyph structures of

text images as the supervision of our attention network by

proposing a novel online glyph pseudo-label construction

module. The learned glyph attention encourages the text

recognition network to focus on the structural regions of

glyphs to improve attention correctness.

3.2.1 Glyph Pseudo-label Construction (GPC)

For a normalized image, given its text mask and the hori-

zontal position information of each character, we can eas-

ily obtain the glyph structures of these characters by com-

puting the dot product between them, instead of labour-

intensive pixel-level annotations. Towards the goal, we con-

struct glyph pseudo-labels online by jointly self-supervised
text segmentation and implicit attention alignment. The

sequence-aligned attentions serve as the position infor-

mation of characters in a text image to modulate the

learned text foreground representations to generate signif-

icant glyph pseudo-labels.

1) Self-supervised Text Segmentation. In the subsection,

we want to learn text foreground representations with mor-

phological structures of glyphs, by a semantic segmenta-

tion network that assigns every pixel a foreground or back-

ground label on the unlabeled text images. It’s observed

that the underlying morphological representations of glyphs

are not affected by slight structural changes (e.g., thicker

or thinner), which reduces the reliance on pixel-level high-

precision segmentation with expensive computation and an-

notation costs. Inspired by the prior knowledge, we begin

with a clustering task based on the internal structures of text
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Figure 3. Some segmentation examples. (a) denotes the origi-

nal images, (b) means the results of K-means, and (c) is our text

segmentation maps. In the last group of rows, the well-learned

self-supervised text segmentation module can capture morpholog-

ical structures of glyphs in challenging images.

images for obtaining pseudo-labels Spl about text masks.

For simplicity, we focus our study on K-means to imple-

ment the clustering task, but other clustering approaches

with predefined categories can be used. In the experiment,

K is set to 2, including the foreground and background cate-

gories. Surprisingly, the morphological structures of glyphs

are clustered well in most text images.

Then, the text foreground representations are distilled

from self-supervised segmentation results produced by our

designed text segmentation network. Specifically, we define

the output of Conv 0, Block 0, and Block 1 from ResNet as

P 0, P 1, and P 2, and a top-down pyramid architecture is

employed as follows:⎧⎪⎨
⎪⎩

O2 = ϕ(P 2),

O1 = ϕ([T (O2, s1),P 1]),

O0 = ϕ([T (O1, s0),P 0]),

(3)

where ϕ(·) denotes two convolutional layers with Batch-

Norm and ReLU activation function, T (·) refers to a single

2× upsampling for Ok with resolution sk (i.e., Hk ×Wk),

and [·] represents the concatenation operation along the

channel axis. O0 is exploited to produce the text segmenta-

tion mask Sm by a binary classification convolutional layer.

Finally, we employ a binary cross-entropy loss Lins be-

tween the text segmentation mask Sm and pseudo-labels

Spl to optimize the text segmentation network. Conse-

quently, the optimized segmentation network perceives the

text foreground representations with morphological struc-

tures of glyphs in challenging text images, which may

be difficult to be classified by an unsupervised clustering

method K-means. Some visualization examples are shown

in Figure 3.

2) Implicit Attention Alignment. In the decoding unit (Eq.

2), the implicit attention weights α={αt}t=1,...,T focus on

the important items of the encoded sequence to capture

character dependencies. Inspiringly, we transform the at-

tention weights as the position information of their corre-

sponding characters. However, the time information of the

decoder is drowned with the other introductions at the lat-

ter decoding steps, which easily leads to alignment drift as

shown in Figure 4 (b), i.e., the learnable attention weights

(a) Decoding procedure (b) Sequence-unaligned attention
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Figure 4. Illustration of the representative attention-based decoder

and some sequence-unaligned attention examples. The red dashed

boxes in (b) indicate that the attention weight struggles to align

text sequence at the current decoding step.

struggle to align the text sequence [45].

To address the issue, we apply an orthogonal constraint

to the implicit attention weights to obtain sequence-aligned

attention vectors. Specifically, we take these learnable at-

tention weights as vectors and perform an alignment opera-

tion by ensuring that they are orthogonal to each other and

that each processed vector is aligned with the correspond-

ing character of the text segmentation mask Sm. Assuming

that L denotes the character number of a text image, we

first calculate the correlation coefficient Scor between L at-

tention vectors, and then extract the character saliency map

Ssal by the attention vectors. The details are as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Scor =
∑

1�t<t′�L

αᵀ
tαt′ ,

βt = ξ(αt),

Ssal =

L∑
t=1

(σ(βt) · Sm),

(4)

where ξ represents the one-dimensional linear interpolation

(ξ : αt ∈ R
N → βt ∈ R

W ). σ(·) refers to the nonlinear

activation function, which maps each element in the vector

to [0,1]:

σ(x) = 1/(1 + exp(−μ(x− λ))), (5)

where μ, λ represent scaling and offset transitions, set to 70

and 0.1 in the experiment, respectively. Then the alignment

drift problem can be alleviated by minimizing the correla-

tion coefficient Scor and the difference Sdif between Sm

and Ssal by the following loss function:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lcor = Scor,

Ldif =
1

n

n∑
i=1

−(ρi log(ρ
∗
i ) + (1− ρi) log(1− ρ∗i )),

Lseq = Lcor + Ldif ,
(6)

where n denotes the number of pixels in the text segmenta-

tion map Sm, ρi and ρ∗i are the confidence score of pixel i
in Sm and Ssal, respectively.

Finally, by optimizing the proposed constraint func-

tion during training, the attention weights are successfully

aligned with the encoded sequence and contribute accurate

positional information for glyph pseudo-label construction.

3) Glyph Pseudo-label Construction. By calculating
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Figure 5. Self-constructed glyph pseudo-labels online.

the dot product between the aligned attention weights

β={βt}t=1,...,T and text segmentation mask Sm, we ob-

tain the glyph pseudo-labels. Specifically, assuming that

the glyph pseudo-label is Sgt, we construct it from the con-

catenation operation as follows:

Sgt = [1− Sm,�[β1�δ] · Sm, ...,�[βT�δ] · Sm], (7)

where [·] represents the concatenation operation along the

channel axis. δ denotes the confidence threshold, which is

set to 0.05 in the experiment. Some visualization examples

about the self-constructed Sgt are shown in Figure 5.

Note that the proposed glyph pseudo-label construction

module will be removed in the test stage.

3.2.2 Glyph Attention Network (GLAN)

The existing supervised attention methods for STR have the

following limitations: 1) For languages with larger char-

acter categories, these methods might be memory-intensive

and run slower due to their category-dependence character

segmentation maps. 2) It is not easy to obtain the character

order of text directly from the character segmentation maps

predicted by CNNs. An extra order segmentation branch

is usually introduced to ensure channel and decoding order

consistency, which brings time and computational complex-

ity. 3) Training the segmentation network requires laborious

and difficult character-level bounding box annotations.

Benefiting from self-constructed glyph pseudo-labels,

our glyph attention network does not have these limita-

tions since the order is ensured and characters are well

aligned. The glyph attention network generates glyph at-

tention maps with fixed-length and category-independent

channels, whose channel-specific map corresponds to the

order-specific glyph attention. Specifically, followed by

several convolutional layers, the features Ok in Eq. 3 are

utilized to predict a glyph attention map Sgam with a chan-

nel number of Ns. Ns is set to 1 +M and not equal to the

character categories, which represents the sum of the back-

ground category and the set maximum character length on

text images (M = 26). For example, to recognize GB2312

with 6763 categories in Chinese, if the same convolution

layer is employed and feature channels are 256, the param-

eter size is 1.7M (256×6763) for supervised attention meth-

ods while 6.9K (256×27) for our method.

And then, supervised by the constructed glyph pseudo-

labels Sgt, we use the joint loss function of multi-class Dice

loss [33] and cross-entropy loss to boost the segmentation

performance of the glyph attention network. The specific

Table 1. The parameter setting table of SIGA.

Name Value Name Value

Decoding step T 26 Sequence length N 32

Feature channel C 256 Max character length M 26

Image size W,H 128, 32 Constant λ, μ 0.1, 70

Confidence threshold δ 0.05 Constant k 2

details are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ldice =
1

L

L+1∑
j=2

(1− 2
∑n

i=1(ωj,iω
∗
j,i)∑n

i=1(ωj,i) +
∑n

i=1(ω
∗
j,i)

),

Lcel =
−1

n

n∑
i=1

(ρi log(

M+1∑
j=2

ω∗
j,i) + (1− ρi) log(1−

M+1∑
j=2

ω∗
j,i)),

Lseg = Ldice + Lcel,
(8)

where ωj,i and ω∗
j,i are the confidence scores of the i-th

pixel pi of the j-index map in the pseudo-label Sgt and

glyph attention map Sgam, respectively. ρi is the confidence

score of the pi in Sm. L denotes the character number of a

text image.

Finally, the learned glyph attention encourages the

recognition branch to focus on the structural regions of

glyphs to extract glyph features for STR, which con-

tain more robust and discerning character representations.

Specifically, the encoded text features Ok ∈ R
Wk×Hk×C

are first fed into two convolutional layers with BatchNorm

and ReLU activation functions, and then multiplied with

glyph attention maps Sgam ∈ R
Wk×Hk×M (remove back-

ground) to obtain glyph features Ik ∈ R
M×C .

3.2.3 Attention-based Character Fusion Module

As discussed above, the visually aligned glimpse gt and

glyph features Ik,t denote two different character feature

representations at the decoding step t. Considering that

their contributions to STR should be different among var-

ious text images, inspired by the gate unit [1], we dynam-

ically fuse the sequence Ik,t and glimpse gt to enrich the

semantic information for character recognition. Finally, we

embed the final sequence into a decoder [3] to output the

current decoded classification result.

4. Experiments
4.1. Datasets

Our model is trained on two large-scale synthetic

datasets (i.e. SynthText [17] and MJSynth [21]) for a fair

comparison. Nine STR datasets are used to evaluate the per-

formance of our method, including seven publicly available

context benchmarks [3] (i.e., IIIT5K-Words, ICDAR2003,

ICDAR2013, Street View Text, ICDAR2015, SVT Perspec-

tive, and CUTE80) and two contextless benchmarks (MPSC

and ArbitText). The differences between context and con-

textless benchmarks are shown in Figure 6.
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Table 2. Comparison results of language-free STR methods. † represents the visual model performance for a fair comparison. ∗ combines

21 mixing blocks (10 local blocks and 11 global blocks) with local and global modeling capabilities for extracting features. “Trns” refers

to several transformer units [41] consisting of a MHSA and a FFN. “SATRN” is tailored for a transformer-based text feature extractor [26].

These symbols follow the same convention within the scope of this paper. The best results are shown in bold font. Underline values

represent the second-best results.

Methods Backbone Structure Size Venue
IIIT SVT IC03 IC13 IC15 SP CT

3000 647 860 867 857 1015 1811 2077 645 288

CA-FCN [28] VGG16

CNN

64×256 AAAI2019 91.9 86.4 - - - 91.5 - - - 79.9

DAN [45] ResNet45 32×128 AAAI2020 94.3 89.2 - 95.0 - 93.9 - 74.5 80.0 84.4

TextScanner [42] ResNet50 64×256 AAAI2020 93.9 90.1 - - - 92.9 79.4 - 84.3 83.3

SRN† [50] ResNet50-FPN 64×256 CVPR2020 92.3 88.1 - - - 93.2 77.5 - 79.4 84.7

PlugNet [34] ResNet37 32×100 ECCV2020 94.4 92.3 95.7 - - 95.0 - 82.2 84.3 85.0

PIMNet [37] ResNet50-FPN 64×256 ACM MM2021 95.2 91.2 - - 95.2 93.4 83.5 81.0 84.3 84.4

TRBA [3] ResNet31 32×100 CVPR2021 92.1 88.9 94.8 95.1 93.9 93.1 78.3 74.7 79.5 78.2

PREN2D [49] EfficientNet-B3 64×256 CVPR2021 95.6 94.0 95.8 - 96.4 - 83.0 - 87.6 91.7
Text is Text [6] ResNet31 48×160 ICCV2021 92.3 89.9 - - 93.3 - - 76.9 84.4 86.3

S-GTR† [20] ResNet50Dilated-PPM 64×256 AAAI2022 94.0 91.2 - - 94.8 - 82.8 - 85.0 88.4

LevOCR† [10] ResNet45 32×128 ECCV2022 95.2 90.6 - - 95.1 - 84.0 - 83.4 87.8

SGBANet [54] ResNet45-FPN 64×256 ECCV2022 95.4 89.1 - - - 95.1 - 78.4 83.1 88.2

SIGAR (ours) ResNet45 32×128 - 95.9 92.7 96.5 95.9 97.0 95.6 85.1 81.7 87.1 91.7

SVTR [14] SVTR-L
Transformer∗ 48×160 IJCAI2022 96.3 91.7 - - 97.2 - 86.6 - 88.4 95.1

SIGAS (ours) SVTR-L 48×160 - 96.9 93.7 - - 97.0 - 87.6 - 89.5 92.0

ViTSTR [2] ViT-B

Transformer

224×224 ICDAR2021 88.4 87.7 94.7 94.3 93.2 92.4 78.5 72.6 81.8 81.3

ABINet† [15] ResNet45-Trns 32×128 CVPR2021 94.7 91.7 94.3 94.7 95.0 93.6 82.7 83.0 85.1 86.5

ABINet+ConCLR† [52] ResNet45-Trns 32×128 AAAI2022 95.7 92.1 - - - 95.9 84.4 - 85.7 89.2

LevOCR† [10] ViT 32×128 ECCV2022 93.6 89.2 - - 94.9 - 82.4 - 84.2 83.0

CornerTransformer [48] SATRN 32×128 ECCV2022 95.9 94.6 - - - 96.4 - 86.3 91.5 92.0

MGP-STR [44] ViT-B 32×128 ECCV2022 96.4 94.7 - - 97.3 - 87.2 - 91.0 90.3

SIGAT (ours) ViT-B 32×128 - 96.6 95.1 96.9 97.0 97.8 96.8 86.6 83.0 90.5 93.1

Table 3. Comparison results of language-aware STR methods. “V” and “VL” types refer to language-free model and language-aware

model, respectively. The best results are shown in bold font. Underline values represent the second-best results.

Methods Types Backbone Structure Size Venue
IIIT SVT IC13 IC15 SP CT

3000 647 857 1015 1811 2077 645 288

SRN [50] VL ResNet50-FPN

ResNet

64×256 CVPR2020 94.8 91.5 - 95.5 82.7 - 85.1 87.8

Bhunia et al. [7] VL ResNet50-FPN 32×100 ICCV2021 95.2 92.2 - 95.5 - 84.0 85.7 89.7

VisionLAN [46] VL ResNet45 64×256 ICCV2021 95.8 91.7 - 95.7 83.7 - 86.0 88.5

S-GTR [20] VL ResNet50Dilated-PPM 64×256 AAAI2022 95.8 94.1 96.8 - 84.6 - 87.9 92.3
LevOCR [10] VL ResNet45 32×128 ECCV2022 96.6 92.9 96.9 - 86.4 - 88.1 91.7

SIGAR (ours) V ResNet45 32×128 - 95.9 92.7 97.0 95.6 85.1 81.7 87.1 91.7

ABINet [15] VL ResNet45-Trns

Transformer

32×128 CVPR2021 96.2 93.5 97.4 - 86.0 - 89.3 89.2

ABINet+ConCLR [52] VL ResNet45-Trns 32×128 AAAI2022 96.5 94.3 - 97.7 85.4 - 89.3 91.3

PARSeq [5] VL DeiT 32×128 ECCV2022 97.0 93.6 97.0 96.2 86.5 82.9 88.9 92.2

LevOCR [10] VL ViT 32×128 ECCV2022 95.6 91.8 96.2 - 85.8 - 88.1 86.8

SIGAT (ours) V ViT-B 32×128 - 96.6 95.1 97.8 96.8 86.6 83.0 90.5 93.1

MPSC: We cropped 15003 real-world text instances from

industrial images marked workpiece information [16],

which is larger than the sum of seven context benchmarks.

These texts are randomly collected from massive internet

images and not from the same batch of products, con-

taining various workpieces with irregular character com-

binations (e.g., “YS6Q-6615-AD”, “TBJU8549728”, and

“RS550SH-4941”) for marking workpiece information.

ArbitText: We also synthesize a contextless ArbitText with

1M images, and every sample is generated by a random

combination of English letters and Arabic numerals.

4.2. Implementation Details

The parameter details are shown in Table 1. Accord-

ing to the backbone types of the existing text recognition

models, we construct three typical SIGA architectures, i.e.,
SIGAR, SIGAS and SIGAT , for a fair comparison. For

SIGAR with a ResNet45 [19] as the backbone, we adopt

the Adam optimizer [25] and the one-cycle learning rate

scheduler [40] with a maximum learning rate of 0.0005 to

train our model. We employ the same augmentation strategy

from ABINet [15] and set the batch size to 512 and the train-

ing epoch to 6. For SIGAS , we select SVTR-L [14] with

local and global modeling capabilities as the backbone, and

the training parameters are the same as SIGAR. For SIGAT

using ViT [13] as the backbone, we utilize the same setting

including optimizer, learning rate scheduler, and batch size

from MGP-STR [44]. To adapt the transformer structure to

our method, we select the output of 2, 4, and 6 layers of ViT

as P 0, P 1, and P 2 to execute the GPC module.

4.3. Comparisons on context benchmarks

Language-free model. The language-free methods mainly

exploit visual information to recognize texts. As shown

in Table 2, we compare with the previous state-of-the-

art language-free methods according to backbone types to

fairly evaluate the effectiveness of our method on standard

context benchmarks.

For the CNN-based methods, SIGAR achieves state-of-

the-art performance on seven context benchmarks. Specif-

ically, compared to supervised attention methods (CA-

FCN [28] and TextScanner [42]), SIGAR doesn’t need ex-

15290



MPSC ArbitText

Context benchmark Contextless benchmark

ICDAR2015ICDAR2013

Figure 6. Comparison of different text benchmarks of STR.

tra character-level annotations and brings significant per-

formance gains (2.0% ∼ 11.8%) on these benchmarks.

Compared to implicit attention methods, SIGAR has bet-

ter performances and outperforms the second-best results on

IIIT, IC03-860, IC03-867, IC13-857, IC13-1015, and IC15-

1811 benchmarks by 0.3%, 0.7%, 0.8%, 0.6%, 0.5%, and

1.1%, respectively. SIGAR also achieves competitive per-

formances (underline values) on SVT, IC15-2077, and SP

benchmarks.

We also deploy the backbone of SVTR [14] to imple-

ment STR, and consequently, SIGAS gets higher accuracy

on four of its reported six standard benchmarks, with an av-

erage accuracy improvement of 0.63%.

For the Transformer-based methods, SIGAT shows its

prominent superiority and achieves state-of-the-art results

on IIIT, SVT, IC03-860, IC03-867, IC13-857, IC13-1015,

and CT benchmarks. Besides, we also obtain competitive

results on IC15-1811 and IC15-2077 benchmarks. These

results demonstrate the effectiveness of our method on con-

text benchmarks, as more discerning visual features are suc-

cessfully extracted by introducing glyph attention.

Language-aware model. The semantic reasoning task of

language models corrects visual outputs to reduce predic-

tion errors with linguistic context (e.g., correcting “unjver-

sity” to “university”), which improves the overall recogni-

tion accuracy on context benchmarks. As shown in Table

3, when further compared with these language-aware meth-

ods, SIGAR achieves competitive results on the most stan-

dard benchmarks, and SIGAT gets the best accuracy on six

of the eight benchmarks despite not using the semantic rea-

soning task on benchmarks with linguistic context. Specif-

ically, SIGAT has better performances on SVT, IC13-857,

SP and CT benchmarks by 1.5%, 0.4%, 1.2%, and 0.9%,

respectively, which implies that a visual model could still

perform well on context benchmarks.

4.4. Comparisons on contextless benchmarks

Contextless texts consist of random character sequences,

which are widely used in industrial scenarios [16, 32]. Dif-

ferent from context benchmarks, they contain less semantic

information. Thus language-aware methods that build im-

plicit language representations with linguistic context are

unsuitable for these contextless texts. Exploiting the visual

features of text images is crucial for improving recognition

accuracy on contextless benchmarks. As shown in Table 4,

we conduct comparative experiments with other language-

free text recognition methods by utilizing the same training

data (MJ and ST). These results are obtained by directly

Table 4. Comparison results of contextless benchmarks.

Methods Venue
MPSC ArbitText

15003 1000000

SAR [27] AAAI2019 59.7 64.5

DAN [45] AAAI2020 57.7 61.0

GA-SPIN [51] AAAI2021 51.7 54.0

PIMNet [37] ACM MM2021 60.8 61.1

SIGAR (ours) - 65.6 66.0

SVTR [14] IJCAI2022 71.4 78.1

SIGAS (ours) - 72.7 81.0

ABINet† [15] CVPR2021 64.4 61.8

MGP-STR [44] ECCV2022 65.0 61.4

SIGAT (ours) - 72.0 71.7

Figure 7. The distribution result of the maximum value of α.

loading their released checkpoints to be evaluated. Specifi-

cally, we first evaluate on our contributed real-world MPSC

benchmark. Then, we also synthesize a large-scale context-

less benchmark with 1M text images, ArbitText, to further

evaluate the generality and effectiveness of language-free

models.

Consequently, our method shows a significant superior-

ity on these contextless benchmarks, as SIGAR is 4.8% and

4.9% higher than PIMNet [37], SIGAS is 1.3% and 2.9%

higher than SVTR [14], SIGAT is 7.0% and 10.3% higher

than MGP-STR [44] on the real-world MPSC and synthetic

ArbitText benchmarks.

These results consistently emphasize that SIGA can gen-

eralize well to arbitrary texts (context benchmarks and con-

textless benchmarks), and the proposed glyph attention is

essential for improving the performance of visual models.

4.5. Ablation Study

For efficiency, all ablation experiments are carried out by

using SIGAR.

Network Structure. Our architecture consists of the Glyph

Pseudo-label Construction (GPC), Glyph Attention Net-

work (GLAN), and Attention-based Character Fusion Mod-

ule (ACFM). However, GLAN should be evaluated with

GPC as a joint structure (JS) due to their interdependence,

i.e., GLAN is supervised by glyph pseudo-labels generated

from GPC during training. Thus we first perform the “Base-

line+JS” model to evaluate the effectiveness of our struc-

ture. As depicted in Table 5, the accuracy of “Baseline+JS”

model is 7.01% higher than “Baseline”. Then, the gain of

adding ACFM is further improved by 0.45%, from 91.65%

to 92.10% on average accuracy. Besides, we also encapsu-

late the JS structure as a plug-in component to SRN† and

ABINet†. As shown in the second group of rows in Table
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Figure 8. Extensive 2D attention visualization results generated by

ABINet (a) and SIGA (b).

5, after using our JS structure, the average accuracy of these

models is further improved by 5.68% and 1.34%, respec-

tively. These results demonstrate that the glyph attention

extracted by the JS structure is effective and important to

facilitate character recognition.

Effectiveness of Implicit Attention Alignment. We pro-

vide the effectiveness analysis and theoretical basis about

our implicit attention alignment mudule in Supplementary

Material.

Hyper-parameters. The hyper-parameters map the atten-

tion weights α to different numerical ranges. For λ and

μ of Eq. 5, they encode α to [0, 1] for generating Ssal

(Minimizing the difference between Ssal and Sm to alle-

viate the alignment drift problem). For δ of Eq. 7, it bina-

rizes α to 0 or 1 for constructing Sgt (Obtaining the glyph

pseudo-labels). To further observe the attention weight val-

ues α, we statistically analyze the distribution of the maxi-

mum value of α on the validation set, as shown in Figure 7.

Thus the hyper-parameters are easily set to reasonable val-

ues based on the prior distribution. Specifically, we set the

confidence threshold δ to 0.05, 0.1, and 0.15, respectively,

and the average accuracy on ten standard context bench-

marks is 91.19%, 90.75%, and 90.43%. For μ and λ of Eq.

5, we set the three suitable parameter pairs (μ, λ) to (100,

0.05), (70, 0.1), (40, 0.15), respectively, and the average ac-

curacy is 91.02%, 91.19% and 90.83%.

Visualization Analysis. We have visualized the charac-

ter attention maps in Figure 8, which indicates important

regions contributed to character recognition. More visual-

ization results of the SIGA method on horizontal, oriented,

curved and blurred text images in Supplementary Material.

Specifically, each map in (a) and (b) is generated by the rep-

resentative implicit attention method ABINet [15] and our

method SIGA, respectively. Unlike implicit attention mech-

anisms, our method perceives more fine-grained structural

information of glyph. Especially, our attention can still de-

generate into the same attention form as other STR models

in text images with very indistinct glyph (the fifth group of

rows in Figure 8). To the best of our knowledge, our method

is the first to explore the glyph structures in STR.

Table 5. Ablation study of the proposed SIGAR structure on

context benchmarks. “JS” means the joint structure of GPC and

GLAN, as GLAN needs GPC for glyph pseudo-label construction.

Methods

Datasets IIIT SVT IC13 IC15 SP CT Average

3000 647 857 1811 645 288 7248

Baseline 87.9 87.5 93.6 77.6 79.2 74.0 84.64

Baseline+JS 95.7 92.0 96.6 84.7 85.7 91.0 91.65

Baseline+JS+ACFM 95.9 92.7 97.0 85.1 87.1 91.7 92.10

SRN† 92.3 88.1 - 77.5 79.4 84.7 86.04

SRN†+JS 96.2 92.7 96.3 84.3 85.4 90.0 91.72

ABINet† 94.7 91.7 95.0 82.7 85.1 86.5 90.29

ABINet†+JS 95.9 92.0 96.4 84.4 85.6 91.0 91.63

Table 6. Comparison results of speed and parameter amount.

Methods Description Size Param. (MB) Time (ms)

CA-FCN [28] Sup. 64× 256 - -

TextScanner [42] Sup. 64× 256 57 56.8

SRN† [50] Implicit 64× 256 41.4 131.5

TRBA [3] Implicit 32× 100 49.6 27.6

ABINet† [15] Implicit 32× 128 23.5 16.7

SIGAR Self-Sup. 32× 128 40.4 53.7

CornerTransformer [48] Implicit 32× 128 85.7 294.9

LevOCR [10] Implicit 32× 128 109.0 119.0

MGP-STR [44] Implicit 32× 128 148.0 12.3

SIGAT Self-Sup. 32× 128 113.1 56.3

Performance and Cost. We add speed and parameter com-

parisons in Table 6. For supervised attention methods (i.e.,
CA-FCN and TextScanner) with more parameters due to the

large input size, e.g., 64×256, SIGAR doesn’t need extra

character-level annotations and has better performance than

their methods in Table 2. For implicit attention methods,

SIGAR adds an unavoidable but acceptable amount of pa-

rameters (16.9M larger than ABINet†, mainly used for a

lightweight glyph attention structure) while obtaining more

detailed glyph structures not being explored by other STR

methods. Consequently, our method achieves the best per-

formance in Table 2 and 4.

5. Conclusions
In this paper, we propose a novel attention-based method

for STR, Self-supervised Implicit Glyph Attention (SIGA).

Beyond the difficulty of character-level annotation by hu-

mans, SIGA delineates the glyph structures of text im-

ages as the supervision of attention maps by jointly self-

supervised text segmentation and implicit attention align-

ment. The learned glyph attention then encourages the text

recognition network to focus on the structural regions of

glyphs to improve attention correctness. Finally, extensive

experiments demonstrate that SIGA achieves the best per-

formance on context and contextless benchmarks.
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