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Figure 1. Personalized lip-sync results generated by our StyleSync framework. Our method not only supports high-fidelity modification
to any target template video according to conditional audio but can further adapt to specific styles with personalized optimization. In this
figure, our lip-sync results should have the same mouth shapes as the lip-synced video of the conditional audio.

Abstract

Despite recent advances in syncing lip movements with
any audio waves, current methods still struggle to balance
generation quality and the model’s generalization ability.
Previous studies either require long-term data for training
or produce a similar movement pattern on all subjects with
low quality. In this paper, we propose StyleSync, an effec-
tive framework that enables high-fidelity lip synchroniza-
tion. We identify that a style-based generator would suffi-
ciently enable such a charming property on both one-shot

*Equal contribution.
†Corresponding authors.

and few-shot scenarios. Specifically, we design a mask-
guided spatial information encoding module that preserves
the details of the given face. The mouth shapes are accu-
rately modified by audio through modulated convolutions.
Moreover, our design also enables personalized lip-sync by
introducing style space and generator refinement on only
limited frames. Thus the identity and talking style of a tar-
get person could be accurately preserved. Extensive ex-
periments demonstrate the effectiveness of our method in
producing high-fidelity results on a variety of scenes. Re-
sources can be found at https://hangz-nju-cuhk.
github.io/projects/StyleSync.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
The problem of generating lip-synced videos accord-

ing to conditional audio is of great importance to the field
of digital human creation, audio dubbing, film-making,
and entertainment. While the rapid development of this
area has been witnessed within recent years, most meth-
ods [6,8,9,16,19,24,27,28,38,39,46,50,54,57–60] focus on
generating a whole dynamic talking head. Results created
under such settings can hardly be blended into an existing
scene. Under real-world scenarios like audio dubbing, one
crucial need is to seamlessly alter the mouth or facial area
while preserving other parts of the scene unchanged, mak-
ing these methods non-feasible.

Previous methods take two different paths for achieving
seamless mouth modification. A number of studies [38, 44]
pursue realistic results on person-specific settings, which re-
quire long-term clips for target modeling. Moreover, they
rely on prior 3D facial structural information. The uncer-
tainty and errors accumulated in the 3D fitting procedure
would greatly influence their performances. On the other
hand, it is desired to build models that break the data limi-
tation on more generalized scenes. As a result, a few meth-
ods [31, 32, 41] design person-agnostic models without re-
lying on 3D or 2D structural priors. Nevertheless, such a
setting is extremely challenging.

In order to produce high-fidelity lip-synced results on
any-length videos, two essential challenges need to be ad-
dressed. 1) How to efficiently design a powerful genera-
tive backbone network that supports both accurate audio in-
formation expression and seamless local alternation. Intu-
itively, the lip-sync quality naturally contradicts the preser-
vation of the original target frame information [32, 59]. 2)
How to effectively leverage as much provided information
as possible and involve the personalized properties to a gen-
eralized model. Though few-shot meta-learning has been
proven effective in generating talking heads [5, 7, 56, 60],
how to involve such ability into a lip-syncing pipeline has
not been explored.

In this paper, we propose a highly concise and com-
prehensive framework named StyleSync, which produces
high-fidelity lip-sync results on both generalized and per-
sonalized scenarios. The key is our simple but lip-sync-
oriented modifications to style-based generator. Though
style-based generators [22, 23] have been leveraged in var-
ious talking head generation methods [5, 55, 59], their suc-
cesses are only partially instructive. They aim at producing
the whole head, which leads to unstable background and
distortions which are non-acceptable in our scenarios.

By revisiting the details of style-based generators, we
identify a few simple but essential modifications that make
our framework suitable for lip-syncing. Different from
the above methods, we adopt a masked mouth modeling
protocol [32, 41] and delicately design a Mask-based Spa-

tial Information Encoding strategy, where both the target
and reference frames’ information is encoded into a noise
space [52, 53] of the generator according to different mask-
ing schemes. While the information on audio dynamics
and high-level reference frame is injected into the style-
modulated convolution in a similar manner as [25, 59]. In
this way, our method can be benefited from the strong gen-
erative power of style-based generators and also keeps the
advantage of easy implementation and fast training.

Moreover, our network modification enables personal-
ized information preserving (e.g., speaking styles and de-
tails of the mouth and jaw). We take inspiration from the
recent studies of inverting StyleGAN priors [1, 2, 35, 45]
and propose a Personalized Optimization scheme. As au-
dio dubbing is normally performed on speaking videos, our
model can make use of only a few seconds of the person’s
information and optimize additional person-specific param-
eters including the W+ and the generator. Extensive exper-
iments show that our framework clearly outperforms previ-
ous state of the arts on the one-shot setting by a large mar-
gin, and the target-specific optimization further enhances
the fidelity of our results.

Our contributions can be summarized as follows: 1)
We present the StyleSync framework, which adopts sim-
ple but effective modifications including the Mask-based
Spatial Information Encoding to a style-based generator.
2) We propose the Personalized Optimization procedure
which involves few-shot person-specific optimization into
our framework. 3) Extensive experiments demonstrate that
our framework can directly produce accurate and high-
fidelity one-shot lip-sync results. Moreover, our proposed
personalized optimization further improves the generation
quality. Our method outperforms previous methods by a
clear margin.

2. Related Work

2.1. Audio-Driven Facial Animation

The topic of audio-driven facial animation has long been
a research interest in both the computer vision and graph-
ics community. Studies have been carried out on both dig-
ital 3D human faces [15, 20, 33, 61] and realistic human
heads [14, 17, 42]. We focus on human heads in the real
world.
Talking Head Generation. Most studies on lip-syncing
target generating the whole head of a talking person [6, 8,
9,16–18,25,26,40,42,54,58–60]. Specifically, a number of
studies leverage structural information such as 2D [9] land-
marks, 3D landmarks [60] and 3D meshes [6]. The uncer-
tainty and inaccuracy of such representations would lead to
error accumulation during the talking head generation pro-
cedure. Most person-specific methods [19, 27, 42] rely on
them and produce results with a poor generalization or lip-
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sync quality. Recently, NeRF is also used in person-specific
modeling [16, 26, 43], but they also perform poorly when
driven by audio from a different person.
Lip-Syncing on Faces. The other type of study focuses on
lip-syncing the mouth part while keeping other information
untouched in videos [31, 32, 39, 44]. Our work lies within
the same scope. While Thies et al. [44] and Song et al. [38]
produce realistic results, they rely on person-specific train-
ing on more than 2 minutes of data.

Specifically, Wav2Lip [32] generates person-agnostic
lip-sync results that are highly accurate. However, they
build the generative model on low-resolution images, lead-
ing to blurry results. We identify that it would be easier
for the model to learn the mouth motions if less informa-
tion about the image quality needs to be recovered. More-
over, their methods cannot capture the personalized patterns
given the target template video.

2.2. Style-based Generator for Faces

StyleGAN models [21–23] have shown great success on
image generation tasks, particularly on facial image gener-
ation and editing [1, 2, 34, 36, 37, 45].
StyleGAN Inversion. StyleGAN inversion is the practice
of recovering the latent space of a given image with a pre-
trained StyleGAN. Abdal et al. [1, 2] propose to invert im-
ages not only using the style space W , but also expand it
to the W+, which better preserves details. Recent studies
propose to learn encoders [3, 34, 45] for better editability
and faster optimization results. Furthermore, recent stud-
ies try to refine the generator’s parameters through pivotal
finetuning [35]. In our work, we take inspiration of previ-
ous StyleGAN inversion studies and propose a personalized
optimization procedure. We encode a W+ space from refer-
ence frames following [45] which enables personalized lip
movements learning.
Applications. StyleGAN architecture has also been lever-
aged in face restorations [48,53] and face swapping [51,52].
These tasks require preserving the original facial emotion
and expressions. On the other hand, style-based generators
have also been applied to create facial animations [5,25,59],
which are highly related to our task. However, they rely on
the style vectors in the W or W+ space for controlling both
the appearances and motion dynamics. One major draw-
back of this setting is that W+ space cannot easily accounts
for the spatial consistency of backgrounds, leading to non-
realistic results or visible artifacts.

3. Methodology
In this section, we introduce the details of our StyleSync

framework as depicted in Fig. 2. It is simply designed by
leveraging several successes of previous style-based gener-
ators. We introduce our modifications to the style-based
generator that make a successful backbone in Sec. 3.1

and the training objectives of our generalized model in
Sec. 3.2. Specifically, we illustrate our Personalized Op-
timization procedure which further strengthens our results
with person-specific optimization in Sec. 3.3.
Task Formulation. Our goal is to sync the lip motion of a
target person with any provided audio and seamlessly blend
it into the original target video. We formulate our training
in a typical self-reconstruction manner. The training set-
ting is similar to Wav2Lip [32]. Given a target video V =
{I1, . . . , IT } with T frames, we mask out the lower half of
the face including the jaw and cheeks with a mask M . The
goal is to recover the whole face with its corresponding au-
dio a = {a1, . . . , aT } (a is processed to spectrograms). As
no information about the mouth and jaw shape is provided
on the masked target frame Imt = (1 −M) ∗ It, we lever-
age a random reference frame Iref ∈ V during training to
provide the desired context.

3.1. Modifying Style-based Generator for Lip Sync

Style-based Generator Overview. We perform lip-sync-
oriented modifications to build a successful backbone for
lip sync with the StyleGAN2 [23] architecture. The origi-
nal StyleGAN2 takes a style vector w as input and uses it
to modulate convolution operations in a total of L genera-
tive layers during training. During inference, different ws
can be used at different layers, formulating the W+ space
W = {w1, . . . , wL}. The basic elements of the original
StyleGAN2, including the W+ space and the StyleGAN
generator G’s layers are depicted in blue on Fig. 2. For
simplification, certain detailed structures are omitted.
Mask-based Spatial Information Encoding. Our goal is
to seamlessly blend a lip-synced mouth into the target frame
with the assistance of a reference image. As discussed in
Sec. 2.2, previous methods leveraging the style-based gen-
erator are not directly applicable to our scene, we seek a
different way to encode the spatial information on faces.

It is proven by recent studies on face restoration [53] and
swapping [52] that content-guided feature maps can be at-
tached to StyleGAN layers in a similar status as noise with-
out affecting the expressive power of the generative model.
These contextual-rich noises N = {N1, . . . , NL} could
well preserve the original spatial structure and attributes of
the encoded visual information. This property provides an
option for leveraging the attributes information lying in the
reference image. Thus following Wav2Lip [32], we con-
catenate the masked and reference input together as the vi-
sual input of the framework and encode the corresponding
feature maps Ff = {F1, . . . , FL}. The simplest setting is
to regard N = F.

However, the goal of generating lip motions needs to cre-
ate dynamics that are different from the original facial struc-
ture but keeps facial identity, which is substantially differ-
ent from previous methods that aim to keep the structure
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Figure 2. Our StyleSync framework. The building blocks in Blue indicate the style-based generator. The masked target frame Imt is
concatenated with a reference Iref and encoded to ff by Eface (Red). The audio information is encoded to an audio feature fa (Yellow).
The features are concatenated together to form the style (W ) space. Specifically, we devise a Personalized Optimization procedure (Green)
including the learning of the ∆W and the ∆P. This part is not trained during the initial backbone learning.

fixed. The mouth shapes would be greatly influenced by
the reference image Iref when adopting the same protocol.
We identify that more than desired facial structure informa-
tion is infused in the low-level information of F (layers with
higher resolutions). As a result, we intuitively mask out the
low-level part of the information in the face features. Here
we simply define

F ′
l = (1 −M) ∗ Fl, for l > ⌊L

2
⌋. (1)

The facial information is colored in red on Fig. 2. The 1 is
an all-one matrix that has the same size as M .
Style Information Encoding. We follow previous stud-
ies [5, 40, 59] to encode both audio dynamics and facial in-
formation into the style space (W space) of the style-based
generator. The audio feature fa is encoded from the encoder
Ea and the face feature ff is the bottleneck of the face en-
coder Eface, w = concat(fa, ff ). As the information in the
reference frames is already fused to the generator through
spatial noise encoding, the fusing of the face feature is less
necessary. Experiments show that the difference is subtle
with or without ff , but we still keep this design in accor-
dance with common practice.
Ingredients for Personalization. Our above designs are
not only simple but also possess external potentials of
personalized lip-sync modeling. We leave the details to
Sec. 3.3 and briefly discuss the additional ingredients that
make our model comprehensive.

Specifically, our extension is inspired by the advances in
StyleGAN inversion [1, 2, 35]. It has pointed out that ex-
tending w to the W+ space which contains W = {w +
∆w1, . . . , w+∆wL} is essential to recovering specific im-
ages. Moreover, recent studies [4, 35] also explore tuning

the parameters of the generator to improve the network’s
fitting ability on a specific target. Thus our generator has
the potential of learning limited parameter shifts ∆P in or-
der to fit a specific person.

These personalized ingredients are depicted in green on
Fig. 2 and are not optimized during the generalized training
procedure. In order to keep the pipeline consistent across
both settings, we set ∆W = 0 and ∆P = 0 in our general-
ized model.

3.2. Backbone Training Objectives

During training, the whole backbone networks take the
6-channel concatenation of [Imt , Iref ] and the audio clip at
at the same time step as input. It predicts I ′t = G(N,W),
which aims at recovering the unmasked target image It. In
order to keep our design simple, the training objectives are
mostly aligned with StyleGAN2 [23] and Wav2Lip [32].
Reconstruction Loss. The pixel-level reconstruction loss
Lrec is fundamental for training our task. Here we leverage
the commonly used L1 loss and perceptual loss [47].

Lrec = ∥I ′t − It∥1 +
Nvgg∑
m=1

∥VGGm(I ′t)− VGGm(It)∥1,

(2)

where VGGm is the mth layer’s output of a pre-trained
VGG19 network.
Adversarial Loss. We directly adopt the same discrimi-
nator D from StyleGAN2 [23] for the adversarial training:

Ladv = min
G

max
D

(EIt [logD(It)] + EI′
t
[log(1− D(I ′t))]).

(3)
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Particularly, we initialize the discriminator’s weights with
the pre-trained version in StyleGAN2 [23]. This practice
produces visibly sharper results.
Lip-Sync Loss. We additionally train a SyncNet [12] which
consists of a visual encoder Sv and an audio encoder Sa. It
identifies whether visual and audio clips are timely aligned
with contrastive loss. When training the generator, we pre-
dict 5 consecutive frames I ′t:t+4 within one batch at each
inference step and supervise the training with SyncNet’s as-
sistance. The objective is:

Lsync = −
Sv(I

′
t:t+4)

T · Sa(at:t+4)

∥Sv(I ′t:t+4)∥2∥Sa(at:t+4)∥2
(4)

The overall loss functions across the generalized training
can be written as:

Lg = Ladv + λrLrec + λsLsync. (5)

3.3. Personalized Optimization

After the training of the backbone networks, our method
can readily generate high-fidelity lip sync results for ar-
bitrary subject. However, as the model is trained in a
generalized manner, the generated mouth motion patterns
across different people are basically the same. It has been
verified that different identities possess different talking
styles [50, 54]. Here we pursue to capture such personal-
ized property with the original template video. Notably, we
focus on the few-shot setting that only less than one minute
of the original video is given, which cannot be handled by
previous person-specific models [16, 19, 38, 44]. Below, we
illustrate how we successfully design our personalized op-
timization module based on the above discussions.
Basic Learning Settings. The basic learning procedure of
the personalized optimization is similar to backbone train-
ing. On a template video V̄ = {Ī1, . . . , ĪT } with audio
ā = {ā1 . . . , āT }, we randomly select two frames as target
Īt and reference Īref for training as one sample. During
training, the generalized loss Lg continuously supervises
the whole procedure.

As the encoder Ea encodes person-agnostic speech con-
tent information, it is fixed during the personalized opti-
mization step. While the face encoder Eface encodes the
attribute information of the target person, we do not opti-
mize its parameters on a single person to avoid overfitting.
Style Space Optimization. According to our formulation,
the W+ space contains both the lip motion and the high-
level facial style information. Thus optimizing it would ide-
ally lead to person-specific lip motion pattern. E4E [45] ver-
ifies that learning the small displacements around the origi-
nal W space would both extends the inversion quality of the
image and enables strong editing ability. Thus we propose

to learn a set of ∆W = MLP∆w(ff ) in a similar way ac-
cording to the encoded face feature ff with a few layers of
MLPs MLP∆w.
Generator Tuning. The generator most accounts for the
synthesizing and the blending quality. We allow the param-
eters P of our generator G to shift a little margin to ∆P with
the personalized data we use.
Learning Objectives. The final learning objectives of the
personalized optimization procedure can be summarized as:

Lp = Lg + λp(
∑
i,j

|∆Wj
i |
2
2 +

∑
m,n

|∆Pm
n |22), (6)

where Wj
i denote the jth parameter of the ith element in W.

This stands the same for Pm
n . We restrict the displacements

in a limited step.

4. Experiments

Datasets. We conduct experiments on two commonly
used audio-visual datasets, LRW [11] and VoxCeleb2 [10].
We follow the datasets’ original train/test split and train our
model on a mixture of these two datasets.

• LRW [11] is an audio-visual dataset collected from
BBC news for lip reading. It is one of the earliest
large-scale audio-visual datasets with high quality. It
consists of 1,000 one-second utterances in 500 words.

• VoxCeleb2 [10] VoxCeleb [30] and VoxCeleb2 are
large-scale audio-visual datasets collected for the
speaker verification task. We re-download around one-
fifth of VoxCeleb2 for training, which are of high qual-
ity. The official test set is processed with GPEN [53]
for evaluation.

Implementation Details. We process all videos at 25 fps
and align all faces according to pre-detected landmarks at
the eyes. All faces are cropped to the size of 256 × 256. A
same U-shape mask is adopted as shown in Fig. 2 to erase
the mouth, cheeks and jaws at the target frame. All au-
dios are processed in the same way as Wav2Lip [32]. In
order to keep our design simple and avoid extra hyperpa-
rameter tuning, we adopt most settings from the previous
studies [23, 32, 53]. Specifically, the generator has a total
of L = 14 style-convolution layers. λr is empirically set
to 10 and all other λs are selected to 1. For personalized
optimization, we train the person’s data for 5 epochs. Long
training would not lead to better results. Particularly, we
find that training the personalized model together with the
general training data leads to more stable results, the por-
tion of personal data and general data is set as 1:1 in our
experiments.
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Figure 3. Qualitative Results. The top row shows the lip-synced videos of the conditional driving audio. MakeitTalk [60] fails to generate
accurate mouth shape and lacks head dynamics. PC-AVS [59] and Wav2Lip [32] generate lip-synced results aligned well with audios. But
they produce visibly blurry results. Particularly, our reproduced Wav2Lip-H generates high-quality results with good lip-sync. However,
they still produce certain artifacts. While our generalized model directly produces high-fidelity results that have the same lip motion as the
original synced video.

Comparing Methods. As our model is built based on
the person-agnostic setting, we compare our StyleSync
framework with three state-of-the-art methods includ-
ing, MakeitTalk [60], PC-AVS [59] and Wav2Lip [32].
MakeitTalk [60] synthesizes talking head videos with nat-
ural head pose. PC-AVS [59] a pose source video to
achieve pose-controllable talking face generation. While
MakeitTalk and PC-AVS produce a whole talking head,
Wav2Lip which focuses on the mouth part is our main com-
peting method. As Wav2Lip is originally trained on a low-
resolution with small networks, we carefully reproduce it
on the same data and even loss functions as our methods.
We denote this model as Wav2Lip-H (High-Quality). For
fair comparison, all basic comparisons are carried out on the
generalized setting Ours-G.

We also perform personalized optimization on the test
set, where each frame lasts less than 10 seconds for both
datasets. The results are denoted as Ours-P. We equally
perform the generator finetuning on the above methods, and
all of them perform worse than their original models, thus
the results are not listed below. Additionally, we compare
our personalized setting with ADNeRF [16], a recent talk-
ing head advance using neural radiance fields [29].

4.1. Quantitative Evaluation

As quantitative evaluations can only be performed on the
self-construction setting, we avoid directly leveraging all
information within the frame for reconstruction. We uni-
formly select a same random frame as the reference frame
for PC-AVS, Wav2Lip, Wav2Lip-H and ours.
Evaluation Metrics. We follow previous studies [8, 9, 58,
59] to adopt the popularly used SSIM [49], PSNR metrics
for evaluating the generation quality, and the landmark dis-
tances around the mouth (LMD) and SyncNet’s [12] confi-
dence score to show the lip-sync quality. Please be noted
that the SyncNet metric is computed on the officially re-
leased version, which is different from our implementation
in the loss functions.

Particularly, as the details of the target person cannot
be fully recovered, we leverage the ArcFace [13] network
and compute the frame-by-frame feature cosine distances
DID for evaluating whether the generated results preserve
the identity well.
Evaluation Results. The quantitative experiments are car-
ried out on the test set of LRW [11] and VoxCeleb2 [10]
datasets. Please refer to Table 1 for the results. It can
be seen that on the LRW dataset, the generalized version
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Method LRW VoxCeleb2
SSIM ↑ PSNR ↑ LMD ↓ Syncconf ↑ DID ↑ SSIM ↑ PSNR ↑ LMD ↓ Syncconf ↑ DID ↑

MakeitTalk 0.69 29.83 2.75 3.88 0.79 0.63 28.38 6.94 2.15 0.71
PC-AVS 0.79 30.26 1.84 7.19 0.82 0.71 29.53 2.75 8.16 0.74
Wav2Lip 0.79 30.54 1.28 7.39 0.90 0.80 30.53 1.92 8.90 0.90
Wav2Lip-H 0.80 31.38 1.20 7.19 0.88 0.81 30.53 1.87 8.35 0.90
GT 1.00 100.00 0.00 7.65 1.00 1.00 100.00 0.00 7.71 1.00

Ours-G 0.85 31.78 1.18 7.25 0.89 0.79 31.00 1.47 8.25 0.90
Ours-P 0.88 32.66 0.86 6.35 0.93 0.82 31.54 1.15 7.26 0.93

Table 1. Quantitative results on LRW and VoxCeleb. For LMD the lower the better, and the higher the better for other metrics.

of our StyleSync already outperforms previous methods by
a large margin for generation quality. While on the Vox-
Celeb2 dataset, the gap is less obvious. The reason might be
that most training data of our methods are basically frontal
view faces selected from LRW, while VoxCeleb2 contains
more complicated scenes. On the other hand, after our per-
sonalized optimization, the performance of our model ad-
vances again. This shows the generated results are clearly
more similar to the targets at this stage, which can also be
verified by looking into the identity distances.

Meanwhile, our method also achieves comparable per-
formance on the lip-sync metrics on both datasets. Our
LMD score is slightly better than the competing methods.
As for the SyncNet score, we achieve comparable results
on LRW that are closer to the ground truth’s SyncNet score.
We argue it is meaningless to refer to the SyncNet scores
for verifying the lip-sync quality once the metric has outper-
formed the ground truth. The Syncconf only reflects how
well an audio-visual pair fits the learned SyncNet model
rather than the true perceptual quality. Thus though gen-
erated results might outperform ground truth on the metric,
it does not mean better sync quality.

After the personalization, the lip-sync score degrades.
We assume that the specificity of the speaking style reduces
the mouth opening level. This is also shown in Fig. 5. The
woman tends not to open her mouth wide, leading to smaller
mouth movements

4.2. Qualitative Evaluation

Subjective evaluation is crucial in identifying the abil-
ity of generative models, particularly on videos. We
strongly recommend readers to watch our supplementary
video at https://hangz-nju-cuhk.github.io/
projects/StyleSync.

Two cross-driven examples and their comparisons with
the SOTA methods are shown in Fig. 3. We use an condi-
tional audio from an arbitrary person selected from the test
set to drive the template. It can be seen that MakeitTalk [60]
cannot produce accurate lip movements. Moreover, both
PC-AVS and Wav2Lip produce visible artifacts or blurry

GT

AD-NeRF

Ours-P

GT

Figure 4. Self-driven results compared with personalized method.

results. Our reproduced Wav2Lip-H adopts the same train-
ing setting as ours, thus generates plausible results for most
cases. Nevertheless, our generalized model still produces
the most accurate mouth shapes with the highest fidelity.

Additionally, we show a case of personalized optimiza-
tion on a 50-second video clip in Fig. 1. It can be seen that
our method preserves the speaking style of the target person
with accurate lip sync. Comparing our personalized results
(Ours-P) with AD-NeRF [16] (Fig. 4), it is evident that our
method maintains more person-specific details with higher
fidelity, even though we use significantly less personal data
(10s for tuning v.s. 5min for training in [16]).
User Study. We also invite 15 participants to conduct a
user study for further subjective evaluation and the results
are reported in Table 2. Specifically, we randomly select 63
videos from LRW and VoxCeleb2 datasets as test sets and
generate videos by using our generalized StyleSync and the
comparison methods accordingly. By adopting the com-
monly used Mean Opinion Scores (MOS) rating protocol,
we request all the participants to provide their ratings (from
1 to 5, the higher the better) on three aspects for each gen-
erated video: (1) Lip-Sync quality; (2) Generation quality;
(3) Video realness.

As shown in Table 2, MakeitTalk [60] achieves the low-
est scores in all the aspects due to lacking reasonable lip
movements and head pose. PC-AVS [59], Wav2Lip [32]
and Wav2Lip-H achieve relatively higher lip-sync score,
but only Wav2Lip-H is able to synthesize videos with less
blurry textures around the mouth. Overall, our StyleSync
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Lip-Sync Quality 2.06 3.00 3.49 3.67 4.24
Generation Quality 2.63 2.16 1.87 3.42 4.52

Video Realness 1.89 2.16 2.17 2.98 4.06

Table 2. User study measured by Mean Opinion Scores. The
scores are ranged from 1 (worst) to 5 (best).

Method SSIM ↑ PSNR ↑ LMD ↓ Syncconf ↑ LID ↑
w/o mask 0.81 31.20 1.80 7.89 0.90
w/o sync 0.80 31.34 1.55 7.41 0.90
Ours-G 0.79 31.00 1.47 8.25 0.90

P w/o ∆W 0.82 31.51 1.32 7.31 0.92
Ours-P 0.82 31.54 1.15 7.26 0.93

Table 3. Quantitative ablations results on VoxCeleb2.

outperforms its counterparts in all the three aspects by a
large margin, indicating the effectiveness of our approach.

4.3. Ablation Study

To further demonstrate the contributions of our novel de-
signs, we perform an ablation study on VoxCeleb2 dataset
under both generalized setting and personalized optimiza-
tion setting (denoted as “Ours-G” and “Ours-P”, respec-
tively). Concretely, we construct two variants for “Ours-
G” (denoted as “w/o mask” and “w/o sync”) by removing
the masking operation in Eq. 1 and the lip-sync loss dur-
ing training, respectively. While for “Ours-P”, we form one
variant (denoted as “Ours-P w/o ∆W”) by setting ∆W = 0.
We have also experimented personalized optimization with
fixed generated, however, this would lead to blurry results.
This ablation is omitted here.

The quantitative and qualitative results are shown in Ta-
ble 3 and Fig. 5. As shown in Table 3, we observe that
both “w/o mask” and “w/o sync” achieve comparable per-
formance on the image quality metrics but leads to a perfor-
mance drop on the lip-sync metrics. “w/o mask” achieves
worse scores when compared with “Ours-G” in terms of
LMD and Sync, which indicates that the proposed masking
strategy can obviously alleviate the influence from the refer-
ence frames. While “w/o sync” reasonably suffers from lip-
sync degradation and the results in Fig. 5 illustrate incon-
sistent lip movements when compared with the lip-synced
video. The results demonstrate the effectiveness of the ad-
ditional supervision from SyncNet.

It can be seen from Fig. 5 that with the personalized op-
timization, both the identity and the pattern of the mouth
opening on the generated frames become more similar to
the original template video. It is also clear that after the per-
sonalized training, the mouth opening is less obvious than
in the generalized model. We analyze that this is part of the

and

Lip-Synced 
Video

Target
Template

Conditional 
Audio

Ours-G

Ours-P

w/o mask

w/o sync

Ours-P
w/o 𝚫𝑾

Figure 5. Ablation study with visual results. Zoom in for details.

talking style of this target person. This also leads to poorer
metric values on SyncNet.

In terms of the comparisons between our personalized
model and “Ours-P w/o ∆W”, it achieves similar scores
on the image quality as well as lip-sync quality. However,
the identity score without ∆W is slightly degraded, which
indicates that it is beneficial to involve ∆W into the training
procedure for better preserving identity.

5. Conclusion and Discussions
Conclusion. In this paper, we propose StyleSync, which
produces high-fidelity lip sync results for both the one-shot
and the few-shot settings. We highlight the unique propri-
eties of our method: 1) Video results produced by our gener-
alized model clearly outperform previous state-of-the-arts.
2) Our model is built upon the success of recent style-based
generators with simple modification. It is easy to implement
and friendly to train. 3) By involving StyleGAN-inspired
personalized optimization procedure, our model can further
be improved on a specific person given only a few clips.
Limitations. As our method blends a lip-synced face into
an existing video with a fixed mask, the head pose and ex-
pressions of the target person cannot be changed. Addition-
ally, under certain extreme cases where the target’s jaw is
extremely large, it might get out of our masked area.
Ethical Considerations. Our method could be used to cre-
ate non-existing talks and speeches, which might be ma-
liciously used. We will issue our core models strictly to
research institutions.
Acknowledgement. This study is supported by the Min-
istry of Education, Singapore, under its MOE AcRF Tier
2 (MOE-T2EP20221-0012), NTU NAP, and under the
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